Correlation between aggregated molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 14 clinical features across 522 patients, 47 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH',  'NUMBER_PACK_YEARS_SMOKED', and 'YEAR_OF_TOBACCO_SMOKING_ONSET'.

  • 7 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'GENDER',  'HISTOLOGICAL_TYPE',  'NUMBER_PACK_YEARS_SMOKED',  'YEAR_OF_TOBACCO_SMOKING_ONSET',  'NUMBER_OF_LYMPH_NODES', and 'RACE'.

  • CNMF clustering analysis on RPPA data identified 4 subtypes that correlate to 'GENDER' and 'RADIATIONS_RADIATION_REGIMENINDICATION'.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'NEOPLASM_DISEASESTAGE',  'PATHOLOGY_N_STAGE', and 'NUMBER_OF_LYMPH_NODES'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'GENDER',  'HISTOLOGICAL_TYPE',  'NUMBER_PACK_YEARS_SMOKED', and 'NUMBER_OF_LYMPH_NODES'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGY_T_STAGE',  'GENDER',  'HISTOLOGICAL_TYPE',  'RADIATIONS_RADIATION_REGIMENINDICATION',  'NUMBER_PACK_YEARS_SMOKED', and 'NUMBER_OF_LYMPH_NODES'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'GENDER',  'HISTOLOGICAL_TYPE',  'NUMBER_OF_LYMPH_NODES', and 'RACE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGY_T_STAGE',  'GENDER', and 'NUMBER_OF_LYMPH_NODES'.

  • 5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'PATHOLOGY_T_STAGE',  'GENDER',  'HISTOLOGICAL_TYPE',  'RADIATIONS_RADIATION_REGIMENINDICATION',  'NUMBER_PACK_YEARS_SMOKED',  'YEAR_OF_TOBACCO_SMOKING_ONSET', and 'RACE'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'RADIATIONS_RADIATION_REGIMENINDICATION'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 14 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 47 significant findings detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.144
(0.283)
0.0157
(0.0708)
0.195
(0.347)
0.262
(0.407)
0.3
(0.441)
0.0157
(0.0708)
0.447
(0.58)
0.0395
(0.126)
0.159
(0.305)
0.0952
(0.222)
YEARS TO BIRTH Kruskal-Wallis (anova) 0.0462
(0.144)
7.43e-10
(1.04e-07)
0.255
(0.405)
0.0759
(0.19)
0.281
(0.424)
0.00486
(0.0309)
0.0658
(0.177)
0.0499
(0.149)
0.774
(0.834)
0.741
(0.814)
NEOPLASM DISEASESTAGE Fisher's exact test 0.468
(0.601)
0.697
(0.798)
0.518
(0.648)
0.0299
(0.11)
0.215
(0.367)
0.0898
(0.213)
0.439
(0.574)
0.0655
(0.177)
0.134
(0.275)
0.484
(0.615)
PATHOLOGY T STAGE Fisher's exact test 0.169
(0.316)
0.0071
(0.0432)
0.169
(0.316)
0.196
(0.347)
0.115
(0.252)
3e-05
(7e-04)
0.137
(0.277)
0.0021
(0.0184)
0.0479
(0.146)
0.745
(0.814)
PATHOLOGY N STAGE Fisher's exact test 0.0619
(0.176)
0.0345
(0.116)
0.356
(0.495)
2e-05
(7e-04)
0.363
(0.498)
0.139
(0.278)
0.0752
(0.19)
0.0808
(0.198)
0.533
(0.655)
0.906
(0.96)
PATHOLOGY M STAGE Fisher's exact test 0.602
(0.706)
0.549
(0.663)
1
(1.00)
0.251
(0.405)
1
(1.00)
0.278
(0.423)
0.56
(0.67)
1
(1.00)
GENDER Fisher's exact test 0.0881
(0.213)
1e-05
(0.000467)
0.00367
(0.0257)
0.219
(0.369)
0.00237
(0.0195)
3e-05
(7e-04)
0.0384
(0.125)
0.0118
(0.057)
0.0264
(0.102)
0.565
(0.67)
HISTOLOGICAL TYPE Fisher's exact test 0.112
(0.25)
0.021
(0.0893)
0.00028
(0.00436)
0.00034
(0.00476)
0.00923
(0.0479)
0.239
(0.394)
0.00065
(0.00758)
0.0994
(0.228)
RADIATIONS RADIATION REGIMENINDICATION Fisher's exact test 0.754
(0.819)
0.605
(0.706)
0.0075
(0.0437)
0.437
(0.574)
0.321
(0.462)
0.0237
(0.0966)
0.122
(0.261)
0.0628
(0.176)
0.00337
(0.0257)
0.00045
(0.00573)
NUMBER PACK YEARS SMOKED Kruskal-Wallis (anova) 0.000105
(0.00183)
0.00464
(0.0309)
0.0672
(0.178)
0.743
(0.814)
0.0326
(0.114)
0.00105
(0.0105)
0.674
(0.78)
0.127
(0.264)
0.00911
(0.0479)
0.253
(0.405)
YEAR OF TOBACCO SMOKING ONSET Kruskal-Wallis (anova) 0.000768
(0.00827)
0.00173
(0.0161)
0.488
(0.615)
0.238
(0.394)
0.207
(0.359)
0.258
(0.406)
0.181
(0.329)
0.0705
(0.183)
0.017
(0.0745)
0.31
(0.452)
NUMBER OF LYMPH NODES Kruskal-Wallis (anova) 0.33
(0.467)
4.27e-05
(0.000854)
0.208
(0.359)
4.76e-06
(0.000333)
0.0348
(0.116)
0.00912
(0.0479)
0.027
(0.102)
0.00351
(0.0257)
0.357
(0.495)
0.289
(0.43)
RACE Fisher's exact test 0.323
(0.462)
0.0241
(0.0966)
0.104
(0.235)
0.428
(0.574)
0.147
(0.286)
0.181
(0.329)
0.0315
(0.113)
0.0578
(0.169)
0.0117
(0.057)
0.123
(0.261)
ETHNICITY Fisher's exact test 0.701
(0.798)
0.743
(0.814)
0.741
(0.814)
0.542
(0.66)
0.277
(0.423)
0.527
(0.653)
0.431
(0.574)
0.375
(0.51)
0.972
(1.00)
0.886
(0.947)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 153 133 189 41
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.144 (logrank test), Q value = 0.28

