This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 45 clinical features across 304 patients, 68 significant findings detected with P value < 0.05 and Q value < 0.25.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'NEOPLASM_HISTOLOGIC_GRADE', 'MENOPAUSE_STATUS', and 'AGE_AT_DIAGNOSIS'.
-
6 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', 'PREGNANCIES_COUNT_STILLBIRTH', 'PREGNANCIES_COUNT_LIVE_BIRTH', 'KERATINIZATION_SQUAMOUS_CELL', and 'AGE_AT_DIAGNOSIS'.
-
CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'Time to Death', 'PREGNANCIES_COUNT_LIVE_BIRTH', 'LYMPH_NODES_EXAMINED', 'KERATINIZATION_SQUAMOUS_CELL', and 'CERVIX_SUV_RESULTS'.
-
Consensus hierarchical clustering analysis on RPPA data identified 5 subtypes that correlate to 'HISTOLOGICAL_TYPE'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', 'NUMBER_OF_LYMPH_NODES', 'RACE', 'NEOPLASM_HISTOLOGIC_GRADE', 'MENOPAUSE_STATUS', 'LYMPH_NODES_EXAMINED_HE_COUNT', 'KERATINIZATION_SQUAMOUS_CELL', and 'AGE_AT_DIAGNOSIS'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', 'NUMBER_OF_LYMPH_NODES', 'PREGNANCIES_COUNT_LIVE_BIRTH', 'LYMPH_NODES_EXAMINED_HE_COUNT', 'KERATINIZATION_SQUAMOUS_CELL', 'INITIAL_PATHOLOGIC_DX_YEAR', 'HISTORY_HORMONAL_CONTRACEPTIVES_USE', and 'AGE_AT_DIAGNOSIS'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'HISTOLOGICAL_TYPE', 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY', 'NEOPLASM_HISTOLOGIC_GRADE', 'RADIATION_THERAPY_SITE', 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT', 'INITIAL_PATHOLOGIC_DX_YEAR', and 'STAGE_EVENT.CLINICAL_STAGE'.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH', 'PATHOLOGY_T_STAGE', 'HISTOLOGICAL_TYPE', 'RADIATIONS_RADIATION_REGIMENINDICATION', 'NEOPLASM_HISTOLOGIC_GRADE', 'PREGNANCIES_COUNT_LIVE_BIRTH', 'MENOPAUSE_STATUS', 'AJCC_TUMOR_PATHOLOGIC_PT', 'AGE_AT_DIAGNOSIS', and 'STAGE_EVENT.CLINICAL_STAGE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'HISTOLOGICAL_TYPE', 'RADIATIONS_RADIATION_REGIMENINDICATION', 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY', 'NEOPLASM_HISTOLOGIC_GRADE', 'RADIATION_TOTAL_DOSE', 'RADIATION_THERAPY_TYPE', 'KERATINIZATION_SQUAMOUS_CELL', 'INITIAL_PATHOLOGIC_DX_YEAR', and 'STAGE_EVENT.CLINICAL_STAGE'.
-
4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'HISTOLOGICAL_TYPE', 'RADIATIONS_RADIATION_REGIMENINDICATION', 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY', 'RADIATION_THERAPY_TYPE', 'PREGNANCIES_COUNT_LIVE_BIRTH', 'KERATINIZATION_SQUAMOUS_CELL', and 'INITIAL_PATHOLOGIC_DX_YEAR'.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 45 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 68 significant findings detected.
Clinical Features |
Statistical Tests |
Copy Number Ratio CNMF subtypes |
METHLYATION CNMF |
RPPA CNMF subtypes |
RPPA cHierClus subtypes |
RNAseq CNMF subtypes |
RNAseq cHierClus subtypes |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRseq Mature CNMF subtypes |
MIRseq Mature cHierClus subtypes |
Time to Death | logrank test |
0.271 (0.607) |
0.117 (0.458) |
0.0125 (0.137) |
0.233 (0.567) |
0.52 (0.764) |
0.013 (0.139) |
0.377 (0.688) |
0.475 (0.759) |
0.957 (0.984) |
0.793 (0.918) |
YEARS TO BIRTH | Kruskal-Wallis (anova) |
0.0246 (0.191) |
0.0108 (0.127) |
0.136 (0.465) |
0.0822 (0.385) |
1.68e-05 (0.000539) |
0.00736 (0.0946) |
0.539 (0.767) |
8.6e-05 (0.00228) |
0.48 (0.761) |
0.857 (0.938) |
PATHOLOGY T STAGE | Fisher's exact test |
0.218 (0.553) |
0.493 (0.762) |
0.488 (0.762) |
0.565 (0.791) |
0.593 (0.806) |
0.716 (0.879) |
0.516 (0.762) |
0.00436 (0.0677) |
0.463 (0.751) |
0.512 (0.762) |
PATHOLOGY N STAGE | Fisher's exact test |
0.18 (0.514) |
0.427 (0.733) |
0.655 (0.843) |
0.233 (0.567) |
0.349 (0.665) |
0.28 (0.618) |
0.819 (0.927) |
0.183 (0.514) |
0.177 (0.514) |
0.149 (0.47) |
PATHOLOGY M STAGE | Fisher's exact test |
0.526 (0.767) |
0.597 (0.809) |
1 (1.00) |
0.949 (0.982) |
0.227 (0.567) |
0.0507 (0.284) |
0.197 (0.533) |
0.34 (0.659) |
0.065 (0.33) |
0.336 (0.659) |
HISTOLOGICAL TYPE | Fisher's exact test |
0.294 (0.63) |
1e-05 (0.000346) |
0.721 (0.879) |
0.00253 (0.0464) |
1e-05 (0.000346) |
1e-05 (0.000346) |
1e-05 (0.000346) |
1e-05 (0.000346) |
1e-05 (0.000346) |
1e-05 (0.000346) |
RADIATIONS RADIATION REGIMENINDICATION | Fisher's exact test |
0.909 (0.96) |
0.0875 (0.402) |
0.926 (0.973) |
0.797 (0.918) |
0.284 (0.619) |
0.0395 (0.253) |
0.199 (0.533) |
0.0268 (0.197) |
1e-05 (0.000346) |
1e-05 (0.000346) |
NUMBER PACK YEARS SMOKED | Kruskal-Wallis (anova) |
0.475 (0.759) |
0.402 (0.71) |
0.0998 (0.428) |
0.54 (0.767) |
0.145 (0.466) |
0.437 (0.733) |
0.0518 (0.284) |
0.157 (0.48) |
0.193 (0.526) |
0.142 (0.465) |
NUMBER OF LYMPH NODES | Kruskal-Wallis (anova) |
0.271 (0.607) |
0.13 (0.465) |
0.824 (0.927) |
0.185 (0.514) |
0.0113 (0.127) |
0.0281 (0.197) |
0.332 (0.657) |
0.125 (0.464) |
0.209 (0.539) |
0.0694 (0.34) |
RACE | Fisher's exact test |
0.104 (0.436) |
0.671 (0.845) |
0.669 (0.845) |
0.203 (0.533) |
0.0106 (0.127) |
0.351 (0.665) |
0.322 (0.652) |
0.376 (0.687) |
0.139 (0.465) |
0.563 (0.791) |
ETHNICITY | Fisher's exact test |
0.508 (0.762) |
0.967 (0.991) |
0.0642 (0.33) |
0.496 (0.762) |
0.269 (0.607) |
0.85 (0.938) |
0.601 (0.812) |
0.401 (0.71) |
0.131 (0.465) |
0.455 (0.749) |
WEIGHT KG AT DIAGNOSIS | Kruskal-Wallis (anova) |
0.503 (0.762) |
0.0994 (0.428) |
0.0897 (0.402) |
0.686 (0.858) |
0.798 (0.918) |
0.528 (0.767) |
0.736 (0.888) |
0.905 (0.96) |
0.744 (0.89) |
0.808 (0.918) |
TUMOR STATUS | Fisher's exact test |
0.764 (0.905) |
0.928 (0.973) |
0.26 (0.6) |
0.419 (0.728) |
0.278 (0.618) |
0.856 (0.938) |
0.622 (0.824) |
0.569 (0.793) |
0.782 (0.914) |
0.254 (0.595) |
TUMOR SAMPLE PROCUREMENT COUNTRY | Fisher's exact test |
0.566 (0.791) |
0.663 (0.843) |
0.517 (0.762) |
0.617 (0.824) |
0.0415 (0.253) |
0.372 (0.684) |
0.00038 (0.0095) |
0.118 (0.458) |
0.00149 (0.0292) |
0.00051 (0.0121) |
NEOPLASM HISTOLOGIC GRADE | Fisher's exact test |
0.034 (0.225) |
0.82 (0.927) |
0.113 (0.457) |
0.515 (0.762) |
0.00258 (0.0464) |
0.152 (0.475) |
0.00701 (0.0946) |
0.0181 (0.173) |
0.0169 (0.166) |
0.0444 (0.259) |
TOBACCO SMOKING YEAR STOPPED | Kruskal-Wallis (anova) |
0.211 (0.542) |
0.806 (0.918) |
0.738 (0.888) |
0.72 (0.879) |
0.871 (0.94) |
0.536 (0.767) |
0.313 (0.649) |
0.147 (0.466) |
0.288 (0.619) |
0.266 (0.607) |
TOBACCO SMOKING PACK YEARS SMOKED | Kruskal-Wallis (anova) |
0.475 (0.759) |
0.402 (0.71) |
0.0998 (0.428) |
0.54 (0.767) |
0.145 (0.466) |
0.437 (0.733) |
0.0518 (0.284) |
0.157 (0.48) |
0.193 (0.526) |
0.142 (0.465) |
TOBACCO SMOKING HISTORY | Fisher's exact test |
0.439 (0.733) |
0.231 (0.567) |
0.339 (0.659) |
0.577 (0.801) |
0.355 (0.665) |
0.325 (0.652) |
0.0886 (0.402) |
0.386 (0.699) |
0.0416 (0.253) |
0.288 (0.619) |
PATIENT AGEBEGANSMOKINGINYEARS | Kruskal-Wallis (anova) |
0.332 (0.657) |
0.443 (0.736) |
0.521 (0.764) |
0.808 (0.918) |
0.431 (0.733) |
0.655 (0.843) |
0.846 (0.938) |
0.764 (0.905) |
0.685 (0.858) |
0.899 (0.959) |
RADIATION TOTAL DOSE | Kruskal-Wallis (anova) |
0.826 (0.927) |
0.512 (0.762) |
0.797 (0.918) |
0.662 (0.843) |
0.636 (0.833) |
0.992 (1.00) |
0.941 (0.98) |
0.395 (0.708) |
0.00376 (0.0626) |
0.048 (0.273) |
RADIATION THERAPY TYPE | Fisher's exact test |
0.948 (0.982) |
0.22 (0.556) |
0.838 (0.936) |
0.776 (0.911) |
0.436 (0.733) |
0.298 (0.633) |
0.117 (0.458) |
0.0459 (0.265) |
1e-05 (0.000346) |
1e-05 (0.000346) |
RADIATION THERAPY STATUS | Fisher's exact test |
0.261 (0.6) |
0.903 (0.96) |
0.501 (0.762) |
1 (1.00) |
0.736 (0.888) |
1 (1.00) |
0.397 (0.708) |
0.859 (0.938) |
1 (1.00) |
0.457 (0.749) |
RADIATION THERAPY SITE | Fisher's exact test |
0.279 (0.618) |
0.66 (0.843) |
0.315 (0.649) |
0.474 (0.759) |
0.764 (0.905) |
0.116 (0.458) |
0.0273 (0.197) |
0.12 (0.458) |
0.54 (0.767) |
0.589 (0.806) |
RADIATION ADJUVANT UNITS | Fisher's exact test |
1 (1.00) |
0.718 (0.879) |
0.232 (0.567) |
0.0995 (0.428) |
0.492 (0.762) |
0.369 (0.683) |
0.354 (0.665) |
0.353 (0.665) |
1 (1.00) |
0.458 (0.749) |
PREGNANCIES COUNT TOTAL | Kruskal-Wallis (anova) |
0.44 (0.733) |
0.316 (0.649) |
0.12 (0.458) |
0.621 (0.824) |
0.0416 (0.253) |
0.0652 (0.33) |
0.744 (0.89) |
0.088 (0.402) |
0.775 (0.911) |
0.172 (0.51) |
PREGNANCIES COUNT STILLBIRTH | Kruskal-Wallis (anova) |
0.245 (0.579) |
0.00107 (0.0219) |
0.318 (0.651) |
0.185 (0.514) |
0.171 (0.509) |
0.583 (0.806) |
0.86 (0.938) |
0.487 (0.762) |
0.202 (0.533) |
0.201 (0.533) |
PATIENT PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT | Kruskal-Wallis (anova) |
0.865 (0.938) |
0.882 (0.947) |
0.732 (0.888) |
0.83 (0.929) |
0.858 (0.938) |
0.111 (0.456) |
0.0036 (0.0623) |
0.138 (0.465) |
0.236 (0.568) |
0.112 (0.457) |
PREGNANCIES COUNT LIVE BIRTH | Kruskal-Wallis (anova) |
0.538 (0.767) |
0.0224 (0.189) |
0.0229 (0.189) |
0.133 (0.465) |
0.0533 (0.288) |
0.0221 (0.189) |
0.847 (0.938) |
0.0185 (0.173) |
0.687 (0.858) |
0.0231 (0.189) |
PATIENT PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT | Kruskal-Wallis (anova) |
0.894 (0.955) |
0.306 (0.646) |
0.338 (0.659) |
0.592 (0.806) |
0.805 (0.918) |
0.535 (0.767) |
0.464 (0.751) |
0.933 (0.974) |
0.695 (0.861) |
0.781 (0.914) |
PREGNANCIES COUNT ECTOPIC | Kruskal-Wallis (anova) |
0.213 (0.545) |
0.661 (0.843) |
0.974 (0.996) |
0.663 (0.843) |
0.586 (0.806) |
0.873 (0.94) |
0.32 (0.651) |
0.957 (0.984) |
0.981 (1.00) |
0.653 (0.843) |
POS LYMPH NODE LOCATION | Fisher's exact test |
0.704 (0.87) |
0.802 (0.918) |
0.415 (0.723) |
0.639 (0.833) |
0.499 (0.762) |
0.913 (0.963) |
0.864 (0.938) |
0.758 (0.905) |
0.865 (0.938) |
0.721 (0.879) |
MENOPAUSE STATUS | Fisher's exact test |
0.00956 (0.119) |
0.135 (0.465) |
0.509 (0.762) |
0.802 (0.918) |
0.0246 (0.191) |
0.0424 (0.255) |
0.507 (0.762) |
0.0142 (0.145) |
0.261 (0.6) |
0.288 (0.619) |
LYMPHOVASCULAR INVOLVEMENT | Fisher's exact test |
0.121 (0.458) |
0.369 (0.683) |
0.0439 (0.259) |
0.333 (0.657) |
0.616 (0.824) |
0.635 (0.833) |
0.631 (0.832) |
0.37 (0.683) |
0.85 (0.938) |
0.0782 (0.378) |
LYMPH NODES EXAMINED HE COUNT | Kruskal-Wallis (anova) |
0.271 (0.607) |
0.13 (0.465) |
0.824 (0.927) |
0.185 (0.514) |
0.0113 (0.127) |
0.0281 (0.197) |
0.332 (0.657) |
0.125 (0.464) |
0.209 (0.539) |
0.0694 (0.34) |
LYMPH NODES EXAMINED | Kruskal-Wallis (anova) |
0.411 (0.719) |
0.688 (0.858) |
0.00736 (0.0946) |
0.237 (0.568) |
0.146 (0.466) |
0.347 (0.665) |
0.605 (0.813) |
0.311 (0.649) |
0.246 (0.579) |
0.769 (0.908) |
KERATINIZATION SQUAMOUS CELL | Fisher's exact test |
0.952 (0.982) |
0.00073 (0.0156) |
0.0331 (0.222) |
0.0411 (0.253) |
0.0206 (0.189) |
0.00558 (0.081) |
0.131 (0.465) |
0.154 (0.477) |
0.0211 (0.189) |
0.0321 (0.219) |
INITIAL PATHOLOGIC DX YEAR | Kruskal-Wallis (anova) |
0.392 (0.706) |
0.185 (0.514) |
0.485 (0.762) |
0.873 (0.94) |
0.354 (0.665) |
0.0251 (0.191) |
0.00401 (0.0645) |
0.0391 (0.253) |
4.31e-06 (0.000346) |
5.03e-08 (2.26e-05) |
HISTORY HORMONAL CONTRACEPTIVES USE | Fisher's exact test |
0.429 (0.733) |
0.619 (0.824) |
0.18 (0.514) |
0.507 (0.762) |
0.128 (0.465) |
0.0311 (0.215) |
0.593 (0.806) |
0.298 (0.633) |
0.564 (0.791) |
0.314 (0.649) |
HEIGHT CM AT DIAGNOSIS | Kruskal-Wallis (anova) |
0.0643 (0.33) |
0.184 (0.514) |
0.342 (0.66) |
0.165 (0.496) |
0.424 (0.73) |
0.143 (0.466) |
0.907 (0.96) |
0.693 (0.861) |
0.511 (0.762) |
0.949 (0.982) |
CORPUS INVOLVEMENT | Fisher's exact test |
0.325 (0.652) |
0.387 (0.699) |
0.182 (0.514) |
0.193 (0.526) |
0.0661 (0.33) |
0.283 (0.619) |
0.734 (0.888) |
0.259 (0.6) |
0.652 (0.843) |
0.46 (0.75) |
CHEMO CONCURRENT TYPE | Fisher's exact test |
0.537 (0.767) |
0.2 (0.533) |
0.632 (0.832) |
0.423 (0.73) |
0.406 (0.714) |
0.367 (0.683) |
1 (1.00) |
0.446 (0.738) |
0.206 (0.539) |
0.138 (0.465) |
CERVIX SUV RESULTS | Kruskal-Wallis (anova) |
0.121 (0.458) |
0.0803 (0.38) |
0.0239 (0.191) |
0.231 (0.567) |
0.226 (0.567) |
0.141 (0.465) |
0.242 (0.577) |
0.479 (0.761) |
0.0797 (0.38) |
|
AJCC TUMOR PATHOLOGIC PT | Fisher's exact test |
0.133 (0.465) |
0.557 (0.788) |
0.592 (0.806) |
0.797 (0.918) |
0.514 (0.762) |
0.134 (0.465) |
0.665 (0.843) |
0.022 (0.189) |
0.315 (0.649) |
0.932 (0.974) |
AGE AT DIAGNOSIS | Kruskal-Wallis (anova) |
0.0165 (0.165) |
0.0138 (0.144) |
0.102 (0.434) |
0.106 (0.443) |
2.72e-05 (0.000817) |
0.00591 (0.0831) |
0.603 (0.812) |
6.89e-05 (0.00194) |
0.439 (0.733) |
0.885 (0.948) |
STAGE EVENT CLINICAL STAGE | Fisher's exact test |
0.237 (0.568) |
0.0605 (0.321) |
0.489 (0.762) |
0.16 (0.486) |
0.0537 (0.288) |
0.0902 (0.402) |
0.0259 (0.194) |
0.00073 (0.0156) |
0.00554 (0.081) |
0.163 (0.492) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 128 | 71 | 93 |
P value = 0.271 (logrank test), Q value = 0.61
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 278 | 65 | 0.0 - 210.7 (19.8) |
subtype1 | 125 | 25 | 0.1 - 210.7 (17.9) |
subtype2 | 64 | 20 | 0.1 - 147.3 (19.2) |
subtype3 | 89 | 20 | 0.0 - 173.3 (23.0) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0246 (Kruskal-Wallis (anova)), Q value = 0.19
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 288 | 48.0 (13.8) |
subtype1 | 128 | 47.7 (14.5) |
subtype2 | 70 | 45.5 (14.4) |
subtype3 | 90 | 50.5 (12.0) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.218 (Fisher's exact test), Q value = 0.55
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 134 | 68 | 21 | 8 |
subtype1 | 61 | 36 | 5 | 4 |
subtype2 | 29 | 17 | 6 | 1 |
subtype3 | 44 | 15 | 10 | 3 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.18 (Fisher's exact test), Q value = 0.51
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 127 | 55 |
subtype1 | 66 | 21 |
subtype2 | 24 | 16 |
subtype3 | 37 | 18 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.526 (Fisher's exact test), Q value = 0.77
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 107 | 10 |
subtype1 | 43 | 5 |
subtype2 | 23 | 3 |
subtype3 | 41 | 2 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 0.294 (Fisher's exact test), Q value = 0.63
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 5 | 241 | 6 | 22 | 3 | 15 |
subtype1 | 3 | 97 | 3 | 14 | 2 | 9 |
subtype2 | 2 | 60 | 2 | 4 | 1 | 2 |
subtype3 | 0 | 84 | 1 | 4 | 0 | 4 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.909 (Fisher's exact test), Q value = 0.96
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 30 | 262 |
subtype1 | 12 | 116 |
subtype2 | 8 | 63 |
subtype3 | 10 | 83 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.475 (Kruskal-Wallis (anova)), Q value = 0.76
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 90 | 17.5 (14.3) |
subtype1 | 39 | 14.9 (11.8) |
subtype2 | 23 | 18.2 (12.8) |
subtype3 | 28 | 20.5 (18.0) |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.271 (Kruskal-Wallis (anova)), Q value = 0.61
Table S10. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 148 | 0.9 (2.1) |
subtype1 | 75 | 1.0 (2.5) |
subtype2 | 27 | 1.0 (1.8) |
subtype3 | 46 | 0.8 (1.3) |
Figure S9. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.104 (Fisher's exact test), Q value = 0.44
Table S11. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 8 | 18 | 28 | 2 | 201 |
subtype1 | 6 | 7 | 11 | 1 | 90 |
subtype2 | 0 | 1 | 8 | 1 | 54 |
subtype3 | 2 | 10 | 9 | 0 | 57 |
Figure S10. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.508 (Fisher's exact test), Q value = 0.76
Table S12. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 23 | 161 |
subtype1 | 13 | 70 |
subtype2 | 5 | 40 |
subtype3 | 5 | 51 |
Figure S11. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.503 (Kruskal-Wallis (anova)), Q value = 0.76
Table S13. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 264 | 73.5 (21.5) |
subtype1 | 111 | 74.1 (18.5) |
subtype2 | 67 | 70.7 (16.5) |
subtype3 | 86 | 74.8 (27.6) |
Figure S12. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.764 (Fisher's exact test), Q value = 0.91
Table S14. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 134 | 41 |
subtype1 | 61 | 17 |
subtype2 | 29 | 11 |
subtype3 | 44 | 13 |
Figure S13. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.566 (Fisher's exact test), Q value = 0.79
Table S15. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 53 | 5 | 1 | 11 | 7 | 201 | 14 |
subtype1 | 21 | 3 | 0 | 3 | 4 | 92 | 5 |
subtype2 | 14 | 1 | 1 | 3 | 1 | 50 | 1 |
subtype3 | 18 | 1 | 0 | 5 | 2 | 59 | 8 |
Figure S14. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.034 (Fisher's exact test), Q value = 0.22
Table S16. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 18 | 129 | 113 | 1 | 24 |
subtype1 | 10 | 58 | 48 | 0 | 10 |
subtype2 | 2 | 20 | 36 | 1 | 7 |
subtype3 | 6 | 51 | 29 | 0 | 7 |
Figure S15. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.211 (Kruskal-Wallis (anova)), Q value = 0.54
Table S17. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 1999.7 (13.8) |
subtype1 | 16 | 1996.2 (17.3) |
subtype2 | 15 | 2004.3 (10.6) |
subtype3 | 11 | 1998.5 (11.1) |
Figure S16. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.475 (Kruskal-Wallis (anova)), Q value = 0.76
Table S18. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 90 | 17.5 (14.3) |
subtype1 | 39 | 14.9 (11.8) |
subtype2 | 23 | 18.2 (12.8) |
subtype3 | 28 | 20.5 (18.0) |
Figure S17. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.439 (Fisher's exact test), Q value = 0.73
Table S19. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 37 | 9 | 3 | 62 | 142 |
subtype1 | 15 | 3 | 1 | 27 | 71 |
subtype2 | 13 | 1 | 1 | 14 | 27 |
subtype3 | 9 | 5 | 1 | 21 | 44 |
Figure S18. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.332 (Kruskal-Wallis (anova)), Q value = 0.66
Table S20. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 84 | 21.2 (7.7) |
subtype1 | 35 | 20.2 (5.9) |
subtype2 | 23 | 20.4 (8.8) |
subtype3 | 26 | 23.3 (8.7) |
Figure S19. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.826 (Kruskal-Wallis (anova)), Q value = 0.93
Table S21. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 142 | 3601.6 (1718.4) |
subtype1 | 60 | 3649.4 (1709.0) |
subtype2 | 37 | 3415.9 (1837.3) |
subtype3 | 45 | 3690.7 (1656.4) |
Figure S20. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.948 (Fisher's exact test), Q value = 0.98
Table S22. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | INTERNAL |
---|---|---|---|---|
ALL | 19 | 102 | 12 | 25 |
subtype1 | 7 | 45 | 5 | 12 |
subtype2 | 4 | 26 | 4 | 6 |
subtype3 | 8 | 31 | 3 | 7 |
Figure S21. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.261 (Fisher's exact test), Q value = 0.6
Table S23. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 25 | 3 |
subtype1 | 9 | 1 |
subtype2 | 6 | 2 |
subtype3 | 10 | 0 |
Figure S22. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.279 (Fisher's exact test), Q value = 0.62
Table S24. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 36 | 33 |
subtype1 | 2 | 0 | 15 | 12 |
subtype2 | 0 | 2 | 11 | 8 |
subtype3 | 0 | 0 | 10 | 13 |
Figure S23. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 1 (Fisher's exact test), Q value = 1
Table S25. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 56 | 5 |
subtype1 | 22 | 2 |
subtype2 | 17 | 2 |
subtype3 | 17 | 1 |
Figure S24. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.44 (Kruskal-Wallis (anova)), Q value = 0.73
Table S26. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 253 | 3.6 (2.5) |
subtype1 | 113 | 3.4 (2.2) |
subtype2 | 60 | 3.5 (2.5) |
subtype3 | 80 | 4.0 (2.9) |
Figure S25. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.245 (Kruskal-Wallis (anova)), Q value = 0.58
Table S27. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 105 | 0.1 (0.4) |
subtype1 | 53 | 0.1 (0.3) |
subtype2 | 19 | 0.0 (0.0) |
subtype3 | 33 | 0.1 (0.5) |
Figure S26. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.865 (Kruskal-Wallis (anova)), Q value = 0.94
Table S28. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 139 | 0.6 (1.0) |
subtype1 | 68 | 0.5 (0.8) |
subtype2 | 25 | 0.5 (0.7) |
subtype3 | 46 | 0.7 (1.3) |
Figure S27. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.538 (Kruskal-Wallis (anova)), Q value = 0.77
Table S29. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 249 | 2.8 (2.0) |
subtype1 | 112 | 2.7 (1.8) |
subtype2 | 60 | 3.0 (2.3) |
subtype3 | 77 | 3.0 (2.1) |
Figure S28. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.894 (Kruskal-Wallis (anova)), Q value = 0.96
Table S30. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.8 (1.7) |
subtype1 | 58 | 0.7 (1.1) |
subtype2 | 23 | 0.7 (1.0) |
subtype3 | 34 | 1.2 (2.6) |
Figure S29. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.213 (Kruskal-Wallis (anova)), Q value = 0.55
Table S31. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 109 | 0.1 (0.4) |
subtype1 | 53 | 0.1 (0.2) |
subtype2 | 20 | 0.1 (0.4) |
subtype3 | 36 | 0.2 (0.5) |
Figure S30. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.704 (Fisher's exact test), Q value = 0.87
Table S32. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 7 | 35 | 1 | 8 |
subtype1 | 1 | 1 | 17 | 1 | 4 |
subtype2 | 0 | 3 | 7 | 0 | 1 |
subtype3 | 1 | 3 | 11 | 0 | 3 |
Figure S31. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.00956 (Fisher's exact test), Q value = 0.12
Table S33. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 81 | 120 |
subtype1 | 0 | 7 | 33 | 62 |
subtype2 | 0 | 4 | 16 | 30 |
subtype3 | 2 | 14 | 32 | 28 |
Figure S32. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.121 (Fisher's exact test), Q value = 0.46
Table S34. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 70 | 73 |
subtype1 | 39 | 32 |
subtype2 | 9 | 19 |
subtype3 | 22 | 22 |
Figure S33. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.271 (Kruskal-Wallis (anova)), Q value = 0.61
Table S35. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 148 | 0.9 (2.1) |
subtype1 | 75 | 1.0 (2.5) |
subtype2 | 27 | 1.0 (1.8) |
subtype3 | 46 | 0.8 (1.3) |
Figure S34. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.411 (Kruskal-Wallis (anova)), Q value = 0.72
Table S36. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 168 | 22.4 (12.8) |
subtype1 | 82 | 21.6 (12.5) |
subtype2 | 34 | 24.8 (12.6) |
subtype3 | 52 | 22.1 (13.6) |
Figure S35. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.952 (Fisher's exact test), Q value = 0.98
Table S37. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 48 | 116 |
subtype1 | 21 | 50 |
subtype2 | 10 | 27 |
subtype3 | 17 | 39 |
Figure S36. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.392 (Kruskal-Wallis (anova)), Q value = 0.71
Table S38. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 290 | 2008.5 (4.6) |
subtype1 | 126 | 2008.7 (4.8) |
subtype2 | 71 | 2008.3 (4.4) |
subtype3 | 93 | 2008.3 (4.7) |
Figure S37. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.429 (Fisher's exact test), Q value = 0.73
Table S39. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 53 | 84 |
subtype1 | 9 | 27 | 33 |
subtype2 | 3 | 12 | 19 |
subtype3 | 3 | 14 | 32 |
Figure S38. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.0643 (Kruskal-Wallis (anova)), Q value = 0.33
Table S40. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 251 | 161.2 (6.9) |
subtype1 | 108 | 161.2 (8.0) |
subtype2 | 60 | 162.6 (6.6) |
subtype3 | 83 | 160.1 (5.2) |
Figure S39. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.325 (Fisher's exact test), Q value = 0.65
Table S41. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 92 | 17 |
subtype1 | 46 | 6 |
subtype2 | 15 | 5 |
subtype3 | 31 | 6 |
Figure S40. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.537 (Fisher's exact test), Q value = 0.77
Table S42. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 1 | 15 | 1 |
subtype1 | 1 | 4 | 1 |
subtype2 | 0 | 7 | 0 |
subtype3 | 0 | 4 | 0 |
Figure S41. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.121 (Kruskal-Wallis (anova)), Q value = 0.46
Table S43. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 13.2 (7.2) |
subtype1 | 10 | 12.7 (7.0) |
subtype2 | 3 | 20.1 (5.2) |
subtype3 | 4 | 9.4 (6.4) |
Figure S42. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.133 (Fisher's exact test), Q value = 0.47
Table S44. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 34 | 69 | 30 | 6 | 10 | 7 | 9 | 36 | 2 | 2 | 17 | 8 | 1 | 16 |
subtype1 | 1 | 15 | 31 | 14 | 4 | 6 | 3 | 7 | 16 | 2 | 0 | 3 | 4 | 0 | 7 |
subtype2 | 0 | 8 | 13 | 8 | 0 | 0 | 4 | 2 | 11 | 0 | 0 | 6 | 1 | 1 | 3 |
subtype3 | 0 | 11 | 25 | 8 | 2 | 4 | 0 | 0 | 9 | 0 | 2 | 8 | 3 | 0 | 6 |
Figure S43. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.0165 (Kruskal-Wallis (anova)), Q value = 0.17
Table S45. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 292 | 48.1 (13.8) |
subtype1 | 128 | 47.7 (14.5) |
subtype2 | 71 | 45.5 (14.3) |
subtype3 | 93 | 50.7 (11.9) |
Figure S44. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.237 (Fisher's exact test), Q value = 0.57
Table S46. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 33 | 77 | 36 | 4 | 8 | 5 | 7 | 43 | 1 | 3 | 42 | 7 | 12 |
subtype1 | 1 | 0 | 1 | 0 | 12 | 40 | 16 | 1 | 5 | 2 | 5 | 17 | 1 | 1 | 16 | 2 | 7 |
subtype2 | 2 | 0 | 0 | 1 | 8 | 13 | 10 | 0 | 2 | 3 | 2 | 16 | 0 | 0 | 11 | 1 | 1 |
subtype3 | 2 | 1 | 0 | 0 | 13 | 24 | 10 | 3 | 1 | 0 | 0 | 10 | 0 | 2 | 15 | 4 | 4 |
Figure S45. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S47. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 70 | 58 | 59 | 61 | 11 | 45 |
P value = 0.117 (logrank test), Q value = 0.46
Table S48. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 290 | 69 | 0.0 - 210.7 (20.0) |
subtype1 | 68 | 16 | 0.1 - 137.2 (17.9) |
subtype2 | 56 | 12 | 0.1 - 195.8 (19.3) |
subtype3 | 56 | 11 | 0.0 - 210.7 (22.1) |
subtype4 | 56 | 21 | 0.0 - 154.3 (20.4) |
subtype5 | 10 | 1 | 0.6 - 155.8 (23.8) |
subtype6 | 44 | 8 | 0.1 - 146.9 (19.4) |
Figure S46. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.0108 (Kruskal-Wallis (anova)), Q value = 0.13
Table S49. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 300 | 48.1 (13.8) |
subtype1 | 68 | 46.6 (11.5) |
subtype2 | 57 | 51.2 (15.5) |
subtype3 | 59 | 47.6 (13.0) |
subtype4 | 60 | 43.2 (13.8) |
subtype5 | 11 | 53.0 (12.0) |
subtype6 | 45 | 52.5 (14.5) |
Figure S47. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.493 (Fisher's exact test), Q value = 0.76
Table S50. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 140 | 70 | 21 | 10 |
subtype1 | 38 | 19 | 4 | 1 |
subtype2 | 26 | 10 | 6 | 4 |
subtype3 | 25 | 18 | 3 | 3 |
subtype4 | 23 | 13 | 5 | 1 |
subtype5 | 4 | 1 | 2 | 0 |
subtype6 | 24 | 9 | 1 | 1 |
Figure S48. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.427 (Fisher's exact test), Q value = 0.73
Table S51. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 133 | 59 |
subtype1 | 37 | 12 |
subtype2 | 19 | 14 |
subtype3 | 25 | 15 |
subtype4 | 25 | 8 |
subtype5 | 4 | 2 |
subtype6 | 23 | 8 |
Figure S49. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.597 (Fisher's exact test), Q value = 0.81
Table S52. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 115 | 10 |
subtype1 | 25 | 5 |
subtype2 | 20 | 1 |
subtype3 | 27 | 1 |
subtype4 | 22 | 2 |
subtype5 | 4 | 0 |
subtype6 | 17 | 1 |
Figure S50. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S53. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 5 | 253 | 6 | 22 | 3 | 15 |
subtype1 | 5 | 21 | 5 | 22 | 3 | 14 |
subtype2 | 0 | 58 | 0 | 0 | 0 | 0 |
subtype3 | 0 | 58 | 0 | 0 | 0 | 1 |
subtype4 | 0 | 61 | 0 | 0 | 0 | 0 |
subtype5 | 0 | 11 | 0 | 0 | 0 | 0 |
subtype6 | 0 | 44 | 1 | 0 | 0 | 0 |
Figure S51. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0875 (Fisher's exact test), Q value = 0.4
Table S54. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 35 | 269 |
subtype1 | 4 | 66 |
subtype2 | 3 | 55 |
subtype3 | 8 | 51 |
subtype4 | 11 | 50 |
subtype5 | 2 | 9 |
subtype6 | 7 | 38 |
Figure S52. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.402 (Kruskal-Wallis (anova)), Q value = 0.71
Table S55. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 18 | 12.6 (11.3) |
subtype2 | 19 | 20.4 (16.8) |
subtype3 | 18 | 17.2 (12.5) |
subtype4 | 20 | 15.1 (13.6) |
subtype5 | 4 | 19.1 (13.0) |
subtype6 | 14 | 22.5 (16.2) |
Figure S53. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.13 (Kruskal-Wallis (anova)), Q value = 0.47
Table S56. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 42 | 0.9 (2.8) |
subtype2 | 28 | 1.5 (2.2) |
subtype3 | 28 | 1.2 (2.2) |
subtype4 | 25 | 0.6 (1.4) |
subtype5 | 5 | 3.6 (6.9) |
subtype6 | 29 | 0.6 (1.3) |
Figure S54. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.671 (Fisher's exact test), Q value = 0.85
Table S57. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 8 | 19 | 30 | 2 | 210 |
subtype1 | 1 | 5 | 3 | 0 | 52 |
subtype2 | 1 | 3 | 7 | 0 | 38 |
subtype3 | 1 | 6 | 7 | 0 | 37 |
subtype4 | 4 | 3 | 8 | 2 | 41 |
subtype5 | 0 | 0 | 0 | 0 | 10 |
subtype6 | 1 | 2 | 5 | 0 | 32 |
Figure S55. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RACE'