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 513 200 0.1 - 211.0 (18.0)
subtype1 152 69 0.1 - 180.2 (17.4)
subtype2 133 48 0.1 - 153.9 (20.1)
subtype3 187 67 0.1 - 211.0 (19.0)
subtype4 41 16 2.7 - 94.9 (16.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0462 (Kruskal-Wallis (anova)), Q value = 0.14

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 515 60.9 (12.0)
subtype1 153 58.5 (13.1)
subtype2 133 62.4 (9.7)
subtype3 188 61.1 (12.4)
subtype4 41 63.6 (10.9)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.468 (Fisher's exact test), Q value = 0.6

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 27 77 77 252 12 1
subtype1 7 20 22 85 5 1
subtype2 6 16 19 69 4 0
subtype3 12 34 29 79 1 0
subtype4 2 7 7 19 2 0

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.169 (Fisher's exact test), Q value = 0.32

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 50 133 99 172
subtype1 12 39 32 59
subtype2 10 29 30 48
subtype3 25 54 26 53
subtype4 3 11 11 12

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.0619 (Fisher's exact test), Q value = 0.18

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 178 66 165 8
subtype1 50 19 59 2
subtype2 44 13 47 3
subtype3 73 25 45 1
subtype4 11 9 14 2

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.602 (Fisher's exact test), Q value = 0.71

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 183 1
subtype1 52 1
subtype2 38 0
subtype3 73 0
subtype4 20 0

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.0881 (Fisher's exact test), Q value = 0.21

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 139 377
subtype1 39 114
subtype2 27 106
subtype3 58 131
subtype4 15 26

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.112 (Fisher's exact test), Q value = 0.25

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 505 1 10
subtype1 153 0 0
subtype2 129 0 4
subtype3 182 1 6
subtype4 41 0 0

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'Copy Number Ratio CNMF subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.754 (Fisher's exact test), Q value = 0.82

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 81 435
subtype1 24 129
subtype2 23 110
subtype3 30 159
subtype4 4 37

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.000105 (Kruskal-Wallis (anova)), Q value = 0.0018