P value = 0.967 (Fisher's exact test), Q value = 0.99
Table S58. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 169 |
subtype1 | 7 | 38 |
subtype2 | 5 | 29 |
subtype3 | 4 | 34 |
subtype4 | 5 | 35 |
subtype5 | 0 | 5 |
subtype6 | 3 | 28 |
Figure S56. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.0994 (Kruskal-Wallis (anova)), Q value = 0.43
Table S59. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 276 | 73.3 (21.5) |
subtype1 | 64 | 74.2 (15.9) |
subtype2 | 56 | 71.6 (22.2) |
subtype3 | 50 | 67.9 (18.5) |
subtype4 | 54 | 74.5 (18.9) |
subtype5 | 10 | 66.8 (16.8) |
subtype6 | 42 | 80.4 (31.7) |
Figure S57. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.928 (Fisher's exact test), Q value = 0.97
Table S60. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 139 | 44 |
subtype1 | 34 | 11 |
subtype2 | 27 | 8 |
subtype3 | 31 | 7 |
subtype4 | 23 | 9 |
subtype5 | 5 | 2 |
subtype6 | 19 | 7 |
Figure S58. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.663 (Fisher's exact test), Q value = 0.84
Table S61. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 54 | 5 | 1 | 12 | 7 | 211 | 14 |
subtype1 | 14 | 3 | 1 | 3 | 1 | 45 | 3 |
subtype2 | 14 | 0 | 0 | 3 | 2 | 37 | 2 |
subtype3 | 11 | 1 | 0 | 3 | 0 | 40 | 4 |
subtype4 | 11 | 0 | 0 | 0 | 3 | 44 | 3 |
subtype5 | 1 | 0 | 0 | 0 | 0 | 10 | 0 |
subtype6 | 3 | 1 | 0 | 3 | 1 | 35 | 2 |
Figure S59. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.82 (Fisher's exact test), Q value = 0.93
Table S62. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 18 | 136 | 118 | 1 | 24 |
subtype1 | 7 | 30 | 27 | 0 | 6 |
subtype2 | 2 | 27 | 25 | 0 | 3 |
subtype3 | 3 | 29 | 22 | 0 | 4 |
subtype4 | 1 | 26 | 24 | 1 | 5 |
subtype5 | 0 | 4 | 6 | 0 | 1 |
subtype6 | 5 | 20 | 14 | 0 | 5 |
Figure S60. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.806 (Kruskal-Wallis (anova)), Q value = 0.92
Table S63. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 1999.7 (13.8) |
subtype1 | 8 | 2002.4 (13.5) |
subtype2 | 9 | 1997.7 (14.0) |
subtype3 | 7 | 2001.7 (7.3) |
subtype4 | 7 | 2000.7 (9.6) |
subtype5 | 1 | 1978.0 (NA) |
subtype6 | 10 | 1999.4 (19.7) |
Figure S61. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.402 (Kruskal-Wallis (anova)), Q value = 0.71
Table S64. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 18 | 12.6 (11.3) |
subtype2 | 19 | 20.4 (16.8) |
subtype3 | 18 | 17.2 (12.5) |
subtype4 | 20 | 15.1 (13.6) |
subtype5 | 4 | 19.1 (13.0) |
subtype6 | 14 | 22.5 (16.2) |
Figure S62. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.231 (Fisher's exact test), Q value = 0.57
Table S65. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 39 | 9 | 4 | 64 | 145 |
subtype1 | 8 | 1 | 0 | 11 | 43 |
subtype2 | 7 | 3 | 1 | 12 | 28 |
subtype3 | 7 | 2 | 1 | 12 | 29 |
subtype4 | 7 | 0 | 1 | 17 | 26 |
subtype5 | 0 | 1 | 0 | 3 | 1 |
subtype6 | 10 | 2 | 1 | 9 | 18 |
Figure S63. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.443 (Kruskal-Wallis (anova)), Q value = 0.74
Table S66. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 85 | 21.1 (7.7) |
subtype1 | 17 | 20.9 (5.7) |
subtype2 | 19 | 20.6 (9.4) |
subtype3 | 16 | 19.2 (5.2) |
subtype4 | 18 | 22.3 (9.4) |
subtype5 | 3 | 17.0 (4.0) |
subtype6 | 12 | 24.2 (7.8) |
Figure S64. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.512 (Kruskal-Wallis (anova)), Q value = 0.76
Table S67. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 149 | 3635.4 (1710.6) |
subtype1 | 34 | 3772.7 (1748.3) |
subtype2 | 29 | 3228.9 (1889.5) |
subtype3 | 25 | 3886.6 (1453.2) |
subtype4 | 36 | 3520.2 (1823.1) |
subtype5 | 6 | 4680.0 (278.9) |
subtype6 | 19 | 3567.9 (1678.5) |
Figure S65. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.22 (Fisher's exact test), Q value = 0.56
Table S68. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 20 | 104 | 15 | 1 | 25 |
subtype1 | 3 | 29 | 1 | 0 | 3 |
subtype2 | 3 | 20 | 0 | 1 | 8 |
subtype3 | 5 | 17 | 3 | 0 | 4 |
subtype4 | 6 | 22 | 5 | 0 | 6 |
subtype5 | 0 | 4 | 2 | 0 | 1 |
subtype6 | 3 | 12 | 4 | 0 | 3 |
Figure S66. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.903 (Fisher's exact test), Q value = 0.96
Table S69. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 29 | 3 |
subtype1 | 4 | 0 |
subtype2 | 2 | 0 |
subtype3 | 7 | 1 |
subtype4 | 8 | 2 |
subtype5 | 2 | 0 |
subtype6 | 6 | 0 |
Figure S67. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.66 (Fisher's exact test), Q value = 0.84
Table S70. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 38 | 33 |
subtype1 | 1 | 0 | 6 | 4 |
subtype2 | 0 | 0 | 6 | 12 |
subtype3 | 0 | 1 | 6 | 6 |
subtype4 | 1 | 1 | 12 | 6 |
subtype5 | 0 | 0 | 3 | 2 |
subtype6 | 0 | 0 | 5 | 3 |
Figure S68. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.718 (Fisher's exact test), Q value = 0.88
Table S71. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 58 | 5 |
subtype1 | 11 | 0 |
subtype2 | 14 | 1 |
subtype3 | 11 | 1 |
subtype4 | 13 | 3 |
subtype5 | 3 | 0 |
subtype6 | 6 | 0 |
Figure S69. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.316 (Kruskal-Wallis (anova)), Q value = 0.65
Table S72. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 265 | 3.6 (2.6) |
subtype1 | 64 | 3.0 (2.1) |
subtype2 | 50 | 4.0 (2.5) |
subtype3 | 51 | 3.6 (2.5) |
subtype4 | 52 | 4.0 (3.3) |
subtype5 | 10 | 3.3 (1.7) |
subtype6 | 38 | 3.6 (2.5) |
Figure S70. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.00107 (Kruskal-Wallis (anova)), Q value = 0.022
Table S73. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.3) |
subtype1 | 26 | 0.0 (0.2) |
subtype2 | 23 | 0.0 (0.0) |
subtype3 | 20 | 0.3 (0.7) |
subtype4 | 22 | 0.0 (0.0) |
subtype5 | 2 | 0.0 (0.0) |
subtype6 | 18 | 0.0 (0.0) |
Figure S71. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.882 (Kruskal-Wallis (anova)), Q value = 0.95
Table S74. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 146 | 0.5 (0.9) |
subtype1 | 30 | 0.6 (0.9) |
subtype2 | 30 | 0.5 (1.2) |
subtype3 | 29 | 0.5 (0.7) |
subtype4 | 30 | 0.7 (1.2) |
subtype5 | 4 | 0.5 (0.6) |
subtype6 | 23 | 0.3 (0.5) |
Figure S72. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.0224 (Kruskal-Wallis (anova)), Q value = 0.19
Table S75. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 260 | 2.9 (2.1) |
subtype1 | 60 | 2.3 (1.9) |
subtype2 | 50 | 3.6 (2.3) |
subtype3 | 51 | 2.7 (1.9) |
subtype4 | 50 | 3.2 (2.4) |
subtype5 | 11 | 2.3 (1.2) |
subtype6 | 38 | 2.6 (1.5) |
Figure S73. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.306 (Kruskal-Wallis (anova)), Q value = 0.65
Table S76. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 0.9 (1.8) |
subtype1 | 28 | 0.8 (1.1) |
subtype2 | 24 | 0.4 (0.9) |
subtype3 | 22 | 1.2 (2.4) |
subtype4 | 24 | 0.8 (1.6) |
subtype5 | 2 | 0.5 (0.7) |
subtype6 | 21 | 1.2 (2.9) |
Figure S74. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.661 (Kruskal-Wallis (anova)), Q value = 0.84
Table S77. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.1 (0.3) |
subtype1 | 25 | 0.1 (0.3) |
subtype2 | 24 | 0.0 (0.2) |
subtype3 | 22 | 0.1 (0.4) |
subtype4 | 22 | 0.1 (0.4) |
subtype5 | 3 | 0.3 (0.6) |
subtype6 | 19 | 0.2 (0.5) |
Figure S75. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.802 (Fisher's exact test), Q value = 0.92
Table S78. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 8 | 39 | 1 | 10 |
subtype1 | 1 | 1 | 8 | 0 | 2 |
subtype2 | 0 | 2 | 5 | 0 | 2 |
subtype3 | 0 | 0 | 11 | 0 | 2 |
subtype4 | 0 | 2 | 7 | 1 | 1 |
subtype5 | 0 | 1 | 2 | 0 | 0 |
subtype6 | 1 | 2 | 6 | 0 | 3 |
Figure S76. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.135 (Fisher's exact test), Q value = 0.47
Table S79. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 83 | 124 |
subtype1 | 0 | 9 | 17 | 34 |
subtype2 | 1 | 6 | 20 | 17 |
subtype3 | 0 | 4 | 17 | 27 |
subtype4 | 0 | 3 | 8 | 27 |
subtype5 | 0 | 1 | 3 | 4 |
subtype6 | 1 | 2 | 18 | 15 |
Figure S77. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.369 (Fisher's exact test), Q value = 0.68
Table S80. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 71 | 79 |
subtype1 | 22 | 20 |
subtype2 | 7 | 17 |
subtype3 | 16 | 14 |
subtype4 | 12 | 9 |
subtype5 | 2 | 4 |
subtype6 | 12 | 15 |
Figure S78. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.13 (Kruskal-Wallis (anova)), Q value = 0.47
Table S81. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 42 | 0.9 (2.8) |
subtype2 | 28 | 1.5 (2.2) |
subtype3 | 28 | 1.2 (2.2) |
subtype4 | 25 | 0.6 (1.4) |
subtype5 | 5 | 3.6 (6.9) |
subtype6 | 29 | 0.6 (1.3) |
Figure S79. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.688 (Kruskal-Wallis (anova)), Q value = 0.86
Table S82. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 178 | 22.3 (12.6) |
subtype1 | 47 | 21.2 (10.2) |
subtype2 | 30 | 23.6 (14.6) |
subtype3 | 33 | 25.9 (13.8) |
subtype4 | 30 | 21.5 (12.8) |
subtype5 | 7 | 18.6 (10.0) |
subtype6 | 31 | 20.8 (12.9) |
Figure S80. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.00073 (Fisher's exact test), Q value = 0.016
Table S83. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 54 | 119 |
subtype1 | 0 | 16 |
subtype2 | 6 | 31 |
subtype3 | 13 | 26 |
subtype4 | 18 | 22 |
subtype5 | 5 | 3 |
subtype6 | 12 | 21 |
Figure S81. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.185 (Kruskal-Wallis (anova)), Q value = 0.51
Table S84. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 302 | 2008.3 (4.8) |
subtype1 | 69 | 2009.3 (3.9) |
subtype2 | 58 | 2008.1 (5.3) |
subtype3 | 59 | 2008.1 (4.8) |
subtype4 | 61 | 2007.2 (5.2) |
subtype5 | 11 | 2007.5 (4.8) |
subtype6 | 44 | 2008.9 (4.5) |
Figure S82. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.619 (Fisher's exact test), Q value = 0.82
Table S85. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 53 | 89 |
subtype1 | 7 | 18 | 20 |
subtype2 | 2 | 11 | 18 |
subtype3 | 3 | 7 | 17 |
subtype4 | 2 | 10 | 17 |
subtype5 | 0 | 2 | 1 |
subtype6 | 1 | 5 | 16 |
Figure S83. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.184 (Kruskal-Wallis (anova)), Q value = 0.51
Table S86. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 161.0 (7.3) |
subtype1 | 62 | 161.6 (7.1) |
subtype2 | 51 | 161.5 (7.0) |
subtype3 | 49 | 158.8 (7.9) |
subtype4 | 51 | 161.4 (7.8) |
subtype5 | 10 | 159.9 (4.8) |
subtype6 | 39 | 162.2 (6.6) |
Figure S84. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.387 (Fisher's exact test), Q value = 0.7
Table S87. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 99 | 18 |
subtype1 | 31 | 5 |
subtype2 | 15 | 2 |
subtype3 | 18 | 5 |
subtype4 | 15 | 1 |
subtype5 | 2 | 2 |
subtype6 | 18 | 3 |
Figure S85. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.2 (Fisher's exact test), Q value = 0.53
Table S88. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 18 | 1 |
subtype1 | 0 | 2 | 0 |
subtype2 | 1 | 1 | 0 |
subtype3 | 1 | 5 | 1 |
subtype4 | 0 | 8 | 0 |
subtype5 | 1 | 1 | 0 |
subtype6 | 0 | 1 | 0 |
Figure S86. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.0803 (Kruskal-Wallis (anova)), Q value = 0.38
Table S89. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 13.2 (7.2) |
subtype1 | 1 | 7.1 (NA) |
subtype2 | 1 | 18.5 (NA) |
subtype3 | 5 | 8.2 (5.7) |
subtype4 | 4 | 18.0 (6.0) |
subtype6 | 6 | 14.4 (7.7) |
Figure S87. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.557 (Fisher's exact test), Q value = 0.79
Table S90. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 36 | 72 | 31 | 6 | 10 | 7 | 10 | 37 | 2 | 2 | 17 | 10 | 1 | 17 |
subtype1 | 0 | 6 | 25 | 7 | 1 | 4 | 2 | 3 | 9 | 0 | 0 | 4 | 1 | 0 | 2 |
subtype2 | 0 | 6 | 13 | 7 | 2 | 1 | 0 | 2 | 5 | 1 | 1 | 4 | 4 | 0 | 4 |
subtype3 | 0 | 7 | 15 | 3 | 2 | 1 | 3 | 1 | 11 | 0 | 0 | 3 | 3 | 0 | 3 |
subtype4 | 0 | 11 | 7 | 5 | 0 | 1 | 1 | 2 | 9 | 1 | 1 | 3 | 1 | 1 | 5 |
subtype5 | 0 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 |
subtype6 | 1 | 5 | 10 | 8 | 1 | 3 | 0 | 2 | 3 | 0 | 0 | 1 | 1 | 0 | 2 |
Figure S88. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.0138 (Kruskal-Wallis (anova)), Q value = 0.14
Table S91. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 304 | 48.2 (13.8) |
subtype1 | 70 | 46.7 (11.4) |
subtype2 | 58 | 51.3 (15.3) |
subtype3 | 59 | 47.6 (13.0) |
subtype4 | 61 | 43.6 (13.9) |
subtype5 | 11 | 53.0 (12.0) |
subtype6 | 45 | 52.5 (14.5) |
Figure S89. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.0605 (Fisher's exact test), Q value = 0.32
Table S92. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 37 | 78 | 38 | 5 | 9 | 5 | 7 | 43 | 1 | 3 | 42 | 9 | 12 |
subtype1 | 1 | 0 | 0 | 0 | 5 | 26 | 10 | 1 | 3 | 1 | 2 | 9 | 0 | 0 | 7 | 0 | 5 |
subtype2 | 0 | 0 | 0 | 0 | 6 | 13 | 6 | 1 | 0 | 0 | 1 | 6 | 1 | 1 | 10 | 4 | 4 |
subtype3 | 0 | 1 | 0 | 0 | 7 | 18 | 4 | 1 | 1 | 2 | 0 | 10 | 0 | 0 | 11 | 3 | 1 |
subtype4 | 2 | 0 | 0 | 0 | 13 | 9 | 6 | 0 | 4 | 1 | 1 | 12 | 0 | 2 | 8 | 1 | 1 |
subtype5 | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 0 |
subtype6 | 1 | 0 | 1 | 0 | 5 | 10 | 11 | 2 | 1 | 0 | 3 | 4 | 0 | 0 | 4 | 1 | 1 |
Figure S90. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S93. Description of clustering approach #3: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 52 | 46 | 74 |
P value = 0.0125 (logrank test), Q value = 0.14
Table S94. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 161 | 30 | 0.0 - 210.7 (18.0) |
subtype1 | 50 | 14 | 0.0 - 144.2 (17.7) |
subtype2 | 40 | 5 | 0.4 - 173.3 (19.6) |
subtype3 | 71 | 11 | 0.1 - 210.7 (17.8) |
Figure S91. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.136 (Kruskal-Wallis (anova)), Q value = 0.47
Table S95. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 169 | 47.5 (13.6) |
subtype1 | 52 | 44.4 (12.9) |
subtype2 | 45 | 49.1 (14.2) |
subtype3 | 72 | 48.7 (13.5) |
Figure S92. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.488 (Fisher's exact test), Q value = 0.76
Table S96. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 99 | 31 | 7 | 3 |
subtype1 | 30 | 8 | 0 | 1 |
subtype2 | 24 | 8 | 4 | 1 |
subtype3 | 45 | 15 | 3 | 1 |
Figure S93. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.655 (Fisher's exact test), Q value = 0.84
Table S97. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 92 | 38 |
subtype1 | 27 | 9 |
subtype2 | 23 | 8 |
subtype3 | 42 | 21 |
Figure S94. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S98. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 83 | 4 |
subtype1 | 22 | 1 |
subtype2 | 24 | 1 |
subtype3 | 37 | 2 |
Figure S95. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 0.721 (Fisher's exact test), Q value = 0.88
Table S99. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 3 | 144 | 3 | 17 | 2 | 3 |
subtype1 | 2 | 44 | 1 | 4 | 0 | 1 |
subtype2 | 0 | 42 | 0 | 3 | 0 | 1 |
subtype3 | 1 | 58 | 2 | 10 | 2 | 1 |
Figure S96. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.926 (Fisher's exact test), Q value = 0.97
Table S100. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 25 | 147 |
subtype1 | 8 | 44 |
subtype2 | 7 | 39 |
subtype3 | 10 | 64 |
Figure S97. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.0998 (Kruskal-Wallis (anova)), Q value = 0.43
Table S101. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 45 | 17.7 (13.7) |
subtype1 | 11 | 12.2 (8.5) |
subtype2 | 11 | 13.2 (10.9) |
subtype3 | 23 | 22.5 (15.4) |
Figure S98. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.824 (Kruskal-Wallis (anova)), Q value = 0.93
Table S102. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 104 | 1.2 (2.7) |
subtype1 | 27 | 1.1 (2.5) |
subtype2 | 23 | 1.1 (2.1) |
subtype3 | 54 | 1.2 (3.0) |
Figure S99. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.669 (Fisher's exact test), Q value = 0.85
Table S103. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 3 | 15 | 12 | 1 | 124 |
subtype1 | 1 | 4 | 6 | 1 | 37 |
subtype2 | 1 | 6 | 2 | 0 | 32 |
subtype3 | 1 | 5 | 4 | 0 | 55 |
Figure S100. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.0642 (Fisher's exact test), Q value = 0.33
Table S104. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 13 | 112 |
subtype1 | 1 | 40 |
subtype2 | 6 | 26 |
subtype3 | 6 | 46 |
Figure S101. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.0897 (Kruskal-Wallis (anova)), Q value = 0.4
Table S105. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 74.9 (23.0) |
subtype1 | 45 | 69.2 (17.9) |
subtype2 | 42 | 75.9 (17.1) |
subtype3 | 70 | 77.9 (28.1) |
Figure S102. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.26 (Fisher's exact test), Q value = 0.6
Table S106. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 87 | 24 |
subtype1 | 21 | 10 |
subtype2 | 26 | 5 |
subtype3 | 40 | 9 |
Figure S103. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.517 (Fisher's exact test), Q value = 0.76
Table S107. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|
ALL | 8 | 4 | 12 | 7 | 128 | 13 |
subtype1 | 2 | 1 | 5 | 3 | 38 | 3 |
subtype2 | 4 | 1 | 5 | 1 | 30 | 5 |
subtype3 | 2 | 2 | 2 | 3 | 60 | 5 |
Figure S104. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.113 (Fisher's exact test), Q value = 0.46
Table S108. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 10 | 75 | 73 | 1 | 8 |
subtype1 | 3 | 24 | 19 | 1 | 4 |
subtype2 | 2 | 24 | 14 | 0 | 3 |
subtype3 | 5 | 27 | 40 | 0 | 1 |
Figure S105. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.738 (Kruskal-Wallis (anova)), Q value = 0.89
Table S109. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 30 | 2001.6 (10.9) |
subtype1 | 8 | 2004.4 (7.9) |
subtype2 | 8 | 2000.2 (10.8) |
subtype3 | 14 | 2000.8 (12.7) |
Figure S106. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.0998 (Kruskal-Wallis (anova)), Q value = 0.43
Table S110. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 45 | 17.7 (13.7) |
subtype1 | 11 | 12.2 (8.5) |
subtype2 | 11 | 13.2 (10.9) |
subtype3 | 23 | 22.5 (15.4) |
Figure S107. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.339 (Fisher's exact test), Q value = 0.66
Table S111. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 27 | 6 | 2 | 23 | 86 |
subtype1 | 7 | 2 | 0 | 6 | 27 |
subtype2 | 7 | 2 | 2 | 3 | 26 |
subtype3 | 13 | 2 | 0 | 14 | 33 |
Figure S108. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.521 (Kruskal-Wallis (anova)), Q value = 0.76
Table S112. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 44 | 21.5 (7.9) |
subtype1 | 10 | 22.1 (8.6) |
subtype2 | 10 | 20.2 (8.3) |
subtype3 | 24 | 21.8 (7.7) |
Figure S109. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.797 (Kruskal-Wallis (anova)), Q value = 0.92
Table S113. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 75 | 3611.8 (1897.9) |
subtype1 | 22 | 3467.4 (1894.3) |
subtype2 | 20 | 3702.4 (1884.9) |
subtype3 | 33 | 3653.1 (1960.6) |
Figure S110. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.838 (Fisher's exact test), Q value = 0.94
Table S114. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 12 | 50 | 13 | 1 | 8 |
subtype1 | 5 | 15 | 4 | 0 | 3 |
subtype2 | 2 | 12 | 3 | 1 | 3 |
subtype3 | 5 | 23 | 6 | 0 | 2 |
Figure S111. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.501 (Fisher's exact test), Q value = 0.76
Table S115. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 21 | 2 |
subtype1 | 7 | 1 |
subtype2 | 5 | 1 |
subtype3 | 9 | 0 |
Figure S112. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.315 (Fisher's exact test), Q value = 0.65
Table S116. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|
ALL | 2 | 20 | 5 |
subtype1 | 2 | 5 | 3 |
subtype2 | 0 | 6 | 1 |
subtype3 | 0 | 9 | 1 |
Figure S113. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.232 (Fisher's exact test), Q value = 0.57
Table S117. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 18 | 4 |
subtype1 | 6 | 3 |
subtype2 | 4 | 1 |
subtype3 | 8 | 0 |
Figure S114. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.12 (Kruskal-Wallis (anova)), Q value = 0.46
Table S118. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 150 | 3.6 (2.6) |
subtype1 | 41 | 3.2 (2.0) |
subtype2 | 44 | 4.6 (3.5) |
subtype3 | 65 | 3.3 (2.0) |
Figure S115. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.318 (Kruskal-Wallis (anova)), Q value = 0.65
Table S119. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 71 | 0.0 (0.2) |
subtype1 | 21 | 0.1 (0.3) |
subtype2 | 17 | 0.0 (0.0) |
subtype3 | 33 | 0.0 (0.2) |
Figure S116. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.732 (Kruskal-Wallis (anova)), Q value = 0.89
Table S120. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 88 | 0.4 (0.8) |
subtype1 | 23 | 0.3 (0.6) |
subtype2 | 25 | 0.6 (1.1) |
subtype3 | 40 | 0.5 (0.8) |
Figure S117. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.0229 (Kruskal-Wallis (anova)), Q value = 0.19
Table S121. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 150 | 2.6 (1.9) |
subtype1 | 43 | 2.2 (1.7) |
subtype2 | 44 | 3.4 (2.5) |
subtype3 | 63 | 2.4 (1.3) |
Figure S118. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.338 (Kruskal-Wallis (anova)), Q value = 0.66
Table S122. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 80 | 1.1 (2.2) |
subtype1 | 24 | 1.1 (1.4) |
subtype2 | 20 | 1.8 (3.5) |
subtype3 | 36 | 0.8 (1.5) |
Figure S119. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.974 (Kruskal-Wallis (anova)), Q value = 1
Table S123. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 73 | 0.1 (0.4) |
subtype1 | 21 | 0.1 (0.3) |
subtype2 | 18 | 0.1 (0.3) |
subtype3 | 34 | 0.1 (0.4) |
Figure S120. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.415 (Fisher's exact test), Q value = 0.72
Table S124. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 7 | 24 | 1 | 5 |
subtype1 | 1 | 1 | 3 | 1 | 2 |
subtype2 | 0 | 1 | 6 | 0 | 0 |
subtype3 | 1 | 5 | 15 | 0 | 3 |
Figure S121. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.509 (Fisher's exact test), Q value = 0.76
Table S125. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 13 | 46 | 78 |
subtype1 | 0 | 2 | 12 | 29 |
subtype2 | 1 | 5 | 12 | 18 |
subtype3 | 1 | 6 | 22 | 31 |
Figure S122. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.0439 (Fisher's exact test), Q value = 0.26
Table S126. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 52 | 59 |
subtype1 | 20 | 13 |
subtype2 | 14 | 12 |
subtype3 | 18 | 34 |
Figure S123. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.824 (Kruskal-Wallis (anova)), Q value = 0.93
Table S127. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 104 | 1.2 (2.7) |
subtype1 | 27 | 1.1 (2.5) |
subtype2 | 23 | 1.1 (2.1) |
subtype3 | 54 | 1.2 (3.0) |
Figure S124. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.00736 (Kruskal-Wallis (anova)), Q value = 0.095
Table S128. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 20.8 (11.9) |
subtype1 | 35 | 19.1 (9.6) |
subtype2 | 25 | 15.7 (10.6) |
subtype3 | 61 | 23.9 (12.8) |
Figure S125. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.0331 (Fisher's exact test), Q value = 0.22
Table S129. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 39 | 75 |
subtype1 | 12 | 27 |
subtype2 | 6 | 25 |
subtype3 | 21 | 23 |
Figure S126. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.485 (Kruskal-Wallis (anova)), Q value = 0.76
Table S130. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 170 | 2008.2 (5.0) |
subtype1 | 51 | 2008.5 (5.2) |
subtype2 | 46 | 2008.6 (4.6) |
subtype3 | 73 | 2007.8 (5.0) |
Figure S127. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.18 (Fisher's exact test), Q value = 0.51
Table S131. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 5 | 31 | 51 |
subtype1 | 0 | 9 | 14 |
subtype2 | 0 | 7 | 17 |
subtype3 | 5 | 15 | 20 |
Figure S128. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.342 (Kruskal-Wallis (anova)), Q value = 0.66
Table S132. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 152 | 161.7 (7.1) |
subtype1 | 44 | 162.8 (6.2) |
subtype2 | 43 | 160.7 (7.9) |
subtype3 | 65 | 161.6 (7.2) |
Figure S129. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.182 (Fisher's exact test), Q value = 0.51
Table S133. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 84 | 11 |
subtype1 | 23 | 2 |
subtype2 | 24 | 1 |
subtype3 | 37 | 8 |
Figure S130. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.632 (Fisher's exact test), Q value = 0.83
Table S134. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 2 | 13 | 1 |
subtype1 | 0 | 3 | 1 |
subtype2 | 1 | 3 | 0 |
subtype3 | 1 | 7 | 0 |
Figure S131. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.0239 (Kruskal-Wallis (anova)), Q value = 0.19
Table S135. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 11 | 13.2 (8.7) |
subtype1 | 3 | 12.8 (3.6) |
subtype2 | 3 | 24.5 (5.3) |
subtype3 | 5 | 6.6 (4.4) |
Figure S132. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.592 (Fisher's exact test), Q value = 0.81
Table S136. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 23 | 52 | 23 | 3 | 4 | 6 | 7 | 11 | 1 | 1 | 5 | 3 | 1 | 8 |
subtype1 | 1 | 7 | 14 | 8 | 0 | 0 | 3 | 2 | 3 | 0 | 0 | 0 | 1 | 0 | 5 |
subtype2 | 0 | 6 | 13 | 5 | 0 | 2 | 0 | 2 | 4 | 0 | 1 | 3 | 1 | 1 | 2 |
subtype3 | 0 | 10 | 25 | 10 | 3 | 2 | 3 | 3 | 4 | 1 | 0 | 2 | 1 | 0 | 1 |
Figure S133. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.102 (Kruskal-Wallis (anova)), Q value = 0.43
Table S137. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 172 | 47.7 (13.5) |
subtype1 | 52 | 44.4 (12.9) |
subtype2 | 46 | 49.4 (14.2) |
subtype3 | 74 | 48.9 (13.3) |
Figure S134. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.489 (Fisher's exact test), Q value = 0.76
Table S138. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 4 | 1 | 1 | 1 | 27 | 48 | 27 | 4 | 5 | 4 | 4 | 16 | 1 | 1 | 19 | 4 | 2 |
subtype1 | 1 | 1 | 1 | 0 | 6 | 13 | 12 | 0 | 1 | 1 | 1 | 7 | 0 | 0 | 5 | 1 | 1 |
subtype2 | 2 | 0 | 0 | 1 | 8 | 11 | 4 | 3 | 2 | 0 | 0 | 5 | 0 | 1 | 7 | 2 | 0 |
subtype3 | 1 | 0 | 0 | 0 | 13 | 24 | 11 | 1 | 2 | 3 | 3 | 4 | 1 | 0 | 7 | 1 | 1 |
Figure S135. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S139. Description of clustering approach #4: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 31 | 49 | 51 | 23 | 18 |
P value = 0.233 (logrank test), Q value = 0.57
Table S140. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 161 | 30 | 0.0 - 210.7 (18.0) |
subtype1 | 30 | 6 | 0.4 - 144.2 (17.9) |
subtype2 | 47 | 7 | 0.0 - 210.7 (19.4) |
subtype3 | 47 | 8 | 0.1 - 195.8 (19.7) |
subtype4 | 21 | 6 | 0.0 - 78.7 (21.1) |
subtype5 | 16 | 3 | 0.1 - 147.4 (14.7) |
Figure S136. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0822 (Kruskal-Wallis (anova)), Q value = 0.39
Table S141. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 169 | 47.5 (13.6) |
subtype1 | 30 | 44.0 (14.5) |
subtype2 | 48 | 47.5 (13.5) |
subtype3 | 50 | 48.9 (13.5) |
subtype4 | 23 | 44.2 (12.3) |
subtype5 | 18 | 53.8 (12.1) |
Figure S137. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.565 (Fisher's exact test), Q value = 0.79
Table S142. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 99 | 31 | 7 | 3 |
subtype1 | 19 | 3 | 0 | 0 |
subtype2 | 31 | 9 | 2 | 0 |
subtype3 | 24 | 11 | 4 | 2 |
subtype4 | 13 | 3 | 1 | 1 |
subtype5 | 12 | 5 | 0 | 0 |
Figure S138. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.233 (Fisher's exact test), Q value = 0.57
Table S143. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 92 | 38 |
subtype1 | 16 | 4 |
subtype2 | 30 | 12 |
subtype3 | 19 | 14 |
subtype4 | 13 | 6 |
subtype5 | 14 | 2 |
Figure S139. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.949 (Fisher's exact test), Q value = 0.98
Table S144. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 83 | 4 |
subtype1 | 11 | 1 |
subtype2 | 24 | 1 |
subtype3 | 26 | 1 |
subtype4 | 12 | 1 |
subtype5 | 10 | 0 |
Figure S140. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 0.00253 (Fisher's exact test), Q value = 0.046
Table S145. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 3 | 144 | 3 | 17 | 2 | 3 |
subtype1 | 1 | 26 | 1 | 2 | 0 | 1 |
subtype2 | 2 | 35 | 1 | 8 | 2 | 1 |
subtype3 | 0 | 49 | 0 | 1 | 0 | 1 |
subtype4 | 0 | 23 | 0 | 0 | 0 | 0 |
subtype5 | 0 | 11 | 1 | 6 | 0 | 0 |
Figure S141. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.797 (Fisher's exact test), Q value = 0.92
Table S146. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 25 | 147 |
subtype1 | 6 | 25 |
subtype2 | 7 | 42 |
subtype3 | 8 | 43 |
subtype4 | 3 | 20 |
subtype5 | 1 | 17 |
Figure S142. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.54 (Kruskal-Wallis (anova)), Q value = 0.77
Table S147. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 45 | 17.7 (13.7) |
subtype1 | 8 | 10.9 (7.4) |
subtype2 | 15 | 17.3 (10.7) |
subtype3 | 14 | 20.8 (16.6) |
subtype4 | 6 | 20.6 (20.0) |
subtype5 | 2 | 18.0 (11.3) |
Figure S143. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.185 (Kruskal-Wallis (anova)), Q value = 0.51
Table S148. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 104 | 1.2 (2.7) |
subtype1 | 15 | 1.4 (3.0) |
subtype2 | 39 | 1.3 (3.5) |
subtype3 | 25 | 1.2 (1.6) |
subtype4 | 14 | 0.6 (1.6) |
subtype5 | 11 | 0.7 (2.4) |
Figure S144. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.203 (Fisher's exact test), Q value = 0.53
Table S149. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 3 | 15 | 12 | 1 | 124 |
subtype1 | 0 | 4 | 3 | 1 | 22 |
subtype2 | 2 | 1 | 2 | 0 | 37 |
subtype3 | 1 | 4 | 3 | 0 | 37 |
subtype4 | 0 | 2 | 4 | 0 | 15 |
subtype5 | 0 | 4 | 0 | 0 | 13 |
Figure S145. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.496 (Fisher's exact test), Q value = 0.76
Table S150. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 13 | 112 |
subtype1 | 1 | 27 |
subtype2 | 3 | 29 |
subtype3 | 6 | 29 |
subtype4 | 1 | 14 |
subtype5 | 2 | 13 |
Figure S146. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.686 (Kruskal-Wallis (anova)), Q value = 0.86
Table S151. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 74.9 (23.0) |
subtype1 | 26 | 69.5 (18.6) |
subtype2 | 45 | 76.0 (20.0) |
subtype3 | 48 | 76.6 (27.3) |
subtype4 | 20 | 72.6 (12.8) |
subtype5 | 18 | 77.8 (31.8) |
Figure S147. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.419 (Fisher's exact test), Q value = 0.73
Table S152. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 87 | 24 |
subtype1 | 12 | 5 |
subtype2 | 28 | 5 |
subtype3 | 30 | 6 |
subtype4 | 9 | 4 |
subtype5 | 8 | 4 |
Figure S148. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.617 (Fisher's exact test), Q value = 0.82
Table S153. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|
ALL | 8 | 4 | 12 | 7 | 128 | 13 |
subtype1 | 0 | 0 | 2 | 2 | 24 | 3 |
subtype2 | 1 | 2 | 3 | 1 | 41 | 1 |
subtype3 | 6 | 2 | 4 | 2 | 33 | 4 |
subtype4 | 1 | 0 | 2 | 1 | 17 | 2 |
subtype5 | 0 | 0 | 1 | 1 | 13 | 3 |
Figure S149. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.515 (Fisher's exact test), Q value = 0.76
Table S154. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 10 | 75 | 73 | 1 | 8 |
subtype1 | 2 | 15 | 11 | 0 | 3 |
subtype2 | 5 | 16 | 26 | 0 | 2 |
subtype3 | 2 | 26 | 17 | 0 | 2 |
subtype4 | 1 | 9 | 10 | 1 | 1 |
subtype5 | 0 | 9 | 9 | 0 | 0 |
Figure S150. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.72 (Kruskal-Wallis (anova)), Q value = 0.88
Table S155. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 30 | 2001.6 (10.9) |
subtype1 | 5 | 2002.6 (8.9) |
subtype2 | 11 | 2000.3 (14.3) |
subtype3 | 10 | 2004.3 (8.2) |
subtype4 | 1 | 2000.0 (NA) |
subtype5 | 3 | 1996.3 (11.8) |
Figure S151. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.54 (Kruskal-Wallis (anova)), Q value = 0.77
Table S156. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 45 | 17.7 (13.7) |
subtype1 | 8 | 10.9 (7.4) |
subtype2 | 15 | 17.3 (10.7) |
subtype3 | 14 | 20.8 (16.6) |
subtype4 | 6 | 20.6 (20.0) |
subtype5 | 2 | 18.0 (11.3) |
Figure S152. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.577 (Fisher's exact test), Q value = 0.8
Table S157. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 27 | 6 | 2 | 23 | 86 |
subtype1 | 2 | 2 | 0 | 4 | 18 |
subtype2 | 10 | 2 | 0 | 6 | 21 |
subtype3 | 11 | 1 | 1 | 7 | 24 |
subtype4 | 2 | 0 | 1 | 5 | 11 |
subtype5 | 2 | 1 | 0 | 1 | 12 |
Figure S153. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.808 (Kruskal-Wallis (anova)), Q value = 0.92
Table S158. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 44 | 21.5 (7.9) |
subtype1 | 7 | 23.4 (9.6) |
subtype2 | 14 | 20.9 (7.1) |
subtype3 | 15 | 20.5 (7.9) |
subtype4 | 5 | 21.4 (5.9) |
subtype5 | 3 | 25.3 (13.6) |
Figure S154. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.662 (Kruskal-Wallis (anova)), Q value = 0.84
Table S159. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 75 | 3611.8 (1897.9) |
subtype1 | 13 | 3483.1 (1881.6) |
subtype2 | 23 | 3739.5 (1901.8) |
subtype3 | 23 | 4038.9 (1604.2) |
subtype4 | 10 | 3103.3 (2194.6) |
subtype5 | 6 | 2611.3 (2495.8) |
Figure S155. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.776 (Fisher's exact test), Q value = 0.91
Table S160. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 12 | 50 | 13 | 1 | 8 |
subtype1 | 3 | 9 | 3 | 0 | 1 |
subtype2 | 2 | 14 | 5 | 0 | 3 |
subtype3 | 4 | 16 | 4 | 0 | 2 |
subtype4 | 3 | 6 | 1 | 0 | 2 |
subtype5 | 0 | 5 | 0 | 1 | 0 |
Figure S156. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 1 (Fisher's exact test), Q value = 1
Table S161. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 21 | 2 |
subtype1 | 5 | 1 |
subtype2 | 6 | 0 |
subtype3 | 7 | 1 |
subtype4 | 3 | 0 |
subtype5 | 0 | 0 |
Figure S157. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.474 (Fisher's exact test), Q value = 0.76
Table S162. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|
ALL | 2 | 20 | 5 |
subtype1 | 2 | 3 | 1 |
subtype2 | 0 | 4 | 1 |
subtype3 | 0 | 9 | 2 |
subtype4 | 0 | 3 | 1 |
subtype5 | 0 | 1 | 0 |
Figure S158. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.0995 (Fisher's exact test), Q value = 0.43
Table S163. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 18 | 4 |
subtype1 | 3 | 2 |
subtype2 | 4 | 0 |
subtype3 | 8 | 0 |
subtype4 | 2 | 2 |
subtype5 | 1 | 0 |
Figure S159. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.621 (Kruskal-Wallis (anova)), Q value = 0.82
Table S164. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 150 | 3.6 (2.6) |
subtype1 | 24 | 3.4 (2.1) |
subtype2 | 41 | 3.3 (1.7) |
subtype3 | 49 | 3.9 (2.9) |
subtype4 | 21 | 3.3 (2.9) |
subtype5 | 15 | 4.8 (3.6) |
Figure S160. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.185 (Kruskal-Wallis (anova)), Q value = 0.51
Table S165. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 71 | 0.0 (0.2) |
subtype1 | 12 | 0.2 (0.4) |
subtype2 | 21 | 0.0 (0.2) |
subtype3 | 22 | 0.0 (0.0) |
subtype4 | 11 | 0.0 (0.0) |
subtype5 | 5 | 0.0 (0.0) |
Figure S161. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.83 (Kruskal-Wallis (anova)), Q value = 0.93
Table S166. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 88 | 0.4 (0.8) |
subtype1 | 14 | 0.4 (0.6) |
subtype2 | 25 | 0.4 (0.9) |
subtype3 | 28 | 0.6 (1.1) |
subtype4 | 14 | 0.4 (0.5) |
subtype5 | 7 | 0.4 (0.5) |
Figure S162. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.133 (Kruskal-Wallis (anova)), Q value = 0.47
Table S167. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 150 | 2.6 (1.9) |
subtype1 | 25 | 2.3 (1.7) |
subtype2 | 40 | 2.4 (1.4) |
subtype3 | 48 | 2.9 (1.8) |
subtype4 | 21 | 2.4 (2.6) |
subtype5 | 16 | 3.3 (2.3) |
Figure S163. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.592 (Kruskal-Wallis (anova)), Q value = 0.81
Table S168. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 80 | 1.1 (2.2) |
subtype1 | 15 | 1.2 (1.5) |
subtype2 | 23 | 0.7 (1.2) |
subtype3 | 23 | 1.2 (2.5) |
subtype4 | 12 | 0.9 (1.2) |
subtype5 | 7 | 2.6 (4.7) |
Figure S164. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.663 (Kruskal-Wallis (anova)), Q value = 0.84
Table S169. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 73 | 0.1 (0.4) |
subtype1 | 11 | 0.0 (0.0) |
subtype2 | 23 | 0.1 (0.3) |
subtype3 | 22 | 0.1 (0.5) |
subtype4 | 12 | 0.2 (0.4) |
subtype5 | 5 | 0.2 (0.4) |
Figure S165. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.639 (Fisher's exact test), Q value = 0.83
Table S170. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 7 | 24 | 1 | 5 |
subtype1 | 1 | 1 | 3 | 0 | 0 |
subtype2 | 1 | 4 | 10 | 0 | 2 |
subtype3 | 0 | 2 | 6 | 0 | 1 |
subtype4 | 0 | 0 | 3 | 1 | 2 |
subtype5 | 0 | 0 | 2 | 0 | 0 |
Figure S166. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.802 (Fisher's exact test), Q value = 0.92
Table S171. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 13 | 46 | 78 |
subtype1 | 0 | 2 | 7 | 18 |
subtype2 | 0 | 3 | 15 | 23 |
subtype3 | 2 | 6 | 13 | 18 |
subtype4 | 0 | 1 | 5 | 12 |
subtype5 | 0 | 1 | 6 | 7 |
Figure S167. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.333 (Fisher's exact test), Q value = 0.66
Table S172. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 52 | 59 |
subtype1 | 13 | 7 |
subtype2 | 13 | 22 |
subtype3 | 12 | 17 |
subtype4 | 6 | 6 |
subtype5 | 8 | 7 |
Figure S168. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.185 (Kruskal-Wallis (anova)), Q value = 0.51
Table S173. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 104 | 1.2 (2.7) |
subtype1 | 15 | 1.4 (3.0) |
subtype2 | 39 | 1.3 (3.5) |
subtype3 | 25 | 1.2 (1.6) |
subtype4 | 14 | 0.6 (1.6) |
subtype5 | 11 | 0.7 (2.4) |
Figure S169. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.237 (Kruskal-Wallis (anova)), Q value = 0.57
Table S174. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 20.8 (11.9) |
subtype1 | 21 | 18.4 (9.7) |
subtype2 | 45 | 24.2 (12.6) |
subtype3 | 26 | 19.3 (10.9) |
subtype4 | 16 | 19.6 (14.9) |
subtype5 | 13 | 17.3 (8.9) |
Figure S170. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.0411 (Fisher's exact test), Q value = 0.25
Table S175. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 39 | 75 |
subtype1 | 7 | 17 |
subtype2 | 16 | 14 |
subtype3 | 10 | 25 |
subtype4 | 6 | 11 |
subtype5 | 0 | 8 |
Figure S171. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.873 (Kruskal-Wallis (anova)), Q value = 0.94
Table S176. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 170 | 2008.2 (5.0) |
subtype1 | 31 | 2008.2 (5.5) |
subtype2 | 47 | 2008.6 (4.4) |
subtype3 | 51 | 2008.1 (5.2) |
subtype4 | 23 | 2007.1 (5.6) |
subtype5 | 18 | 2009.2 (3.8) |
Figure S172. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.507 (Fisher's exact test), Q value = 0.76
Table S177. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 5 | 31 | 51 |
subtype1 | 0 | 3 | 8 |
subtype2 | 3 | 12 | 13 |
subtype3 | 1 | 6 | 18 |
subtype4 | 0 | 6 | 8 |
subtype5 | 1 | 4 | 4 |
Figure S173. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.165 (Kruskal-Wallis (anova)), Q value = 0.5
Table S178. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 152 | 161.7 (7.1) |
subtype1 | 25 | 162.5 (6.6) |
subtype2 | 43 | 162.3 (5.7) |
subtype3 | 46 | 160.1 (8.7) |
subtype4 | 20 | 164.4 (6.1) |
subtype5 | 18 | 160.3 (7.2) |
Figure S174. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.193 (Fisher's exact test), Q value = 0.53
Table S179. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 84 | 11 |
subtype1 | 16 | 0 |
subtype2 | 24 | 3 |
subtype3 | 25 | 3 |
subtype4 | 9 | 1 |
subtype5 | 10 | 4 |
Figure S175. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.423 (Fisher's exact test), Q value = 0.73
Table S180. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 2 | 13 | 1 |
subtype1 | 0 | 2 | 1 |
subtype2 | 1 | 4 | 0 |
subtype3 | 0 | 5 | 0 |
subtype4 | 0 | 2 | 0 |
subtype5 | 1 | 0 | 0 |
Figure S176. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.797 (Fisher's exact test), Q value = 0.92
Table S181. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 23 | 52 | 23 | 3 | 4 | 6 | 7 | 11 | 1 | 1 | 5 | 3 | 1 | 8 |
subtype1 | 1 | 7 | 7 | 4 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
subtype2 | 0 | 7 | 16 | 8 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 |
subtype3 | 0 | 5 | 15 | 4 | 1 | 1 | 0 | 2 | 7 | 1 | 1 | 2 | 2 | 0 | 2 |
subtype4 | 0 | 3 | 7 | 3 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 2 |
subtype5 | 0 | 1 | 7 | 4 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S177. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.106 (Kruskal-Wallis (anova)), Q value = 0.44
Table S182. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 172 | 47.7 (13.5) |
subtype1 | 31 | 44.6 (14.7) |
subtype2 | 49 | 47.7 (13.5) |
subtype3 | 51 | 48.9 (13.4) |
subtype4 | 23 | 44.2 (12.3) |
subtype5 | 18 | 53.8 (12.1) |
Figure S178. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.16 (Fisher's exact test), Q value = 0.49
Table S183. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 4 | 1 | 1 | 1 | 27 | 48 | 27 | 4 | 5 | 4 | 4 | 16 | 1 | 1 | 19 | 4 | 2 |
subtype1 | 1 | 1 | 1 | 0 | 4 | 7 | 8 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 1 |
subtype2 | 1 | 0 | 0 | 0 | 8 | 20 | 8 | 0 | 1 | 1 | 2 | 3 | 0 | 0 | 3 | 0 | 1 |
subtype3 | 1 | 0 | 0 | 1 | 8 | 10 | 4 | 2 | 1 | 0 | 0 | 8 | 1 | 1 | 10 | 3 | 0 |
subtype4 | 1 | 0 | 0 | 0 | 5 | 5 | 3 | 0 | 1 | 1 | 1 | 2 | 0 | 0 | 3 | 1 | 0 |
subtype5 | 0 | 0 | 0 | 0 | 2 | 6 | 4 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S179. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S184. Description of clustering approach #5: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 56 | 104 | 69 | 72 |
P value = 0.52 (logrank test), Q value = 0.76
Table S185. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 287 | 69 | 0.0 - 210.7 (20.1) |
subtype1 | 53 | 11 | 0.1 - 146.9 (20.0) |
subtype2 | 99 | 22 | 0.1 - 210.7 (20.8) |
subtype3 | 67 | 15 | 0.1 - 147.4 (23.7) |
subtype4 | 68 | 21 | 0.0 - 154.3 (17.9) |
Figure S180. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 1.68e-05 (Kruskal-Wallis (anova)), Q value = 0.00054
Table S186. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 297 | 48.1 (13.9) |
subtype1 | 56 | 53.1 (12.6) |
subtype2 | 103 | 50.8 (14.9) |
subtype3 | 67 | 46.1 (12.3) |
subtype4 | 71 | 42.0 (12.3) |
Figure S181. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.593 (Fisher's exact test), Q value = 0.81
Table S187. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 139 | 69 | 20 | 10 |
subtype1 | 22 | 13 | 6 | 3 |
subtype2 | 48 | 26 | 7 | 4 |
subtype3 | 40 | 14 | 2 | 1 |
subtype4 | 29 | 16 | 5 | 2 |
Figure S182. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.349 (Fisher's exact test), Q value = 0.67
Table S188. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 131 | 59 |
subtype1 | 22 | 11 |
subtype2 | 45 | 27 |
subtype3 | 35 | 10 |
subtype4 | 29 | 11 |
Figure S183. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.227 (Fisher's exact test), Q value = 0.57
Table S189. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 115 | 10 |
subtype1 | 23 | 4 |
subtype2 | 43 | 1 |
subtype3 | 23 | 2 |
subtype4 | 26 | 3 |
Figure S184. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S190. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 4 | 251 | 6 | 22 | 3 | 15 |
subtype1 | 2 | 47 | 2 | 3 | 1 | 1 |
subtype2 | 0 | 104 | 0 | 0 | 0 | 0 |
subtype3 | 2 | 28 | 4 | 19 | 2 | 14 |
subtype4 | 0 | 72 | 0 | 0 | 0 | 0 |
Figure S185. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.284 (Fisher's exact test), Q value = 0.62
Table S191. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 35 | 266 |
subtype1 | 8 | 48 |
subtype2 | 12 | 92 |
subtype3 | 4 | 65 |
subtype4 | 11 | 61 |
Figure S186. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.145 (Kruskal-Wallis (anova)), Q value = 0.47
Table S192. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 17 | 20.5 (15.7) |
subtype2 | 38 | 20.7 (16.0) |
subtype3 | 17 | 12.3 (10.6) |
subtype4 | 21 | 13.0 (9.3) |
Figure S187. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0113 (Kruskal-Wallis (anova)), Q value = 0.13
Table S193. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 26 | 1.4 (3.2) |
subtype2 | 60 | 1.4 (2.3) |
subtype3 | 44 | 0.8 (2.7) |
subtype4 | 27 | 0.3 (0.6) |
Figure S188. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.0106 (Fisher's exact test), Q value = 0.13
Table S194. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 7 | 19 | 30 | 2 | 208 |
subtype1 | 2 | 6 | 7 | 0 | 35 |
subtype2 | 1 | 7 | 11 | 0 | 71 |
subtype3 | 0 | 2 | 1 | 0 | 55 |
subtype4 | 4 | 4 | 11 | 2 | 47 |
Figure S189. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.269 (Fisher's exact test), Q value = 0.61
Table S195. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 167 |
subtype1 | 2 | 38 |
subtype2 | 8 | 58 |
subtype3 | 5 | 32 |
subtype4 | 9 | 39 |
Figure S190. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.798 (Kruskal-Wallis (anova)), Q value = 0.92
Table S196. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 273 | 73.1 (21.4) |
subtype1 | 51 | 73.3 (25.0) |
subtype2 | 94 | 73.3 (24.9) |
subtype3 | 63 | 73.3 (15.8) |
subtype4 | 65 | 72.4 (17.9) |
Figure S191. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.278 (Fisher's exact test), Q value = 0.62
Table S197. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 137 | 44 |
subtype1 | 22 | 13 |
subtype2 | 52 | 13 |
subtype3 | 34 | 9 |
subtype4 | 29 | 9 |
Figure S192. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.0415 (Fisher's exact test), Q value = 0.25
Table S198. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 53 | 5 | 1 | 12 | 7 | 209 | 14 |
subtype1 | 7 | 0 | 1 | 3 | 1 | 38 | 6 |
subtype2 | 18 | 2 | 0 | 8 | 3 | 68 | 5 |
subtype3 | 16 | 3 | 0 | 1 | 1 | 48 | 0 |
subtype4 | 12 | 0 | 0 | 0 | 2 | 55 | 3 |
Figure S193. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.00258 (Fisher's exact test), Q value = 0.046
Table S199. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 18 | 135 | 116 | 1 | 24 |
subtype1 | 2 | 22 | 28 | 0 | 2 |
subtype2 | 7 | 62 | 28 | 0 | 6 |
subtype3 | 7 | 30 | 25 | 0 | 7 |
subtype4 | 2 | 21 | 35 | 1 | 9 |
Figure S194. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.871 (Kruskal-Wallis (anova)), Q value = 0.94
Table S200. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 1999.7 (13.8) |
subtype1 | 6 | 1999.0 (13.9) |
subtype2 | 17 | 1997.5 (16.6) |
subtype3 | 11 | 2001.5 (12.6) |
subtype4 | 8 | 2002.2 (9.9) |
Figure S195. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.145 (Kruskal-Wallis (anova)), Q value = 0.47
Table S201. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 17 | 20.5 (15.7) |
subtype2 | 38 | 20.7 (16.0) |
subtype3 | 17 | 12.3 (10.6) |
subtype4 | 21 | 13.0 (9.3) |
Figure S196. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.355 (Fisher's exact test), Q value = 0.67
Table S202. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 39 | 9 | 4 | 64 | 143 |
subtype1 | 6 | 3 | 1 | 14 | 21 |
subtype2 | 14 | 5 | 2 | 25 | 48 |
subtype3 | 11 | 1 | 0 | 9 | 39 |
subtype4 | 8 | 0 | 1 | 16 | 35 |
Figure S197. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.431 (Kruskal-Wallis (anova)), Q value = 0.73
Table S203. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 85 | 21.1 (7.7) |
subtype1 | 15 | 22.9 (7.9) |
subtype2 | 37 | 21.6 (8.3) |
subtype3 | 15 | 19.9 (4.4) |
subtype4 | 18 | 19.7 (8.5) |
Figure S198. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.636 (Kruskal-Wallis (anova)), Q value = 0.83
Table S204. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 148 | 3643.7 (1713.4) |
subtype1 | 28 | 3862.9 (1628.2) |
subtype2 | 46 | 3506.0 (1746.5) |