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 287 45.2 (35.5)
subtype1 76 39.1 (21.3)
subtype2 88 55.7 (34.0)
subtype3 99 43.5 (44.8)
subtype4 24 33.2 (23.5)

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'Copy Number Ratio CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.000768 (Kruskal-Wallis (anova)), Q value = 0.0083

Table S12.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 274 1967.2 (12.7)
subtype1 72 1970.9 (11.5)
subtype2 85 1963.5 (11.5)
subtype3 96 1966.6 (14.0)
subtype4 21 1972.3 (10.1)

Figure S11.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.33 (Kruskal-Wallis (anova)), Q value = 0.47

Table S13.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 402 2.2 (4.3)
subtype1 128 2.2 (3.9)
subtype2 107 2.8 (6.4)
subtype3 129 1.7 (2.6)
subtype4 38 2.1 (2.9)

Figure S12.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.323 (Fisher's exact test), Q value = 0.46

Table S14.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 45 441
subtype1 1 5 16 124
subtype2 0 1 16 113
subtype3 1 4 10 168
subtype4 0 1 3 36

Figure S13.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.701 (Fisher's exact test), Q value = 0.8

Table S15.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 25 454
subtype1 10 133
subtype2 5 114
subtype3 9 168
subtype4 1 39

Figure S14.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S16.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 87 79 95 90 77 75 19
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.0157 (logrank test), Q value = 0.071

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 519 203 0.1 - 211.0 (18.4)
subtype1 85 36 2.3 - 211.0 (16.1)
subtype2 79 24 0.1 - 153.9 (21.2)
subtype3 95 41 0.2 - 180.2 (18.9)
subtype4 90 41 0.5 - 139.4 (17.6)
subtype5 77 16 0.1 - 94.6 (20.4)
subtype6 74 35 0.1 - 169.4 (17.0)
subtype7 19 10 1.8 - 84.5 (16.2)

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 7.43e-10 (Kruskal-Wallis (anova)), Q value = 1e-07

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 521 60.9 (11.9)
subtype1 86 59.6 (12.4)
subtype2 79 58.8 (9.9)
subtype3 95 56.9 (13.5)
subtype4 90 63.9 (10.6)
subtype5 77 57.6 (9.6)
subtype6 75 67.6 (10.9)
subtype7 19 67.7 (11.9)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.697 (Fisher's exact test), Q value = 0.8

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 27 78 77 257 12 1
subtype1 9 15 12 45 0 0
subtype2 3 14 12 40 3 1
subtype3 6 14 18 46 2 0
subtype4 2 8 12 52 3 0
subtype5 2 9 11 25 1 0
subtype6 3 15 9 40 3 0
subtype7 2 3 3 9 0 0

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.0071 (Fisher's exact test), Q value = 0.043

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 50 136 100 174
subtype1 15 27 14 26
subtype2 8 17 16 33
subtype3 8 27 24 28
subtype4 4 19 18 37
subtype5 10 22 11 8
subtype6 3 19 13 35
subtype7 2 5 4 7

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_N_STAGE'

P value = 0.0345 (Fisher's exact test), Q value = 0.12

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 179 66 169 8
subtype1 33 14 31 0
subtype2 40 10 20 1
subtype3 31 10 36 1
subtype4 22 9 37 3
subtype5 14 9 22 1
subtype6 34 10 15 2
subtype7 5 4 8 0

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.549 (Fisher's exact test), Q value = 0.66

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 184 1
subtype1 45 0
subtype2 30 1
subtype3 38 0
subtype4 20 0
subtype5 19 0
subtype6 24 0
subtype7 8 0

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 1e-05 (Fisher's exact test), Q value = 0.00047

Table S23.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 141 381
subtype1 29 58
subtype2 13 66
subtype3 30 65
subtype4 18 72
subtype5 9 68
subtype6 38 37
subtype7 4 15

Figure S21.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'HISTOLOGICAL_TYPE'

P value = 0.021 (Fisher's exact test), Q value = 0.089

Table S24.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 511 1 10
subtype1 87 0 0
subtype2 76 0 3
subtype3 94 1 0
subtype4 88 0 2
subtype5 72 0 5
subtype6 75 0 0
subtype7 19 0 0

Figure S22.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'METHLYATION CNMF' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.605 (Fisher's exact test), Q value = 0.71

Table S25.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 83 439
subtype1 16 71
subtype2 10 69
subtype3 14 81
subtype4 19 71
subtype5 13 64
subtype6 8 67
subtype7 3 16