subtype3 | 34 | 3686.8 (1737.8) |
subtype4 | 40 | 3612.1 (1759.3) |
Figure S199. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.436 (Fisher's exact test), Q value = 0.73
Table S205. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 20 | 104 | 15 | 1 | 24 |
subtype1 | 3 | 20 | 5 | 0 | 2 |
subtype2 | 8 | 31 | 4 | 1 | 10 |
subtype3 | 3 | 29 | 1 | 0 | 4 |
subtype4 | 6 | 24 | 5 | 0 | 8 |
Figure S200. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.736 (Fisher's exact test), Q value = 0.89
Table S206. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 29 | 3 |
subtype1 | 7 | 0 |
subtype2 | 10 | 1 |
subtype3 | 4 | 0 |
subtype4 | 8 | 2 |
Figure S201. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.764 (Fisher's exact test), Q value = 0.91
Table S207. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 38 | 32 |
subtype1 | 0 | 0 | 7 | 6 |
subtype2 | 0 | 1 | 12 | 13 |
subtype3 | 1 | 0 | 5 | 6 |
subtype4 | 1 | 1 | 14 | 7 |
Figure S202. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.492 (Fisher's exact test), Q value = 0.76
Table S208. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 57 | 5 |
subtype1 | 10 | 0 |
subtype2 | 21 | 1 |
subtype3 | 11 | 1 |
subtype4 | 15 | 3 |
Figure S203. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.0416 (Kruskal-Wallis (anova)), Q value = 0.25
Table S209. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 3.6 (2.6) |
subtype1 | 47 | 3.6 (2.6) |
subtype2 | 92 | 4.1 (2.7) |
subtype3 | 61 | 3.0 (2.1) |
subtype4 | 62 | 3.7 (2.8) |
Figure S204. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.171 (Kruskal-Wallis (anova)), Q value = 0.51
Table S210. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.3) |
subtype1 | 17 | 0.0 (0.0) |
subtype2 | 46 | 0.2 (0.5) |
subtype3 | 26 | 0.0 (0.2) |
subtype4 | 22 | 0.0 (0.0) |
Figure S205. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.858 (Kruskal-Wallis (anova)), Q value = 0.94
Table S211. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 146 | 0.5 (0.9) |
subtype1 | 22 | 0.5 (1.1) |
subtype2 | 63 | 0.5 (1.0) |
subtype3 | 28 | 0.5 (0.8) |
subtype4 | 33 | 0.6 (0.9) |
Figure S206. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.0533 (Kruskal-Wallis (anova)), Q value = 0.29
Table S212. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 2.9 (2.1) |
subtype1 | 47 | 2.7 (2.1) |
subtype2 | 91 | 3.0 (1.8) |
subtype3 | 59 | 2.4 (2.1) |
subtype4 | 61 | 3.1 (2.4) |
Figure S207. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.805 (Kruskal-Wallis (anova)), Q value = 0.92
Table S213. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 0.9 (1.8) |
subtype1 | 19 | 0.8 (1.4) |
subtype2 | 51 | 1.2 (2.5) |
subtype3 | 27 | 0.6 (0.8) |
subtype4 | 24 | 0.5 (0.9) |
Figure S208. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.586 (Kruskal-Wallis (anova)), Q value = 0.81
Table S214. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.1 (0.3) |
subtype1 | 18 | 0.2 (0.4) |
subtype2 | 49 | 0.1 (0.4) |
subtype3 | 26 | 0.1 (0.3) |
subtype4 | 22 | 0.0 (0.2) |
Figure S209. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.499 (Fisher's exact test), Q value = 0.76
Table S215. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 8 | 39 | 1 | 10 |
subtype1 | 1 | 1 | 3 | 0 | 3 |
subtype2 | 0 | 2 | 17 | 1 | 4 |
subtype3 | 1 | 2 | 10 | 0 | 2 |
subtype4 | 0 | 3 | 9 | 0 | 1 |
Figure S210. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.0246 (Fisher's exact test), Q value = 0.19
Table S216. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 81 | 123 |
subtype1 | 0 | 6 | 20 | 20 |
subtype2 | 2 | 8 | 35 | 38 |
subtype3 | 0 | 7 | 19 | 30 |
subtype4 | 0 | 4 | 7 | 35 |
Figure S211. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.616 (Fisher's exact test), Q value = 0.82
Table S217. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 70 | 78 |
subtype1 | 12 | 18 |
subtype2 | 26 | 29 |
subtype3 | 18 | 21 |
subtype4 | 14 | 10 |
Figure S212. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.0113 (Kruskal-Wallis (anova)), Q value = 0.13
Table S218. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 26 | 1.4 (3.2) |
subtype2 | 60 | 1.4 (2.3) |
subtype3 | 44 | 0.8 (2.7) |
subtype4 | 27 | 0.3 (0.6) |
Figure S213. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.146 (Kruskal-Wallis (anova)), Q value = 0.47
Table S219. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 176 | 22.4 (12.6) |
subtype1 | 31 | 18.7 (12.0) |
subtype2 | 63 | 23.0 (14.6) |
subtype3 | 49 | 24.0 (11.1) |
subtype4 | 33 | 22.6 (11.2) |
Figure S214. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.0206 (Fisher's exact test), Q value = 0.19
Table S220. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 54 | 118 |
subtype1 | 15 | 20 |
subtype2 | 20 | 54 |
subtype3 | 1 | 16 |
subtype4 | 18 | 28 |
Figure S215. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.354 (Kruskal-Wallis (anova)), Q value = 0.67
Table S221. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 299 | 2008.3 (4.8) |
subtype1 | 56 | 2009.0 (4.0) |
subtype2 | 103 | 2008.0 (5.4) |
subtype3 | 68 | 2008.7 (4.1) |
subtype4 | 72 | 2007.6 (4.9) |
Figure S216. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.128 (Fisher's exact test), Q value = 0.47
Table S222. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 52 | 88 |
subtype1 | 0 | 11 | 19 |
subtype2 | 3 | 15 | 31 |
subtype3 | 8 | 15 | 18 |
subtype4 | 4 | 11 | 20 |
Figure S217. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.424 (Kruskal-Wallis (anova)), Q value = 0.73
Table S223. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 259 | 161.1 (7.1) |
subtype1 | 48 | 160.1 (6.5) |
subtype2 | 89 | 160.4 (7.3) |
subtype3 | 61 | 162.2 (7.3) |
subtype4 | 61 | 161.6 (6.9) |
Figure S218. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.0661 (Fisher's exact test), Q value = 0.33
Table S224. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 99 | 18 |
subtype1 | 18 | 4 |
subtype2 | 32 | 10 |
subtype3 | 28 | 4 |
subtype4 | 21 | 0 |
Figure S219. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.406 (Fisher's exact test), Q value = 0.71
Table S225. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 18 | 1 |
subtype1 | 1 | 4 | 0 |
subtype2 | 2 | 5 | 0 |
subtype3 | 0 | 1 | 0 |
subtype4 | 0 | 8 | 1 |
Figure S220. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.231 (Kruskal-Wallis (anova)), Q value = 0.57
Table S226. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 13.2 (7.2) |
subtype1 | 3 | 13.4 (1.3) |
subtype2 | 9 | 11.7 (8.4) |
subtype3 | 1 | 7.1 (NA) |
subtype4 | 4 | 18.0 (6.0) |
Figure S221. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.514 (Fisher's exact test), Q value = 0.76
Table S227. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 36 | 71 | 31 | 6 | 10 | 7 | 10 | 36 | 1 | 2 | 17 | 10 | 1 | 17 |
subtype1 | 1 | 2 | 13 | 6 | 2 | 3 | 1 | 3 | 4 | 0 | 1 | 5 | 3 | 0 | 1 |
subtype2 | 0 | 16 | 21 | 11 | 2 | 4 | 2 | 4 | 14 | 1 | 0 | 6 | 4 | 0 | 7 |
subtype3 | 0 | 7 | 26 | 7 | 0 | 2 | 2 | 1 | 9 | 0 | 0 | 2 | 1 | 0 | 3 |
subtype4 | 0 | 11 | 11 | 7 | 2 | 1 | 2 | 2 | 9 | 0 | 1 | 4 | 2 | 1 | 6 |
Figure S222. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 2.72e-05 (Kruskal-Wallis (anova)), Q value = 0.00082
Table S228. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 301 | 48.2 (13.8) |
subtype1 | 56 | 53.1 (12.6) |
subtype2 | 104 | 50.8 (14.9) |
subtype3 | 69 | 46.2 (12.1) |
subtype4 | 72 | 42.3 (12.5) |
Figure S223. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.0537 (Fisher's exact test), Q value = 0.29
Table S229. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 37 | 77 | 38 | 5 | 9 | 5 | 7 | 42 | 1 | 2 | 42 | 9 | 12 |
subtype1 | 1 | 1 | 1 | 0 | 4 | 13 | 7 | 1 | 1 | 1 | 4 | 6 | 0 | 1 | 9 | 2 | 3 |
subtype2 | 1 | 0 | 0 | 1 | 15 | 22 | 10 | 4 | 2 | 2 | 2 | 12 | 1 | 0 | 19 | 4 | 5 |
subtype3 | 1 | 0 | 0 | 0 | 5 | 31 | 10 | 0 | 2 | 0 | 0 | 10 | 0 | 0 | 5 | 1 | 3 |
subtype4 | 2 | 0 | 0 | 0 | 13 | 11 | 11 | 0 | 4 | 2 | 1 | 14 | 0 | 1 | 9 | 2 | 1 |
Figure S224. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S230. Description of clustering approach #6: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 70 | 194 | 37 |
P value = 0.013 (logrank test), Q value = 0.14
Table S231. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 287 | 69 | 0.0 - 210.7 (20.1) |
subtype1 | 68 | 17 | 0.1 - 137.2 (18.4) |
subtype2 | 184 | 39 | 0.1 - 210.7 (20.9) |
subtype3 | 35 | 13 | 0.0 - 99.9 (15.4) |
Figure S225. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00736 (Kruskal-Wallis (anova)), Q value = 0.095
Table S232. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 297 | 48.1 (13.9) |
subtype1 | 68 | 47.1 (11.5) |
subtype2 | 192 | 49.7 (14.5) |
subtype3 | 37 | 41.4 (12.7) |
Figure S226. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.716 (Fisher's exact test), Q value = 0.88
Table S233. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 139 | 69 | 20 | 10 |
subtype1 | 38 | 19 | 3 | 2 |
subtype2 | 86 | 41 | 16 | 8 |
subtype3 | 15 | 9 | 1 | 0 |
Figure S227. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.28 (Fisher's exact test), Q value = 0.62
Table S234. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 131 | 59 |
subtype1 | 37 | 12 |
subtype2 | 77 | 42 |
subtype3 | 17 | 5 |
Figure S228. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.0507 (Fisher's exact test), Q value = 0.28
Table S235. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 115 | 10 |
subtype1 | 26 | 5 |
subtype2 | 77 | 3 |
subtype3 | 12 | 2 |
Figure S229. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S236. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 4 | 251 | 6 | 22 | 3 | 15 |
subtype1 | 4 | 22 | 5 | 22 | 3 | 14 |
subtype2 | 0 | 192 | 1 | 0 | 0 | 1 |
subtype3 | 0 | 37 | 0 | 0 | 0 | 0 |
Figure S230. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0395 (Fisher's exact test), Q value = 0.25
Table S237. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 35 | 266 |
subtype1 | 3 | 67 |
subtype2 | 25 | 169 |
subtype3 | 7 | 30 |
Figure S231. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.437 (Kruskal-Wallis (anova)), Q value = 0.73
Table S238. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 18 | 14.2 (12.0) |
subtype2 | 63 | 19.0 (15.2) |
subtype3 | 12 | 13.8 (9.9) |
Figure S232. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0281 (Kruskal-Wallis (anova)), Q value = 0.2
Table S239. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 42 | 0.7 (2.2) |
subtype2 | 97 | 1.4 (2.6) |
subtype3 | 18 | 0.2 (0.5) |
Figure S233. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.351 (Fisher's exact test), Q value = 0.67
Table S240. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 7 | 19 | 30 | 2 | 208 |
subtype1 | 1 | 5 | 3 | 0 | 52 |
subtype2 | 4 | 13 | 20 | 2 | 130 |
subtype3 | 2 | 1 | 7 | 0 | 26 |
Figure S234. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.85 (Fisher's exact test), Q value = 0.94
Table S241. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 167 |
subtype1 | 6 | 37 |
subtype2 | 16 | 108 |
subtype3 | 2 | 22 |
Figure S235. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.528 (Kruskal-Wallis (anova)), Q value = 0.77
Table S242. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 273 | 73.1 (21.4) |
subtype1 | 64 | 73.4 (16.3) |
subtype2 | 177 | 72.9 (23.6) |
subtype3 | 32 | 73.6 (17.6) |
Figure S236. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.856 (Fisher's exact test), Q value = 0.94
Table S243. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 137 | 44 |
subtype1 | 32 | 12 |
subtype2 | 93 | 28 |
subtype3 | 12 | 4 |
Figure S237. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.372 (Fisher's exact test), Q value = 0.68
Table S244. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 53 | 5 | 1 | 12 | 7 | 209 | 14 |
subtype1 | 15 | 3 | 1 | 2 | 2 | 44 | 3 |
subtype2 | 32 | 2 | 0 | 10 | 3 | 137 | 10 |
subtype3 | 6 | 0 | 0 | 0 | 2 | 28 | 1 |
Figure S238. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.152 (Fisher's exact test), Q value = 0.47
Table S245. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 18 | 135 | 116 | 1 | 24 |
subtype1 | 7 | 30 | 27 | 0 | 6 |
subtype2 | 10 | 93 | 69 | 0 | 16 |
subtype3 | 1 | 12 | 20 | 1 | 2 |
Figure S239. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.536 (Kruskal-Wallis (anova)), Q value = 0.77
Table S246. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 1999.7 (13.8) |
subtype1 | 8 | 2002.4 (13.5) |
subtype2 | 30 | 1999.1 (14.8) |
subtype3 | 4 | 1999.0 (5.2) |
Figure S240. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.437 (Kruskal-Wallis (anova)), Q value = 0.73
Table S247. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 18 | 14.2 (12.0) |
subtype2 | 63 | 19.0 (15.2) |
subtype3 | 12 | 13.8 (9.9) |
Figure S241. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.325 (Fisher's exact test), Q value = 0.65
Table S248. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 39 | 9 | 4 | 64 | 143 |
subtype1 | 8 | 1 | 0 | 11 | 43 |
subtype2 | 27 | 8 | 3 | 43 | 85 |
subtype3 | 4 | 0 | 1 | 10 | 15 |
Figure S242. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.655 (Kruskal-Wallis (anova)), Q value = 0.84
Table S249. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 85 | 21.1 (7.7) |
subtype1 | 17 | 20.8 (5.7) |
subtype2 | 56 | 21.5 (8.1) |
subtype3 | 12 | 19.8 (8.3) |
Figure S243. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.992 (Kruskal-Wallis (anova)), Q value = 1
Table S250. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 148 | 3643.7 (1713.4) |
subtype1 | 36 | 3649.1 (1798.7) |
subtype2 | 88 | 3687.6 (1633.7) |
subtype3 | 24 | 3475.0 (1925.1) |
Figure S244. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.298 (Fisher's exact test), Q value = 0.63
Table S251. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 20 | 104 | 15 | 1 | 24 |
subtype1 | 2 | 31 | 1 | 0 | 5 |
subtype2 | 13 | 59 | 12 | 1 | 14 |
subtype3 | 5 | 14 | 2 | 0 | 5 |
Figure S245. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 1 (Fisher's exact test), Q value = 1
Table S252. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 29 | 3 |
subtype1 | 3 | 0 |
subtype2 | 20 | 2 |
subtype3 | 6 | 1 |
Figure S246. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.116 (Fisher's exact test), Q value = 0.46
Table S253. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 38 | 32 |
subtype1 | 1 | 0 | 6 | 6 |
subtype2 | 0 | 1 | 22 | 23 |
subtype3 | 1 | 1 | 10 | 3 |
Figure S247. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.369 (Fisher's exact test), Q value = 0.68
Table S254. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 57 | 5 |
subtype1 | 12 | 1 |
subtype2 | 35 | 2 |
subtype3 | 10 | 2 |
Figure S248. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.0652 (Kruskal-Wallis (anova)), Q value = 0.33
Table S255. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 3.6 (2.6) |
subtype1 | 63 | 3.0 (2.0) |
subtype2 | 167 | 3.8 (2.7) |
subtype3 | 32 | 4.0 (2.8) |
Figure S249. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.583 (Kruskal-Wallis (anova)), Q value = 0.81
Table S256. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.3) |
subtype1 | 24 | 0.0 (0.2) |
subtype2 | 74 | 0.1 (0.4) |
subtype3 | 13 | 0.0 (0.0) |
Figure S250. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.111 (Kruskal-Wallis (anova)), Q value = 0.46
Table S257. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 146 | 0.5 (0.9) |
subtype1 | 28 | 0.6 (0.9) |
subtype2 | 98 | 0.5 (0.9) |
subtype3 | 20 | 0.8 (1.1) |
Figure S251. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.0221 (Kruskal-Wallis (anova)), Q value = 0.19
Table S258. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 2.9 (2.1) |
subtype1 | 61 | 2.3 (1.9) |
subtype2 | 165 | 3.0 (2.0) |
subtype3 | 32 | 3.2 (2.4) |
Figure S252. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.535 (Kruskal-Wallis (anova)), Q value = 0.77
Table S259. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 0.9 (1.8) |
subtype1 | 26 | 0.8 (1.0) |
subtype2 | 80 | 0.9 (2.1) |
subtype3 | 15 | 0.6 (1.0) |
Figure S253. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.873 (Kruskal-Wallis (anova)), Q value = 0.94
Table S260. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.1 (0.3) |
subtype1 | 23 | 0.1 (0.3) |
subtype2 | 79 | 0.1 (0.4) |
subtype3 | 13 | 0.1 (0.3) |
Figure S254. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.913 (Fisher's exact test), Q value = 0.96
Table S261. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 8 | 39 | 1 | 10 |
subtype1 | 1 | 1 | 8 | 0 | 2 |
subtype2 | 1 | 5 | 26 | 1 | 7 |
subtype3 | 0 | 2 | 5 | 0 | 1 |
Figure S255. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.0424 (Fisher's exact test), Q value = 0.25
Table S262. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 81 | 123 |
subtype1 | 0 | 8 | 18 | 33 |
subtype2 | 2 | 15 | 61 | 72 |
subtype3 | 0 | 2 | 2 | 18 |
Figure S256. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.635 (Fisher's exact test), Q value = 0.83
Table S263. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 70 | 78 |
subtype1 | 22 | 20 |
subtype2 | 39 | 50 |
subtype3 | 9 | 8 |
Figure S257. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.0281 (Kruskal-Wallis (anova)), Q value = 0.2
Table S264. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 42 | 0.7 (2.2) |
subtype2 | 97 | 1.4 (2.6) |
subtype3 | 18 | 0.2 (0.5) |
Figure S258. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.347 (Kruskal-Wallis (anova)), Q value = 0.67
Table S265. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 176 | 22.4 (12.6) |
subtype1 | 46 | 21.5 (10.4) |
subtype2 | 109 | 22.2 (13.4) |
subtype3 | 21 | 25.7 (13.0) |
Figure S259. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.00558 (Fisher's exact test), Q value = 0.081
Table S266. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 54 | 118 |
subtype1 | 0 | 16 |
subtype2 | 46 | 89 |
subtype3 | 8 | 13 |
Figure S260. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.0251 (Kruskal-Wallis (anova)), Q value = 0.19
Table S267. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 299 | 2008.3 (4.8) |
subtype1 | 69 | 2009.4 (3.5) |
subtype2 | 193 | 2008.2 (4.9) |
subtype3 | 37 | 2006.4 (5.8) |
Figure S261. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.0311 (Fisher's exact test), Q value = 0.22
Table S268. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 52 | 88 |
subtype1 | 7 | 16 | 20 |
subtype2 | 4 | 32 | 59 |
subtype3 | 4 | 4 | 9 |
Figure S262. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.143 (Kruskal-Wallis (anova)), Q value = 0.47
Table S269. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 259 | 161.1 (7.1) |
subtype1 | 62 | 161.4 (6.6) |
subtype2 | 167 | 160.5 (7.2) |
subtype3 | 30 | 163.5 (6.8) |
Figure S263. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.283 (Fisher's exact test), Q value = 0.62
Table S270. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 99 | 18 |
subtype1 | 31 | 5 |
subtype2 | 56 | 13 |
subtype3 | 12 | 0 |
Figure S264. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.367 (Fisher's exact test), Q value = 0.68
Table S271. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 18 | 1 |
subtype1 | 0 | 2 | 0 |
subtype2 | 3 | 12 | 0 |
subtype3 | 0 | 4 | 1 |
Figure S265. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.226 (Kruskal-Wallis (anova)), Q value = 0.57
Table S272. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 13.2 (7.2) |
subtype1 | 1 | 7.1 (NA) |
subtype2 | 13 | 12.5 (7.0) |
subtype3 | 3 | 18.4 (7.3) |
Figure S266. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.134 (Fisher's exact test), Q value = 0.47
Table S273. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 36 | 71 | 31 | 6 | 10 | 7 | 10 | 36 | 1 | 2 | 17 | 10 | 1 | 17 |
subtype1 | 0 | 6 | 25 | 7 | 1 | 4 | 3 | 3 | 8 | 0 | 0 | 3 | 2 | 0 | 2 |
subtype2 | 1 | 21 | 44 | 20 | 5 | 5 | 2 | 6 | 23 | 1 | 2 | 13 | 8 | 0 | 12 |
subtype3 | 0 | 9 | 2 | 4 | 0 | 1 | 2 | 1 | 5 | 0 | 0 | 1 | 0 | 1 | 3 |
Figure S267. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.00591 (Kruskal-Wallis (anova)), Q value = 0.083
Table S274. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 301 | 48.2 (13.8) |
subtype1 | 70 | 47.2 (11.4) |
subtype2 | 194 | 49.8 (14.5) |
subtype3 | 37 | 41.4 (12.7) |
Figure S268. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.0902 (Fisher's exact test), Q value = 0.4
Table S275. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 37 | 77 | 38 | 5 | 9 | 5 | 7 | 42 | 1 | 2 | 42 | 9 | 12 |
subtype1 | 1 | 0 | 0 | 0 | 5 | 28 | 9 | 1 | 3 | 1 | 2 | 8 | 0 | 0 | 6 | 1 | 5 |
subtype2 | 4 | 1 | 1 | 1 | 24 | 44 | 20 | 4 | 3 | 2 | 4 | 29 | 1 | 2 | 33 | 8 | 7 |
subtype3 | 0 | 0 | 0 | 0 | 8 | 5 | 9 | 0 | 3 | 2 | 1 | 5 | 0 | 0 | 3 | 0 | 0 |
Figure S269. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S276. Description of clustering approach #7: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 102 | 79 | 123 |
P value = 0.377 (logrank test), Q value = 0.69
Table S277. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 290 | 69 | 0.0 - 210.7 (20.0) |
subtype1 | 99 | 25 | 0.1 - 160.4 (19.7) |
subtype2 | 75 | 14 | 0.1 - 210.7 (20.4) |
subtype3 | 116 | 30 | 0.0 - 195.8 (20.8) |
Figure S270. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.539 (Kruskal-Wallis (anova)), Q value = 0.77
Table S278. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 300 | 48.1 (13.8) |
subtype1 | 100 | 47.8 (12.6) |
subtype2 | 79 | 49.4 (13.3) |
subtype3 | 121 | 47.6 (15.2) |
Figure S271. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.516 (Fisher's exact test), Q value = 0.76
Table S279. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 140 | 70 | 21 | 10 |
subtype1 | 50 | 28 | 10 | 5 |
subtype2 | 44 | 16 | 3 | 1 |
subtype3 | 46 | 26 | 8 | 4 |
Figure S272. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.819 (Fisher's exact test), Q value = 0.93
Table S280. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 133 | 59 |
subtype1 | 45 | 19 |
subtype2 | 41 | 21 |
subtype3 | 47 | 19 |
Figure S273. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.197 (Fisher's exact test), Q value = 0.53
Table S281. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 115 | 10 |
subtype1 | 37 | 6 |
subtype2 | 35 | 1 |
subtype3 | 43 | 3 |
Figure S274. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S282. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 5 | 253 | 6 | 22 | 3 | 15 |
subtype1 | 4 | 61 | 5 | 17 | 3 | 12 |
subtype2 | 1 | 70 | 1 | 5 | 0 | 2 |
subtype3 | 0 | 122 | 0 | 0 | 0 | 1 |
Figure S275. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.199 (Fisher's exact test), Q value = 0.53
Table S283. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 35 | 269 |
subtype1 | 8 | 94 |
subtype2 | 8 | 71 |
subtype3 | 19 | 104 |
Figure S276. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.0518 (Kruskal-Wallis (anova)), Q value = 0.28
Table S284. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 25 | 13.2 (10.5) |
subtype2 | 27 | 22.2 (14.5) |
subtype3 | 41 | 16.8 (15.1) |
Figure S277. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.332 (Kruskal-Wallis (anova)), Q value = 0.66
Table S285. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 54 | 0.8 (2.3) |
subtype2 | 55 | 1.4 (2.5) |
subtype3 | 48 | 0.9 (2.4) |
Figure S278. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.322 (Fisher's exact test), Q value = 0.65
Table S286. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 8 | 19 | 30 | 2 | 210 |
subtype1 | 1 | 8 | 9 | 0 | 67 |
subtype2 | 1 | 7 | 7 | 0 | 55 |
subtype3 | 6 | 4 | 14 | 2 | 88 |
Figure S279. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RACE'

P value = 0.601 (Fisher's exact test), Q value = 0.81
Table S287. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 169 |
subtype1 | 7 | 52 |
subtype2 | 5 | 50 |
subtype3 | 12 | 67 |
Figure S280. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.736 (Kruskal-Wallis (anova)), Q value = 0.89
Table S288. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 276 | 73.3 (21.5) |
subtype1 | 96 | 73.9 (20.3) |
subtype2 | 69 | 73.9 (27.6) |
subtype3 | 111 | 72.3 (18.0) |
Figure S281. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.622 (Fisher's exact test), Q value = 0.82
Table S289. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 139 | 44 |
subtype1 | 52 | 16 |
subtype2 | 37 | 9 |
subtype3 | 50 | 19 |
Figure S282. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.00038 (Fisher's exact test), Q value = 0.0095
Table S290. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 54 | 5 | 1 | 12 | 7 | 211 | 14 |
subtype1 | 30 | 3 | 1 | 2 | 3 | 58 | 5 |
subtype2 | 5 | 2 | 0 | 6 | 2 | 58 | 6 |
subtype3 | 19 | 0 | 0 | 4 | 2 | 95 | 3 |
Figure S283. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.00701 (Fisher's exact test), Q value = 0.095
Table S291. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 18 | 136 | 118 | 1 | 24 |
subtype1 | 8 | 40 | 42 | 0 | 11 |
subtype2 | 8 | 41 | 27 | 1 | 1 |
subtype3 | 2 | 55 | 49 | 0 | 12 |
Figure S284. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.313 (Kruskal-Wallis (anova)), Q value = 0.65
Table S292. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 1999.7 (13.8) |
subtype1 | 11 | 2002.7 (11.8) |
subtype2 | 11 | 1996.2 (11.8) |
subtype3 | 20 | 2000.0 (15.9) |
Figure S285. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.0518 (Kruskal-Wallis (anova)), Q value = 0.28
Table S293. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 25 | 13.2 (10.5) |
subtype2 | 27 | 22.2 (14.5) |
subtype3 | 41 | 16.8 (15.1) |
Figure S286. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.0886 (Fisher's exact test), Q value = 0.4
Table S294. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 39 | 9 | 4 | 64 | 145 |
subtype1 | 12 | 1 | 0 | 17 | 61 |
subtype2 | 9 | 4 | 3 | 19 | 34 |
subtype3 | 18 | 4 | 1 | 28 | 50 |
Figure S287. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.846 (Kruskal-Wallis (anova)), Q value = 0.94
Table S295. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 85 | 21.1 (7.7) |
subtype1 | 23 | 20.7 (7.2) |
subtype2 | 24 | 21.0 (6.2) |
subtype3 | 38 | 21.5 (8.9) |
Figure S288. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.941 (Kruskal-Wallis (anova)), Q value = 0.98
Table S296. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 149 | 3635.4 (1710.6) |
subtype1 | 58 | 3649.5 (1721.1) |
subtype2 | 30 | 3667.4 (1787.3) |
subtype3 | 61 | 3606.2 (1690.6) |
Figure S289. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.117 (Fisher's exact test), Q value = 0.46
Table S297. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 20 | 104 | 15 | 1 | 25 |
subtype1 | 6 | 44 | 2 | 0 | 10 |
subtype2 | 2 | 22 | 6 | 1 | 5 |
subtype3 | 12 | 38 | 7 | 0 | 10 |
Figure S290. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.397 (Fisher's exact test), Q value = 0.71
Table S298. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 29 | 3 |
subtype1 | 8 | 0 |
subtype2 | 6 | 0 |
subtype3 | 15 | 3 |
Figure S291. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.0273 (Fisher's exact test), Q value = 0.2
Table S299. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 38 | 33 |
subtype1 | 1 | 0 | 7 | 17 |
subtype2 | 0 | 1 | 8 | 4 |
subtype3 | 1 | 1 | 23 | 12 |
Figure S292. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.354 (Fisher's exact test), Q value = 0.67
Table S300. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 58 | 5 |
subtype1 | 24 | 1 |
subtype2 | 9 | 0 |
subtype3 | 25 | 4 |
Figure S293. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.744 (Kruskal-Wallis (anova)), Q value = 0.89
Table S301. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 265 | 3.6 (2.6) |
subtype1 | 90 | 3.7 (2.9) |
subtype2 | 71 | 3.6 (2.3) |
subtype3 | 104 | 3.6 (2.5) |
Figure S294. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.86 (Kruskal-Wallis (anova)), Q value = 0.94
Table S302. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.3) |
subtype1 | 29 | 0.0 (0.2) |
subtype2 | 34 | 0.1 (0.5) |
subtype3 | 48 | 0.1 (0.2) |
Figure S295. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.0036 (Kruskal-Wallis (anova)), Q value = 0.062
Table S303. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 146 | 0.5 (0.9) |
subtype1 | 40 | 0.9 (1.2) |
subtype2 | 44 | 0.4 (0.8) |
subtype3 | 62 | 0.4 (0.8) |
Figure S296. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.847 (Kruskal-Wallis (anova)), Q value = 0.94
Table S304. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 260 | 2.9 (2.1) |
subtype1 | 86 | 3.0 (2.5) |
subtype2 | 70 | 2.7 (1.7) |
subtype3 | 104 | 2.8 (1.9) |
Figure S297. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.464 (Kruskal-Wallis (anova)), Q value = 0.75
Table S305. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 0.9 (1.8) |
subtype1 | 32 | 0.8 (1.5) |
subtype2 | 38 | 1.1 (2.3) |
subtype3 | 51 | 0.7 (1.6) |
Figure S298. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.32 (Kruskal-Wallis (anova)), Q value = 0.65
Table S306. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.1 (0.3) |
subtype1 | 29 | 0.1 (0.3) |
subtype2 | 36 | 0.2 (0.5) |
subtype3 | 50 | 0.1 (0.3) |
Figure S299. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.864 (Fisher's exact test), Q value = 0.94
Table S307. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 8 | 39 | 1 | 10 |
subtype1 | 1 | 2 | 8 | 0 | 2 |
subtype2 | 1 | 2 | 15 | 1 | 5 |
subtype3 | 0 | 4 | 16 | 0 | 3 |
Figure S300. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.507 (Fisher's exact test), Q value = 0.76
Table S308. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 83 | 124 |
subtype1 | 1 | 12 | 26 | 43 |
subtype2 | 1 | 6 | 25 | 29 |
subtype3 | 0 | 7 | 32 | 52 |
Figure S301. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.631 (Fisher's exact test), Q value = 0.83
Table S309. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 71 | 79 |
subtype1 | 24 | 29 |
subtype2 | 22 | 28 |
subtype3 | 25 | 22 |
Figure S302. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.332 (Kruskal-Wallis (anova)), Q value = 0.66
Table S310. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 54 | 0.8 (2.3) |
subtype2 | 55 | 1.4 (2.5) |
subtype3 | 48 | 0.9 (2.4) |
Figure S303. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.605 (Kruskal-Wallis (anova)), Q value = 0.81
Table S311. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 178 | 22.3 (12.6) |
subtype1 | 59 | 20.7 (11.0) |
subtype2 | 61 | 24.5 (14.3) |
subtype3 | 58 | 21.7 (12.0) |
Figure S304. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.131 (Fisher's exact test), Q value = 0.47
Table S312. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 54 | 119 |
subtype1 | 6 | 28 |
subtype2 | 19 | 32 |
subtype3 | 29 | 59 |
Figure S305. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.00401 (Kruskal-Wallis (anova)), Q value = 0.065
Table S313. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 302 | 2008.3 (4.8) |
subtype1 | 101 | 2009.4 (4.3) |
subtype2 | 78 | 2008.1 (4.7) |
subtype3 | 123 | 2007.5 (5.0) |
Figure S306. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.593 (Fisher's exact test), Q value = 0.81
Table S314. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 53 | 89 |
subtype1 | 8 | 19 | 34 |
subtype2 | 3 | 16 | 19 |
subtype3 | 4 | 18 | 36 |
Figure S307. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.907 (Kruskal-Wallis (anova)), Q value = 0.96
Table S315. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 161.0 (7.3) |
subtype1 | 91 | 161.2 (7.3) |
subtype2 | 64 | 161.6 (7.6) |
subtype3 | 107 | 160.6 (7.0) |
Figure S308. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.734 (Fisher's exact test), Q value = 0.89
Table S316. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 99 | 18 |
subtype1 | 34 | 7 |
subtype2 | 33 | 7 |
subtype3 | 32 | 4 |
Figure S309. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 1 (Fisher's exact test), Q value = 1
Table S317. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 18 | 1 |
subtype1 | 0 | 3 | 0 |
subtype2 | 1 | 3 | 0 |
subtype3 | 2 | 12 | 1 |
Figure S310. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.141 (Kruskal-Wallis (anova)), Q value = 0.47
Table S318. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 13.2 (7.2) |
subtype1 | 2 | 10.8 (5.2) |
subtype2 | 6 | 9.5 (5.7) |
subtype3 | 9 | 16.3 (7.5) |
Figure S311. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.665 (Fisher's exact test), Q value = 0.84
Table S319. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 36 | 72 | 31 | 6 | 10 | 7 | 10 | 37 | 2 | 2 | 17 | 10 | 1 | 17 |
subtype1 | 0 | 11 | 29 | 10 | 2 | 5 | 3 | 6 | 12 | 1 | 1 | 8 | 5 | 0 | 3 |
subtype2 | 1 | 9 | 25 | 9 | 1 | 3 | 2 | 2 | 8 | 0 | 0 | 3 | 1 | 0 | 4 |
subtype3 | 0 | 16 | 18 | 12 | 3 | 2 | 2 | 2 | 17 | 1 | 1 | 6 | 4 | 1 | 10 |
Figure S312. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.603 (Kruskal-Wallis (anova)), Q value = 0.81
Table S320. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 304 | 48.2 (13.8) |
subtype1 | 102 | 47.8 (12.5) |
subtype2 | 79 | 49.4 (13.3) |
subtype3 | 123 | 47.8 (15.1) |
Figure S313. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.0259 (Fisher's exact test), Q value = 0.19
Table S321. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 37 | 78 | 38 | 5 | 9 | 5 | 7 | 43 | 1 | 3 | 42 | 9 | 12 |
subtype1 | 2 | 0 | 0 | 0 | 8 | 30 | 14 | 1 | 3 | 1 | 5 | 11 | 0 | 2 | 13 | 4 | 8 |
subtype2 | 0 | 1 | 1 | 1 | 8 | 28 | 10 | 1 | 3 | 2 | 2 | 7 | 0 | 0 | 10 | 2 | 1 |
subtype3 | 3 | 0 | 0 | 0 | 21 | 20 | 14 | 3 | 3 | 2 | 0 | 25 | 1 | 1 | 19 | 3 | 3 |
Figure S314. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S322. Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 58 | 101 | 74 | 26 | 45 |
P value = 0.475 (logrank test), Q value = 0.76
Table S323. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 290 | 69 | 0.0 - 210.7 (20.0) |
subtype1 | 57 | 15 | 0.1 - 137.2 (17.5) |
subtype2 | 97 | 21 | 0.0 - 160.4 (19.8) |
subtype3 | 69 | 15 | 0.1 - 210.7 (29.9) |
subtype4 | 24 | 6 | 0.1 - 195.8 (21.0) |
subtype5 | 43 | 12 | 0.1 - 144.2 (17.8) |
Figure S315. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 8.6e-05 (Kruskal-Wallis (anova)), Q value = 0.0023
Table S324. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 300 | 48.1 (13.8) |
subtype1 | 56 | 45.9 (12.4) |
subtype2 | 100 | 50.4 (14.4) |
subtype3 | 74 | 51.2 (14.1) |
subtype4 | 25 | 49.9 (11.3) |
subtype5 | 45 | 39.7 (11.6) |
Figure S316. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.00436 (Fisher's exact test), Q value = 0.068
Table S325. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 140 | 70 | 21 | 10 |
subtype1 | 34 | 12 | 2 | 1 |
subtype2 | 32 | 28 | 12 | 6 |
subtype3 | 47 | 11 | 2 | 1 |
subtype4 | 8 | 9 | 2 | 1 |
subtype5 | 19 | 10 | 3 | 1 |
Figure S317. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.183 (Fisher's exact test), Q value = 0.51
Table S326. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 133 | 59 |
subtype1 | 31 | 9 |
subtype2 | 32 | 22 |
subtype3 | 38 | 20 |
subtype4 | 11 | 2 |
subtype5 | 21 | 6 |
Figure S318. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.34 (Fisher's exact test), Q value = 0.66
Table S327. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 115 | 10 |
subtype1 | 17 | 2 |
subtype2 | 29 | 2 |
subtype3 | 38 | 1 |
subtype4 | 12 | 2 |
subtype5 | 19 | 3 |
Figure S319. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S328. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 5 | 253 | 6 | 22 | 3 | 15 |
subtype1 | 4 | 13 | 4 | 20 | 3 | 14 |
subtype2 | 1 | 98 | 1 | 1 | 0 | 0 |
subtype3 | 0 | 74 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 24 | 1 | 0 | 0 | 1 |
subtype5 | 0 | 44 | 0 | 1 | 0 | 0 |
Figure S320. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0268 (Fisher's exact test), Q value = 0.2
Table S329. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 35 | 269 |
subtype1 | 3 | 55 |
subtype2 | 7 | 94 |
subtype3 | 12 | 62 |
subtype4 | 3 | 23 |
subtype5 | 10 | 35 |
Figure S321. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.157 (Kruskal-Wallis (anova)), Q value = 0.48
Table S330. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 18 | 14.7 (11.6) |
subtype2 | 36 | 19.9 (17.8) |
subtype3 | 21 | 20.2 (10.9) |
subtype4 | 5 | 7.7 (8.3) |
subtype5 | 13 | 13.4 (9.5) |
Figure S322. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.125 (Kruskal-Wallis (anova)), Q value = 0.46
Table S331. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 38 | 0.6 (1.9) |
subtype2 | 40 | 1.7 (3.1) |
subtype3 | 50 | 1.0 (1.9) |
subtype4 | 8 | 0.4 (0.7) |
subtype5 | 21 | 0.9 (3.1) |
Figure S323. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.376 (Fisher's exact test), Q value = 0.69
Table S332. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 8 | 19 | 30 | 2 | 210 |
subtype1 | 0 | 4 | 2 | 0 | 44 |
subtype2 | 3 | 5 | 13 | 0 | 66 |
subtype3 | 1 | 6 | 7 | 0 | 51 |
subtype4 | 1 | 2 | 3 | 1 | 17 |
subtype5 | 3 | 2 | 5 | 1 | 32 |
Figure S324. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RACE'

P value = 0.401 (Fisher's exact test), Q value = 0.71
Table S333. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 169 |
subtype1 | 4 | 30 |
subtype2 | 10 | 52 |
subtype3 | 3 | 50 |
subtype4 | 3 | 16 |
subtype5 | 4 | 21 |
Figure S325. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.905 (Kruskal-Wallis (anova)), Q value = 0.96
Table S334. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 276 | 73.3 (21.5) |
subtype1 | 52 | 72.8 (16.0) |
subtype2 | 96 | 72.8 (20.3) |
subtype3 | 65 | 75.2 (28.7) |
subtype4 | 24 | 68.6 (17.0) |
subtype5 | 39 | 74.6 (19.2) |
Figure S326. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.569 (Fisher's exact test), Q value = 0.79
Table S335. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 139 | 44 |
subtype1 | 28 | 8 |
subtype2 | 45 | 13 |
subtype3 | 36 | 11 |
subtype4 | 10 | 7 |
subtype5 | 20 | 5 |
Figure S327. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.118 (Fisher's exact test), Q value = 0.46
Table S336. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 54 | 5 | 1 | 12 | 7 | 211 | 14 |
subtype1 | 13 | 3 | 0 | 1 | 2 | 37 | 2 |
subtype2 | 23 | 0 | 0 | 5 | 2 | 67 | 4 |
subtype3 | 5 | 2 | 0 | 5 | 1 | 57 | 4 |
subtype4 | 5 | 0 | 1 | 1 | 0 | 17 | 2 |
subtype5 | 8 | 0 | 0 | 0 | 2 | 33 | 2 |
Figure S328. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.0181 (Fisher's exact test), Q value = 0.17
Table S337. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 18 | 136 | 118 | 1 | 24 |
subtype1 | 6 | 27 | 19 | 0 | 6 |
subtype2 | 4 | 46 | 38 | 0 | 8 |
subtype3 | 6 | 39 | 28 | 0 | 1 |
subtype4 | 0 | 14 | 9 | 0 | 3 |
subtype5 | 2 | 10 | 24 | 1 | 6 |
Figure S329. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.147 (Kruskal-Wallis (anova)), Q value = 0.47
Table S338. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 1999.7 (13.8) |
subtype1 | 8 | 2002.4 (13.5) |
subtype2 | 16 | 2001.1 (17.6) |
subtype3 | 8 | 1992.9 (10.7) |
subtype4 | 3 | 1998.0 (10.5) |
subtype5 | 7 | 2002.0 (7.7) |
Figure S330. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.157 (Kruskal-Wallis (anova)), Q value = 0.48
Table S339. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 93 | 17.4 (14.1) |
subtype1 | 18 | 14.7 (11.6) |
subtype2 | 36 | 19.9 (17.8) |
subtype3 | 21 | 20.2 (10.9) |
subtype4 | 5 | 7.7 (8.3) |
subtype5 | 13 | 13.4 (9.5) |
Figure S331. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.386 (Fisher's exact test), Q value = 0.7
Table S340. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 39 | 9 | 4 | 64 | 145 |
subtype1 | 8 | 1 | 0 | 11 | 33 |
subtype2 | 16 | 2 | 1 | 21 | 45 |
subtype3 | 4 | 6 | 2 | 17 | 34 |
subtype4 | 3 | 0 | 0 | 5 | 14 |
subtype5 | 8 | 0 | 1 | 10 | 19 |
Figure S332. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.764 (Kruskal-Wallis (anova)), Q value = 0.91
Table S341. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 85 | 21.1 (7.7) |
subtype1 | 17 | 19.8 (4.7) |
subtype2 | 32 | 21.9 (8.9) |
subtype3 | 16 | 21.6 (6.9) |
subtype4 | 5 | 24.8 (10.1) |
subtype5 | 15 | 19.5 (8.0) |
Figure S333. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.395 (Kruskal-Wallis (anova)), Q value = 0.71
Table S342. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 149 | 3635.4 (1710.6) |
subtype1 | 29 | 3839.8 (1694.7) |
subtype2 | 51 | 3307.3 (1775.1) |
subtype3 | 27 | 4180.7 (1304.9) |
subtype4 | 13 | 3702.6 (1454.8) |
subtype5 | 29 | 3470.0 (1980.7) |
Figure S334. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 0.0459 (Fisher's exact test), Q value = 0.26
Table S343. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 20 | 104 | 15 | 1 | 25 |
subtype1 | 3 | 23 | 0 | 0 | 5 |
subtype2 | 4 | 34 | 3 | 0 | 14 |
subtype3 | 7 | 19 | 5 | 1 | 1 |
subtype4 | 1 | 10 | 2 | 0 | 1 |
subtype5 | 5 | 18 | 5 | 0 | 4 |
Figure S335. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.859 (Fisher's exact test), Q value = 0.94
Table S344. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 29 | 3 |
subtype1 | 3 | 0 |
subtype2 | 7 | 0 |
subtype3 | 9 | 1 |
subtype4 | 2 | 0 |
subtype5 | 8 | 2 |
Figure S336. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.12 (Fisher's exact test), Q value = 0.46
Table S345. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 38 | 33 |
subtype1 | 1 | 0 | 4 | 6 |
subtype2 | 0 | 0 | 16 | 19 |
subtype3 | 0 | 1 | 6 | 1 |
subtype4 | 0 | 0 | 5 | 3 |
subtype5 | 1 | 1 | 7 | 4 |
Figure S337. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.353 (Fisher's exact test), Q value = 0.67
Table S346. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 58 | 5 |
subtype1 | 10 | 1 |
subtype2 | 26 | 1 |
subtype3 | 5 | 1 |
subtype4 | 7 | 0 |
subtype5 | 10 | 2 |
Figure S338. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.088 (Kruskal-Wallis (anova)), Q value = 0.4
Table S347. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 265 | 3.6 (2.6) |
subtype1 | 52 | 2.9 (1.9) |
subtype2 | 88 | 4.2 (3.2) |
subtype3 | 63 | 3.6 (2.0) |
subtype4 | 20 | 3.7 (2.2) |
subtype5 | 42 | 3.2 (2.6) |
Figure S339. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.487 (Kruskal-Wallis (anova)), Q value = 0.76
Table S348. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.3) |
subtype1 | 19 | 0.1 (0.2) |
subtype2 | 27 | 0.0 (0.2) |
subtype3 | 39 | 0.2 (0.5) |
subtype4 | 9 | 0.0 (0.0) |
subtype5 | 17 | 0.0 (0.0) |
Figure S340. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.138 (Kruskal-Wallis (anova)), Q value = 0.47
Table S349. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 146 | 0.5 (0.9) |
subtype1 | 22 | 0.8 (0.9) |
subtype2 | 41 | 0.7 (1.3) |
subtype3 | 47 | 0.4 (0.7) |
subtype4 | 12 | 0.3 (0.7) |
subtype5 | 24 | 0.5 (0.7) |
Figure S341. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.0185 (Kruskal-Wallis (anova)), Q value = 0.17
Table S350. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 260 | 2.9 (2.1) |
subtype1 | 50 | 2.3 (1.8) |
subtype2 | 83 | 3.3 (2.4) |
subtype3 | 66 | 2.7 (1.6) |
subtype4 | 21 | 3.2 (1.9) |
subtype5 | 40 | 2.6 (2.2) |
Figure S342. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.933 (Kruskal-Wallis (anova)), Q value = 0.97
Table S351. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 121 | 0.9 (1.8) |
subtype1 | 21 | 0.6 (0.7) |
subtype2 | 31 | 1.5 (3.1) |
subtype3 | 41 | 0.7 (1.1) |
subtype4 | 9 | 0.7 (1.4) |
subtype5 | 19 | 0.6 (0.9) |
Figure S343. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.957 (Kruskal-Wallis (anova)), Q value = 0.98
Table S352. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.1 (0.3) |
subtype1 | 18 | 0.1 (0.3) |
subtype2 | 30 | 0.1 (0.3) |
subtype3 | 41 | 0.1 (0.4) |
subtype4 | 9 | 0.1 (0.3) |
subtype5 | 17 | 0.1 (0.2) |
Figure S344. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.758 (Fisher's exact test), Q value = 0.9
Table S353. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 2 | 8 | 39 | 1 | 10 |
subtype1 | 1 | 0 | 6 | 0 | 2 |
subtype2 | 0 | 3 | 8 | 1 | 4 |
subtype3 | 1 | 3 | 16 | 0 | 3 |
subtype4 | 0 | 0 | 2 | 0 | 0 |
subtype5 | 0 | 2 | 7 | 0 | 1 |
Figure S345. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.0142 (Fisher's exact test), Q value = 0.15
Table S354. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 83 | 124 |
subtype1 | 0 | 5 | 15 | 29 |
subtype2 | 1 | 9 | 29 | 37 |
subtype3 | 1 | 5 | 30 | 23 |
subtype4 | 0 | 4 | 5 | 9 |
subtype5 | 0 | 2 | 4 | 26 |
Figure S346. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.37 (Fisher's exact test), Q value = 0.68
Table S355. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 71 | 79 |
subtype1 | 20 | 15 |
subtype2 | 17 | 24 |
subtype3 | 19 | 29 |
subtype4 | 5 | 3 |
subtype5 | 10 | 8 |
Figure S347. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.125 (Kruskal-Wallis (anova)), Q value = 0.46
Table S356. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1.1 (2.4) |
subtype1 | 38 | 0.6 (1.9) |
subtype2 | 40 | 1.7 (3.1) |
subtype3 | 50 | 1.0 (1.9) |
subtype4 | 8 | 0.4 (0.7) |
subtype5 | 21 | 0.9 (3.1) |
Figure S348. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.311 (Kruskal-Wallis (anova)), Q value = 0.65
Table S357. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 178 | 22.3 (12.6) |
subtype1 | 41 | 22.1 (10.8) |
subtype2 | 48 | 20.6 (12.0) |
subtype3 | 55 | 24.6 (14.6) |
subtype4 | 10 | 15.9 (8.3) |
subtype5 | 24 | 23.8 (12.7) |
Figure S349. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.154 (Fisher's exact test), Q value = 0.48
Table S358. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 54 | 119 |
subtype1 | 0 | 10 |
subtype2 | 20 | 46 |
subtype3 | 20 | 34 |
subtype4 | 4 | 12 |
subtype5 | 10 | 17 |
Figure S350. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 0.0391 (Kruskal-Wallis (anova)), Q value = 0.25
Table S359. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 302 | 2008.3 (4.8) |
subtype1 | 57 | 2009.3 (4.0) |
subtype2 | 101 | 2008.9 (4.3) |
subtype3 | 73 | 2007.3 (5.0) |
subtype4 | 26 | 2008.0 (5.9) |
subtype5 | 45 | 2007.5 (5.1) |
Figure S351. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.298 (Fisher's exact test), Q value = 0.63
Table S360. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 53 | 89 |
subtype1 | 6 | 13 | 17 |
subtype2 | 4 | 17 | 33 |
subtype3 | 1 | 14 | 19 |
subtype4 | 0 | 5 | 7 |
subtype5 | 4 | 4 | 13 |
Figure S352. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.693 (Kruskal-Wallis (anova)), Q value = 0.86
Table S361. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 161.0 (7.3) |
subtype1 | 50 | 161.4 (6.9) |
subtype2 | 92 | 160.7 (7.6) |
subtype3 | 62 | 160.5 (7.5) |
subtype4 | 21 | 160.1 (7.4) |
subtype5 | 37 | 162.7 (6.3) |
Figure S353. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.259 (Fisher's exact test), Q value = 0.6
Table S362. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 99 | 18 |
subtype1 | 27 | 3 |
subtype2 | 22 | 5 |
subtype3 | 32 | 8 |
subtype4 | 5 | 2 |
subtype5 | 13 | 0 |
Figure S354. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.446 (Fisher's exact test), Q value = 0.74
Table S363. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 18 | 1 |
subtype1 | 0 | 1 | 0 |
subtype2 | 1 | 2 | 0 |
subtype3 | 2 | 7 | 0 |
subtype4 | 0 | 1 | 0 |
subtype5 | 0 | 7 | 1 |
Figure S355. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.242 (Kruskal-Wallis (anova)), Q value = 0.58
Table S364. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 13.2 (7.2) |
subtype1 | 1 | 7.1 (NA) |
subtype2 | 5 | 15.8 (8.6) |
subtype3 | 8 | 10.5 (5.5) |
subtype5 | 3 | 18.4 (7.3) |
Figure S356. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.022 (Fisher's exact test), Q value = 0.19
Table S365. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1A1 | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 36 | 72 | 31 | 6 | 10 | 7 | 10 | 37 | 2 | 2 | 17 | 10 | 1 | 17 |
subtype1 | 0 | 6 | 23 | 5 | 1 | 3 | 3 | 1 | 4 | 0 | 0 | 2 | 1 | 0 | 2 |
subtype2 | 0 | 7 | 14 | 11 | 3 | 2 | 0 | 6 | 17 | 1 | 2 | 9 | 6 | 0 | 7 |
subtype3 | 1 | 13 | 26 | 7 | 0 | 3 | 1 | 0 | 7 | 0 | 0 | 2 | 1 | 0 | 4 |
subtype4 | 0 | 2 | 3 | 3 | 1 | 1 | 1 | 2 | 4 | 1 | 0 | 1 | 1 | 0 | 2 |
subtype5 | 0 | 8 | 6 | 5 | 1 | 1 | 2 | 1 | 5 | 0 | 0 | 3 | 1 | 1 | 2 |
Figure S357. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 6.89e-05 (Kruskal-Wallis (anova)), Q value = 0.0019
Table S366. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 304 | 48.2 (13.8) |
subtype1 | 58 | 46.0 (12.2) |
subtype2 | 101 | 50.5 (14.3) |
subtype3 | 74 | 51.2 (14.1) |
subtype4 | 26 | 50.4 (11.4) |
subtype5 | 45 | 39.7 (11.6) |
Figure S358. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.00073 (Fisher's exact test), Q value = 0.016
Table S367. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA1 | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 37 | 78 | 38 | 5 | 9 | 5 | 7 | 43 | 1 | 3 | 42 | 9 | 12 |
subtype1 | 1 | 0 | 0 | 0 | 4 | 26 | 8 | 1 | 2 | 1 | 0 | 5 | 0 | 0 | 6 | 1 | 3 |
subtype2 | 2 | 0 | 0 | 0 | 7 | 17 | 12 | 3 | 1 | 0 | 3 | 17 | 0 | 3 | 19 | 5 | 6 |
subtype3 | 0 | 1 | 1 | 1 | 13 | 25 | 8 | 1 | 2 | 1 | 1 | 5 | 0 | 0 | 11 | 2 | 1 |
subtype4 | 2 | 0 | 0 | 0 | 6 | 1 | 2 | 0 | 1 | 1 | 2 | 5 | 1 | 0 | 3 | 0 | 2 |
subtype5 | 0 | 0 | 0 | 0 | 7 | 9 | 8 | 0 | 3 | 2 | 1 | 11 | 0 | 0 | 3 | 1 | 0 |
Figure S359. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S368. Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 127 | 77 | 87 |
P value = 0.957 (logrank test), Q value = 0.98
Table S369. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 279 | 66 | 0.0 - 210.7 (20.4) |
subtype1 | 123 | 25 | 0.0 - 210.7 (19.6) |
subtype2 | 72 | 16 | 0.1 - 147.4 (17.3) |
subtype3 | 84 | 25 | 0.1 - 177.0 (30.0) |
Figure S360. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.48 (Kruskal-Wallis (anova)), Q value = 0.76
Table S370. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 288 | 48.1 (13.9) |
subtype1 | 125 | 49.0 (13.4) |
subtype2 | 76 | 48.6 (14.0) |
subtype3 | 87 | 46.4 (14.4) |
Figure S361. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.463 (Fisher's exact test), Q value = 0.75
Table S371. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 135 | 66 | 19 | 9 |
subtype1 | 53 | 31 | 12 | 6 |
subtype2 | 38 | 15 | 3 | 1 |
subtype3 | 44 | 20 | 4 | 2 |
Figure S362. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.177 (Fisher's exact test), Q value = 0.51
Table S372. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 128 | 56 |
subtype1 | 50 | 16 |
subtype2 | 41 | 16 |
subtype3 | 37 | 24 |
Figure S363. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.065 (Fisher's exact test), Q value = 0.33
Table S373. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 111 | 9 |
subtype1 | 39 | 7 |
subtype2 | 32 | 1 |
subtype3 | 40 | 1 |
Figure S364. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S374. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 5 | 241 | 6 | 21 | 3 | 15 |
subtype1 | 4 | 89 | 4 | 14 | 3 | 13 |
subtype2 | 1 | 65 | 2 | 7 | 0 | 2 |
subtype3 | 0 | 87 | 0 | 0 | 0 | 0 |
Figure S365. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S375. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 33 | 258 |
subtype1 | 3 | 124 |
subtype2 | 6 | 71 |
subtype3 | 24 | 63 |
Figure S366. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.193 (Kruskal-Wallis (anova)), Q value = 0.53
Table S376. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 88 | 17.2 (14.0) |
subtype1 | 31 | 14.5 (14.3) |
subtype2 | 23 | 19.6 (12.2) |
subtype3 | 34 | 18.0 (14.9) |
Figure S367. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.209 (Kruskal-Wallis (anova)), Q value = 0.54
Table S377. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 153 | 1.0 (2.4) |
subtype1 | 51 | 0.7 (2.1) |
subtype2 | 48 | 1.2 (2.3) |
subtype3 | 54 | 1.2 (2.7) |
Figure S368. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.139 (Fisher's exact test), Q value = 0.47
Table S378. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 7 | 18 | 27 | 2 | 204 |
subtype1 | 5 | 9 | 15 | 0 | 81 |
subtype2 | 1 | 6 | 3 | 0 | 58 |
subtype3 | 1 | 3 | 9 | 2 | 65 |
Figure S369. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.131 (Fisher's exact test), Q value = 0.47
Table S379. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 160 |
subtype1 | 14 | 63 |
subtype2 | 3 | 48 |
subtype3 | 7 | 49 |
Figure S370. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.744 (Kruskal-Wallis (anova)), Q value = 0.89
Table S380. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 264 | 73.2 (21.4) |
subtype1 | 117 | 72.3 (19.3) |
subtype2 | 69 | 74.3 (27.8) |
subtype3 | 78 | 73.5 (17.6) |
Figure S371. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.782 (Fisher's exact test), Q value = 0.91
Table S381. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 135 | 42 |
subtype1 | 60 | 20 |
subtype2 | 30 | 7 |
subtype3 | 45 | 15 |
Figure S372. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.00149 (Fisher's exact test), Q value = 0.029
Table S382. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 53 | 5 | 1 | 12 | 6 | 201 | 13 |
subtype1 | 35 | 3 | 1 | 2 | 4 | 76 | 6 |
subtype2 | 7 | 1 | 0 | 6 | 2 | 55 | 6 |
subtype3 | 11 | 1 | 0 | 4 | 0 | 70 | 1 |
Figure S373. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.0169 (Fisher's exact test), Q value = 0.17
Table S383. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 16 | 128 | 116 | 1 | 23 |
subtype1 | 6 | 47 | 59 | 0 | 13 |
subtype2 | 8 | 42 | 24 | 0 | 2 |
subtype3 | 2 | 39 | 33 | 1 | 8 |
Figure S374. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.288 (Kruskal-Wallis (anova)), Q value = 0.62
Table S384. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 40 | 2000.0 (14.1) |
subtype1 | 16 | 2002.6 (16.0) |
subtype2 | 9 | 1996.2 (16.2) |
subtype3 | 15 | 1999.5 (10.5) |
Figure S375. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.193 (Kruskal-Wallis (anova)), Q value = 0.53
Table S385. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 88 | 17.2 (14.0) |
subtype1 | 31 | 14.5 (14.3) |
subtype2 | 23 | 19.6 (12.2) |
subtype3 | 34 | 18.0 (14.9) |
Figure S376. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.0416 (Fisher's exact test), Q value = 0.25
Table S386. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 38 | 8 | 4 | 61 | 142 |
subtype1 | 16 | 2 | 1 | 18 | 71 |
subtype2 | 7 | 3 | 3 | 18 | 34 |
subtype3 | 15 | 3 | 0 | 25 | 37 |
Figure S377. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.685 (Kruskal-Wallis (anova)), Q value = 0.86
Table S387. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 80 | 20.9 (7.6) |
subtype1 | 31 | 21.5 (7.4) |
subtype2 | 19 | 20.7 (7.2) |
subtype3 | 30 | 20.4 (8.2) |
Figure S378. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.00376 (Kruskal-Wallis (anova)), Q value = 0.063
Table S388. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 145 | 3646.2 (1702.8) |
subtype1 | 70 | 3255.7 (1854.7) |
subtype2 | 29 | 3579.7 (1809.6) |
subtype3 | 46 | 4282.3 (1145.8) |
Figure S379. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S389. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 19 | 99 | 15 | 1 | 25 |
subtype1 | 2 | 57 | 1 | 0 | 14 |
subtype2 | 2 | 20 | 5 | 0 | 6 |
subtype3 | 15 | 22 | 9 | 1 | 5 |
Figure S380. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 1 (Fisher's exact test), Q value = 1
Table S390. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 27 | 3 |
subtype1 | 3 | 0 |
subtype2 | 5 | 0 |
subtype3 | 19 | 3 |
Figure S381. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.54 (Fisher's exact test), Q value = 0.77
Table S391. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 36 | 33 |
subtype1 | 1 | 0 | 17 | 19 |
subtype2 | 1 | 1 | 9 | 6 |
subtype3 | 0 | 1 | 10 | 8 |
Figure S382. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 1 (Fisher's exact test), Q value = 1
Table S392. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 56 | 5 |
subtype1 | 31 | 3 |
subtype2 | 10 | 1 |
subtype3 | 15 | 1 |
Figure S383. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.775 (Kruskal-Wallis (anova)), Q value = 0.91
Table S393. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 255 | 3.6 (2.5) |
subtype1 | 109 | 3.6 (2.7) |
subtype2 | 68 | 3.6 (2.2) |
subtype3 | 78 | 3.6 (2.6) |
Figure S384. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.202 (Kruskal-Wallis (anova)), Q value = 0.53
Table S394. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 106 | 0.1 (0.3) |
subtype1 | 31 | 0.0 (0.2) |
subtype2 | 29 | 0.0 (0.0) |
subtype3 | 46 | 0.1 (0.5) |
Figure S385. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.236 (Kruskal-Wallis (anova)), Q value = 0.57
Table S395. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 142 | 0.6 (1.0) |
subtype1 | 48 | 0.8 (1.2) |
subtype2 | 40 | 0.4 (0.7) |
subtype3 | 54 | 0.5 (0.8) |
Figure S386. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.687 (Kruskal-Wallis (anova)), Q value = 0.86
Table S396. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 250 | 2.8 (2.0) |
subtype1 | 107 | 3.0 (2.3) |
subtype2 | 67 | 2.7 (1.7) |
subtype3 | 76 | 2.6 (1.9) |
Figure S387. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.695 (Kruskal-Wallis (anova)), Q value = 0.86
Table S397. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.8 (1.8) |
subtype1 | 34 | 0.5 (0.9) |
subtype2 | 34 | 1.1 (2.4) |
subtype3 | 47 | 0.8 (1.7) |
Figure S388. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.981 (Kruskal-Wallis (anova)), Q value = 1
Table S398. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.4) |
subtype1 | 34 | 0.1 (0.3) |
subtype2 | 30 | 0.1 (0.4) |
subtype3 | 47 | 0.1 (0.3) |
Figure S389. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.865 (Fisher's exact test), Q value = 0.94
Table S399. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 1 | 7 | 38 | 1 | 10 |
subtype1 | 0 | 1 | 8 | 0 | 2 |
subtype2 | 1 | 2 | 11 | 1 | 4 |
subtype3 | 0 | 4 | 19 | 0 | 4 |
Figure S390. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.261 (Fisher's exact test), Q value = 0.6
Table S400. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 77 | 119 |
subtype1 | 0 | 15 | 30 | 51 |
subtype2 | 0 | 6 | 22 | 30 |
subtype3 | 2 | 4 | 25 | 38 |
Figure S391. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.85 (Fisher's exact test), Q value = 0.94
Table S401. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 68 | 73 |
subtype1 | 23 | 23 |
subtype2 | 23 | 23 |
subtype3 | 22 | 27 |
Figure S392. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.209 (Kruskal-Wallis (anova)), Q value = 0.54
Table S402. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 153 | 1.0 (2.4) |
subtype1 | 51 | 0.7 (2.1) |
subtype2 | 48 | 1.2 (2.3) |
subtype3 | 54 | 1.2 (2.7) |
Figure S393. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.246 (Kruskal-Wallis (anova)), Q value = 0.58
Table S403. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 170 | 22.8 (12.7) |
subtype1 | 59 | 22.0 (12.8) |
subtype2 | 54 | 25.1 (12.8) |
subtype3 | 57 | 21.4 (12.4) |
Figure S394. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.0211 (Fisher's exact test), Q value = 0.19
Table S404. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 51 | 113 |
subtype1 | 9 | 44 |
subtype2 | 18 | 30 |
subtype3 | 24 | 39 |
Figure S395. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 4.31e-06 (Kruskal-Wallis (anova)), Q value = 0.00035
Table S405. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 289 | 2008.3 (4.8) |
subtype1 | 126 | 2009.5 (4.2) |
subtype2 | 76 | 2008.3 (4.7) |
subtype3 | 87 | 2006.5 (5.2) |
Figure S396. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.564 (Fisher's exact test), Q value = 0.79
Table S406. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 53 | 84 |
subtype1 | 6 | 21 | 44 |
subtype2 | 4 | 16 | 17 |
subtype3 | 5 | 16 | 23 |
Figure S397. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.511 (Kruskal-Wallis (anova)), Q value = 0.76
Table S407. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 251 | 160.9 (7.2) |
subtype1 | 114 | 160.5 (6.8) |
subtype2 | 64 | 161.5 (7.1) |
subtype3 | 73 | 160.9 (8.1) |
Figure S398. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.652 (Fisher's exact test), Q value = 0.84
Table S408. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 95 | 18 |
subtype1 | 29 | 4 |
subtype2 | 30 | 5 |
subtype3 | 36 | 9 |
Figure S399. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.206 (Fisher's exact test), Q value = 0.54
Table S409. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 17 | 1 |
subtype1 | 0 | 2 | 0 |
subtype2 | 0 | 2 | 1 |
subtype3 | 3 | 13 | 0 |
Figure S400. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.479 (Kruskal-Wallis (anova)), Q value = 0.76
Table S410. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 16 | 13.0 (7.3) |
subtype1 | 4 | 18.3 (10.8) |
subtype2 | 6 | 10.5 (4.0) |
subtype3 | 6 | 11.9 (6.6) |
Figure S401. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.315 (Fisher's exact test), Q value = 0.65
Table S411. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 35 | 70 | 30 | 6 | 10 | 7 | 9 | 34 | 1 | 2 | 16 | 9 | 1 | 17 |
subtype1 | 12 | 27 | 14 | 3 | 6 | 2 | 5 | 15 | 1 | 2 | 9 | 6 | 1 | 8 |
subtype2 | 6 | 22 | 10 | 0 | 4 | 3 | 2 | 6 | 0 | 0 | 3 | 1 | 0 | 6 |
subtype3 | 17 | 21 | 6 | 3 | 0 | 2 | 2 | 13 | 0 | 0 | 4 | 2 | 0 | 3 |
Figure S402. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.439 (Kruskal-Wallis (anova)), Q value = 0.73
Table S412. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 291 | 48.2 (13.8) |
subtype1 | 127 | 49.0 (13.2) |
subtype2 | 77 | 48.8 (14.0) |
subtype3 | 87 | 46.4 (14.4) |
Figure S403. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.00554 (Fisher's exact test), Q value = 0.081
Table S413. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 36 | 76 | 36 | 5 | 8 | 5 | 7 | 41 | 3 | 41 | 8 | 11 |
subtype1 | 3 | 0 | 0 | 9 | 35 | 17 | 2 | 4 | 0 | 4 | 18 | 3 | 16 | 3 | 9 |
subtype2 | 0 | 1 | 1 | 5 | 24 | 12 | 2 | 3 | 3 | 2 | 8 | 0 | 9 | 3 | 1 |
subtype3 | 2 | 0 | 0 | 22 | 17 | 7 | 1 | 1 | 2 | 1 | 15 | 0 | 16 | 2 | 1 |
Figure S404. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

Table S414. Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 62 | 50 | 31 | 148 |
P value = 0.793 (logrank test), Q value = 0.92
Table S415. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 279 | 66 | 0.0 - 210.7 (20.4) |
subtype1 | 60 | 15 | 0.1 - 137.2 (17.7) |
subtype2 | 46 | 9 | 0.1 - 147.4 (18.7) |
subtype3 | 31 | 12 | 1.2 - 177.0 (35.6) |
subtype4 | 142 | 30 | 0.0 - 210.7 (19.6) |
Figure S405. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.857 (Kruskal-Wallis (anova)), Q value = 0.94
Table S416. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 288 | 48.1 (13.9) |
subtype1 | 60 | 47.1 (12.1) |
subtype2 | 50 | 49.4 (14.2) |
subtype3 | 31 | 48.9 (14.4) |
subtype4 | 147 | 47.9 (14.4) |
Figure S406. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.512 (Fisher's exact test), Q value = 0.76
Table S417. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 135 | 66 | 19 | 9 |
subtype1 | 32 | 18 | 2 | 2 |
subtype2 | 26 | 8 | 3 | 1 |
subtype3 | 18 | 5 | 1 | 0 |
subtype4 | 59 | 35 | 13 | 6 |
Figure S407. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.149 (Fisher's exact test), Q value = 0.47
Table S418. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 128 | 56 |
subtype1 | 34 | 8 |
subtype2 | 25 | 11 |
subtype3 | 13 | 11 |
subtype4 | 56 | 26 |
Figure S408. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.336 (Fisher's exact test), Q value = 0.66
Table S419. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 111 | 9 |
subtype1 | 21 | 4 |
subtype2 | 24 | 1 |
subtype3 | 15 | 0 |
subtype4 | 51 | 4 |
Figure S409. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S420. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | ADENOSQUAMOUS | CERVICAL SQUAMOUS CELL CARCINOMA | ENDOCERVICAL ADENOCARCINOMA OF THE USUAL TYPE | ENDOCERVICAL TYPE OF ADENOCARCINOMA | ENDOMETRIOID ADENOCARCINOMA OF ENDOCERVIX | MUCINOUS ADENOCARCINOMA OF ENDOCERVICAL TYPE |
---|---|---|---|---|---|---|
ALL | 5 | 241 | 6 | 21 | 3 | 15 |
subtype1 | 3 | 16 | 5 | 20 | 3 | 15 |
subtype2 | 1 | 49 | 0 | 0 | 0 | 0 |
subtype3 | 0 | 30 | 0 | 1 | 0 | 0 |
subtype4 | 1 | 146 | 1 | 0 | 0 | 0 |
Figure S410. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S421. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 33 | 258 |
subtype1 | 1 | 61 |
subtype2 | 3 | 47 |
subtype3 | 19 | 12 |
subtype4 | 10 | 138 |
Figure S411. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.142 (Kruskal-Wallis (anova)), Q value = 0.47
Table S422. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 88 | 17.2 (14.0) |
subtype1 | 17 | 13.1 (11.1) |
subtype2 | 13 | 21.9 (12.2) |
subtype3 | 10 | 19.5 (9.9) |
subtype4 | 48 | 16.9 (15.8) |
Figure S412. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0694 (Kruskal-Wallis (anova)), Q value = 0.34
Table S423. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 153 | 1.0 (2.4) |
subtype1 | 37 | 0.6 (1.9) |
subtype2 | 28 | 1.1 (1.9) |
subtype3 | 25 | 2.4 (4.5) |
subtype4 | 63 | 0.6 (1.1) |
Figure S413. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'NUMBER_OF_LYMPH_NODES'

P value = 0.563 (Fisher's exact test), Q value = 0.79
Table S424. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
---|---|---|---|---|---|
ALL | 7 | 18 | 27 | 2 | 204 |
subtype1 | 1 | 5 | 3 | 0 | 44 |
subtype2 | 1 | 5 | 2 | 0 | 35 |
subtype3 | 0 | 2 | 3 | 0 | 26 |
subtype4 | 5 | 6 | 19 | 2 | 99 |
Figure S414. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.455 (Fisher's exact test), Q value = 0.75
Table S425. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 160 |
subtype1 | 6 | 32 |
subtype2 | 3 | 31 |
subtype3 | 1 | 22 |
subtype4 | 14 | 75 |
Figure S415. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

P value = 0.808 (Kruskal-Wallis (anova)), Q value = 0.92
Table S426. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 264 | 73.2 (21.4) |
subtype1 | 56 | 73.5 (16.1) |
subtype2 | 45 | 75.3 (32.9) |
subtype3 | 28 | 71.8 (17.7) |
subtype4 | 135 | 72.6 (19.2) |
Figure S416. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'WEIGHT_KG_AT_DIAGNOSIS'

P value = 0.254 (Fisher's exact test), Q value = 0.6
Table S427. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'
nPatients | TUMOR FREE | WITH TUMOR |
---|---|---|
ALL | 135 | 42 |
subtype1 | 29 | 9 |
subtype2 | 22 | 4 |
subtype3 | 16 | 10 |
subtype4 | 68 | 19 |
Figure S417. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'TUMOR_STATUS'

P value = 0.00051 (Fisher's exact test), Q value = 0.012
Table S428. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'
nPatients | BRAZIL | CANADA | NIGERIA | RUSSIA | UKRAINE | UNITED STATES | VIETNAM |
---|---|---|---|---|---|---|---|
ALL | 53 | 5 | 1 | 12 | 6 | 201 | 13 |
subtype1 | 15 | 3 | 1 | 2 | 1 | 37 | 3 |
subtype2 | 5 | 1 | 0 | 6 | 2 | 31 | 5 |
subtype3 | 0 | 0 | 0 | 1 | 0 | 30 | 0 |
subtype4 | 33 | 1 | 0 | 3 | 3 | 103 | 5 |
Figure S418. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'TUMOR_SAMPLE_PROCUREMENT_COUNTRY'

P value = 0.0444 (Fisher's exact test), Q value = 0.26
Table S429. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'
nPatients | G1 | G2 | G3 | G4 | GX |
---|---|---|---|---|---|
ALL | 16 | 128 | 116 | 1 | 23 |
subtype1 | 6 | 28 | 22 | 0 | 6 |
subtype2 | 5 | 28 | 14 | 0 | 2 |
subtype3 | 0 | 17 | 14 | 0 | 0 |
subtype4 | 5 | 55 | 66 | 1 | 15 |
Figure S419. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #15: 'NEOPLASM_HISTOLOGIC_GRADE'

P value = 0.266 (Kruskal-Wallis (anova)), Q value = 0.61
Table S430. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 40 | 2000.0 (14.1) |
subtype1 | 7 | 2001.0 (13.9) |
subtype2 | 5 | 1995.4 (15.9) |
subtype3 | 5 | 1995.6 (5.4) |
subtype4 | 23 | 2001.6 (15.3) |
Figure S420. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #16: 'TOBACCO_SMOKING_YEAR_STOPPED'

P value = 0.142 (Kruskal-Wallis (anova)), Q value = 0.47
Table S431. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 88 | 17.2 (14.0) |
subtype1 | 17 | 13.1 (11.1) |
subtype2 | 13 | 21.9 (12.2) |
subtype3 | 10 | 19.5 (9.9) |
subtype4 | 48 | 16.9 (15.8) |
Figure S421. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #17: 'TOBACCO_SMOKING_PACK_YEARS_SMOKED'

P value = 0.288 (Fisher's exact test), Q value = 0.62
Table S432. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'
nPatients | CURRENT REFORMED SMOKER FOR < OR = 15 YEARS | CURRENT REFORMED SMOKER FOR > 15 YEARS | CURRENT REFORMED SMOKER, DURATION NOT SPECIFIED | CURRENT SMOKER | LIFELONG NON-SMOKER |
---|---|---|---|---|---|
ALL | 38 | 8 | 4 | 61 | 142 |
subtype1 | 7 | 1 | 0 | 11 | 37 |
subtype2 | 3 | 2 | 2 | 11 | 22 |
subtype3 | 8 | 2 | 0 | 5 | 14 |
subtype4 | 20 | 3 | 2 | 34 | 69 |
Figure S422. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #18: 'TOBACCO_SMOKING_HISTORY'

P value = 0.899 (Kruskal-Wallis (anova)), Q value = 0.96
Table S433. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 80 | 20.9 (7.6) |
subtype1 | 16 | 21.0 (5.8) |
subtype2 | 10 | 19.9 (5.0) |
subtype3 | 8 | 19.9 (5.2) |
subtype4 | 46 | 21.2 (8.9) |
Figure S423. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #19: 'PATIENT.AGEBEGANSMOKINGINYEARS'

P value = 0.048 (Kruskal-Wallis (anova)), Q value = 0.27
Table S434. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 145 | 3646.2 (1702.8) |
subtype1 | 31 | 3621.0 (1777.9) |
subtype2 | 17 | 3381.6 (2017.6) |
subtype3 | 19 | 4549.5 (914.6) |
subtype4 | 78 | 3493.8 (1705.5) |
Figure S424. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #20: 'RADIATION_TOTAL_DOSE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S435. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'
nPatients | COMBINATION | EXTERNAL | EXTERNAL BEAM | IMPLANTS | INTERNAL |
---|---|---|---|---|---|
ALL | 19 | 99 | 15 | 1 | 25 |
subtype1 | 1 | 27 | 0 | 0 | 4 |
subtype2 | 0 | 14 | 3 | 0 | 4 |
subtype3 | 13 | 1 | 7 | 1 | 0 |
subtype4 | 5 | 57 | 5 | 0 | 17 |
Figure S425. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #21: 'RADIATION_THERAPY_TYPE'

P value = 0.457 (Fisher's exact test), Q value = 0.75
Table S436. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'
nPatients | COMPLETED AS PLANNED | TREATMENT NOT COMPLETED |
---|---|---|
ALL | 27 | 3 |
subtype1 | 1 | 0 |
subtype2 | 2 | 0 |
subtype3 | 17 | 1 |
subtype4 | 7 | 2 |
Figure S426. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #22: 'RADIATION_THERAPY_STATUS'

P value = 0.589 (Fisher's exact test), Q value = 0.81
Table S437. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'
nPatients | DISTANT RECURRENCE | LOCAL RECURRENCE | PRIMARY TUMOR FIELD | REGIONAL SITE |
---|---|---|---|---|
ALL | 2 | 2 | 36 | 33 |
subtype1 | 1 | 0 | 6 | 5 |
subtype2 | 0 | 1 | 5 | 4 |
subtype3 | 0 | 0 | 2 | 0 |
subtype4 | 1 | 1 | 23 | 24 |
Figure S427. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #23: 'RADIATION_THERAPY_SITE'

P value = 0.458 (Fisher's exact test), Q value = 0.75
Table S438. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'
nPatients | CGY | GY |
---|---|---|
ALL | 56 | 5 |
subtype1 | 12 | 0 |
subtype2 | 6 | 1 |
subtype3 | 2 | 0 |
subtype4 | 36 | 4 |
Figure S428. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #24: 'RADIATION_ADJUVANT_UNITS'

P value = 0.172 (Kruskal-Wallis (anova)), Q value = 0.51
Table S439. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 255 | 3.6 (2.5) |
subtype1 | 56 | 3.0 (2.0) |
subtype2 | 42 | 3.5 (2.5) |
subtype3 | 30 | 3.3 (1.9) |
subtype4 | 127 | 4.0 (2.8) |
Figure S429. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #25: 'PREGNANCIES_COUNT_TOTAL'

P value = 0.201 (Kruskal-Wallis (anova)), Q value = 0.53
Table S440. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 106 | 0.1 (0.3) |
subtype1 | 20 | 0.0 (0.0) |
subtype2 | 19 | 0.0 (0.0) |
subtype3 | 26 | 0.2 (0.6) |
subtype4 | 41 | 0.0 (0.2) |
Figure S430. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #26: 'PREGNANCIES_COUNT_STILLBIRTH'

P value = 0.112 (Kruskal-Wallis (anova)), Q value = 0.46
Table S441. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 142 | 0.6 (1.0) |
subtype1 | 25 | 0.6 (0.9) |
subtype2 | 26 | 0.3 (0.5) |
subtype3 | 27 | 0.4 (0.7) |
subtype4 | 64 | 0.7 (1.2) |
Figure S431. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #27: 'PATIENT_PATIENTPREGNANCYSPONTANEOUSABORTIONCOUNT'

P value = 0.0231 (Kruskal-Wallis (anova)), Q value = 0.19
Table S442. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 250 | 2.8 (2.0) |
subtype1 | 53 | 2.5 (1.9) |
subtype2 | 42 | 2.6 (1.3) |
subtype3 | 31 | 2.2 (1.6) |
subtype4 | 124 | 3.2 (2.3) |
Figure S432. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #28: 'PREGNANCIES_COUNT_LIVE_BIRTH'

P value = 0.781 (Kruskal-Wallis (anova)), Q value = 0.91
Table S443. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 0.8 (1.8) |
subtype1 | 22 | 0.7 (1.0) |
subtype2 | 23 | 1.3 (2.8) |
subtype3 | 25 | 0.6 (1.0) |
subtype4 | 45 | 0.7 (1.7) |
Figure S433. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #29: 'PATIENT_PATIENTPREGNANCYTHERAPEUTICABORTIONCOUNT'

P value = 0.653 (Kruskal-Wallis (anova)), Q value = 0.84
Table S444. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 111 | 0.1 (0.4) |
subtype1 | 20 | 0.1 (0.2) |
subtype2 | 21 | 0.2 (0.5) |
subtype3 | 26 | 0.1 (0.3) |
subtype4 | 44 | 0.1 (0.3) |
Figure S434. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #30: 'PREGNANCIES_COUNT_ECTOPIC'

P value = 0.721 (Fisher's exact test), Q value = 0.88
Table S445. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'
nPatients | MACROSCOPIC PARAMETRIAL INVOLVEMENT | MICROSCOPIC PARAMETRIAL INVOLVEMENT | OTHER LOCATION, SPECIFY | POSITIVE BLADDER MARGIN | POSITIVE VAGINAL MARGIN |
---|---|---|---|---|---|
ALL | 1 | 7 | 38 | 1 | 10 |
subtype1 | 0 | 1 | 6 | 0 | 2 |
subtype2 | 1 | 1 | 6 | 1 | 1 |
subtype3 | 0 | 2 | 14 | 0 | 2 |
subtype4 | 0 | 3 | 12 | 0 | 5 |
Figure S435. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #31: 'POS_LYMPH_NODE_LOCATION'

P value = 0.288 (Fisher's exact test), Q value = 0.62
Table S446. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'
nPatients | INDETERMINATE (NEITHER PRE OR POSTMENOPAUSAL) | PERI (6-12 MONTHS SINCE LAST MENSTRUAL PERIOD) | POST (PRIOR BILATERAL OVARIECTOMY OR >12 MO SINCE LMP WITH NO PRIOR HYSTERECTOMY) | PRE (<6 MONTHS SINCE LMP AND NO PRIOR BILATERAL OVARIECTOMY AND NOT ON ESTROGEN REPLACEMENT) |
---|---|---|---|---|
ALL | 2 | 25 | 77 | 119 |
subtype1 | 0 | 7 | 16 | 29 |
subtype2 | 0 | 4 | 15 | 18 |
subtype3 | 2 | 1 | 12 | 14 |
subtype4 | 0 | 13 | 34 | 58 |
Figure S436. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #32: 'MENOPAUSE_STATUS'

P value = 0.0782 (Fisher's exact test), Q value = 0.38
Table S447. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 68 | 73 |
subtype1 | 20 | 15 |
subtype2 | 14 | 15 |
subtype3 | 6 | 18 |
subtype4 | 28 | 25 |
Figure S437. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #33: 'LYMPHOVASCULAR_INVOLVEMENT'

P value = 0.0694 (Kruskal-Wallis (anova)), Q value = 0.34
Table S448. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 153 | 1.0 (2.4) |
subtype1 | 37 | 0.6 (1.9) |
subtype2 | 28 | 1.1 (1.9) |
subtype3 | 25 | 2.4 (4.5) |
subtype4 | 63 | 0.6 (1.1) |
Figure S438. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #34: 'LYMPH_NODES_EXAMINED_HE_COUNT'

P value = 0.769 (Kruskal-Wallis (anova)), Q value = 0.91
Table S449. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 170 | 22.8 (12.7) |
subtype1 | 41 | 21.6 (10.8) |
subtype2 | 33 | 21.7 (12.2) |
subtype3 | 25 | 26.1 (15.2) |
subtype4 | 71 | 22.8 (13.0) |
Figure S439. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #35: 'LYMPH_NODES_EXAMINED'

P value = 0.0321 (Fisher's exact test), Q value = 0.22
Table S450. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'
nPatients | KERATINIZING SQUAMOUS CELL CARCINOMA | NON-KERATINIZING SQUAMOUS CELL CARCINOMA |
---|---|---|
ALL | 51 | 113 |
subtype1 | 0 | 11 |
subtype2 | 14 | 21 |
subtype3 | 9 | 12 |
subtype4 | 28 | 69 |
Figure S440. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #36: 'KERATINIZATION_SQUAMOUS_CELL'

P value = 5.03e-08 (Kruskal-Wallis (anova)), Q value = 2.3e-05
Table S451. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 289 | 2008.3 (4.8) |
subtype1 | 61 | 2009.5 (3.6) |
subtype2 | 49 | 2009.3 (3.9) |
subtype3 | 31 | 2003.0 (5.1) |
subtype4 | 148 | 2008.5 (4.8) |
Figure S441. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #37: 'INITIAL_PATHOLOGIC_DX_YEAR'

P value = 0.314 (Fisher's exact test), Q value = 0.65
Table S452. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'
nPatients | CURRENT USER | FORMER USER | NEVER USED |
---|---|---|---|
ALL | 15 | 53 | 84 |
subtype1 | 7 | 13 | 20 |
subtype2 | 0 | 10 | 11 |
subtype3 | 0 | 5 | 10 |
subtype4 | 8 | 25 | 43 |
Figure S442. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #38: 'HISTORY_HORMONAL_CONTRACEPTIVES_USE'

P value = 0.949 (Kruskal-Wallis (anova)), Q value = 0.98
Table S453. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 251 | 160.9 (7.2) |
subtype1 | 55 | 161.2 (6.8) |
subtype2 | 42 | 161.7 (7.9) |
subtype3 | 25 | 160.8 (8.0) |
subtype4 | 129 | 160.5 (7.1) |
Figure S443. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #39: 'HEIGHT_CM_AT_DIAGNOSIS'

P value = 0.46 (Fisher's exact test), Q value = 0.75
Table S454. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'
nPatients | ABSENT | PRESENT |
---|---|---|
ALL | 95 | 18 |
subtype1 | 27 | 4 |
subtype2 | 18 | 4 |
subtype3 | 17 | 6 |
subtype4 | 33 | 4 |
Figure S444. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #40: 'CORPUS_INVOLVEMENT'

P value = 0.138 (Fisher's exact test), Q value = 0.47
Table S455. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'
nPatients | CARBOPLATIN | CISPLATIN | OTHER |
---|---|---|---|
ALL | 3 | 17 | 1 |
subtype1 | 0 | 0 | 0 |
subtype2 | 0 | 1 | 0 |
subtype3 | 3 | 9 | 0 |
subtype4 | 0 | 7 | 1 |
Figure S445. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #41: 'CHEMO_CONCURRENT_TYPE'

P value = 0.0797 (Kruskal-Wallis (anova)), Q value = 0.38
Table S456. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 16 | 13.0 (7.3) |
subtype1 | 1 | 7.1 (NA) |
subtype2 | 6 | 9.0 (5.9) |
subtype3 | 3 | 11.0 (3.0) |
subtype4 | 6 | 18.8 (7.3) |
Figure S446. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #42: 'CERVIX_SUV_RESULTS'

P value = 0.932 (Fisher's exact test), Q value = 0.97
Table S457. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'
nPatients | T1B | T1B1 | T1B2 | T2 | T2A | T2A1 | T2A2 | T2B | T3 | T3A | T3B | T4 | TIS | TX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 35 | 70 | 30 | 6 | 10 | 7 | 9 | 34 | 1 | 2 | 16 | 9 | 1 | 17 |
subtype1 | 6 | 20 | 6 | 1 | 4 | 2 | 3 | 8 | 0 | 0 | 2 | 2 | 0 | 2 |
subtype2 | 7 | 14 | 5 | 0 | 3 | 1 | 1 | 3 | 0 | 0 | 3 | 1 | 0 | 3 |
subtype3 | 6 | 9 | 3 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype4 | 16 | 27 | 16 | 4 | 3 | 3 | 5 | 20 | 1 | 2 | 10 | 6 | 1 | 12 |
Figure S447. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #43: 'AJCC_TUMOR_PATHOLOGIC_PT'

P value = 0.885 (Kruskal-Wallis (anova)), Q value = 0.95
Table S458. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 291 | 48.2 (13.8) |
subtype1 | 62 | 47.2 (11.9) |
subtype2 | 50 | 49.4 (14.2) |
subtype3 | 31 | 48.9 (14.4) |
subtype4 | 148 | 48.0 (14.3) |
Figure S448. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #44: 'AGE_AT_DIAGNOSIS'

P value = 0.163 (Fisher's exact test), Q value = 0.49
Table S459. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IA2 | STAGE IB | STAGE IB1 | STAGE IB2 | STAGE II | STAGE IIA | STAGE IIA1 | STAGE IIA2 | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 36 | 76 | 36 | 5 | 8 | 5 | 7 | 41 | 3 | 41 | 8 | 11 |
subtype1 | 1 | 0 | 0 | 5 | 23 | 9 | 1 | 3 | 1 | 2 | 7 | 0 | 5 | 1 | 4 |
subtype2 | 0 | 1 | 1 | 4 | 17 | 5 | 1 | 2 | 1 | 1 | 6 | 0 | 7 | 2 | 1 |
subtype3 | 0 | 0 | 0 | 12 | 5 | 4 | 0 | 1 | 1 | 0 | 2 | 0 | 6 | 0 | 0 |
subtype4 | 4 | 0 | 0 | 15 | 31 | 18 | 3 | 2 | 2 | 4 | 26 | 3 | 23 | 5 | 6 |
Figure S449. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #45: 'STAGE_EVENT.CLINICAL_STAGE'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/CESC-TP/15095897/CESC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/CESC-TP/15076797/CESC-TP.merged_data.txt
-
Number of patients = 304
-
Number of clustering approaches = 10
-
Number of selected clinical features = 45
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.