Figure S23.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'METHLYATION CNMF' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.00464 (Kruskal-Wallis (anova)), Q value = 0.031

Table S26.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 292 45.1 (35.4)
subtype1 54 46.3 (43.9)
subtype2 52 50.5 (26.9)
subtype3 38 35.0 (19.0)
subtype4 62 51.6 (30.6)
subtype5 39 39.0 (38.0)
subtype6 31 46.9 (52.6)
subtype7 16 34.0 (18.7)

Figure S24.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'METHLYATION CNMF' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.00173 (Kruskal-Wallis (anova)), Q value = 0.016

Table S27.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 279 1967.1 (12.6)
subtype1 52 1968.1 (13.5)
subtype2 45 1964.8 (10.7)
subtype3 43 1972.7 (12.1)
subtype4 59 1967.4 (12.6)
subtype5 40 1968.8 (12.7)
subtype6 28 1960.8 (11.4)
subtype7 12 1959.9 (10.3)

Figure S25.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'METHLYATION CNMF' versus 'NUMBER_OF_LYMPH_NODES'

P value = 4.27e-05 (Kruskal-Wallis (anova)), Q value = 0.00085

Table S28.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 407 2.2 (4.3)
subtype1 70 2.3 (3.4)
subtype2 68 1.0 (2.2)
subtype3 81 1.8 (2.6)
subtype4 70 4.4 (8.2)
subtype5 39 2.3 (2.8)
subtype6 60 1.3 (2.1)
subtype7 19 1.9 (2.4)

Figure S26.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'METHLYATION CNMF' versus 'RACE'

P value = 0.0241 (Fisher's exact test), Q value = 0.097

Table S29.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 45 447
subtype1 1 4 6 71
subtype2 0 0 12 62
subtype3 1 1 4 85
subtype4 0 2 13 74
subtype5 0 0 3 74
subtype6 0 4 5 65
subtype7 0 0 2 16

Figure S27.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.743 (Fisher's exact test), Q value = 0.81

Table S30.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 25 460
subtype1 3 78
subtype2 2 66
subtype3 8 82
subtype4 4 79
subtype5 4 68
subtype6 3 69
subtype7 1 18

Figure S28.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S31.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 55 52 37 68
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.195 (logrank test), Q value = 0.35

Table S32.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 212 120 0.1 - 211.0 (20.7)
subtype1 55 34 2.5 - 126.2 (17.2)
subtype2 52 24 3.5 - 139.4 (21.5)
subtype3 37 21 4.0 - 156.5 (26.2)
subtype4 68 41 0.1 - 211.0 (20.6)

Figure S29.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.255 (Kruskal-Wallis (anova)), Q value = 0.41

Table S33.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 212 62.1 (12.2)
subtype1 55 60.4 (12.3)
subtype2 52 62.7 (9.1)
subtype3 37 62.6 (14.6)
subtype4 68 62.8 (12.9)

Figure S30.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.518 (Fisher's exact test), Q value = 0.65

Table S34.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB
ALL 9 39 31 117 4
subtype1 1 14 9 28 1
subtype2 2 4 7 33 1
subtype3 3 8 6 16 1
subtype4 3 13 9 40 1

Figure S31.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.169 (Fisher's exact test), Q value = 0.32

Table S35.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 13 59 53 79
subtype1 3 19 12 19
subtype2 3 6 14 25
subtype3 3 13 6 13
subtype4 4 21 21 22

Figure S32.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.356 (Fisher's exact test), Q value = 0.49

Table S36.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 72 21 79 4
subtype1 20 5 19 1
subtype2 15 3 25 1
subtype3 17 5 8 1
subtype4 20 8 27 1

Figure S33.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.00367 (Fisher's exact test), Q value = 0.026

Table S37.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 62 150
subtype1 13 42
subtype2 7 45
subtype3 15 22
subtype4 27 41

Figure S34.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA CNMF subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.0075 (Fisher's exact test), Q value = 0.044

Table S38.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 61 151
subtype1 21 34
subtype2 20 32
subtype3 4 33
subtype4 16 52

Figure S35.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'RPPA CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0672 (Kruskal-Wallis (anova)), Q value = 0.18

Table S39.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 109 48.5 (38.2)
subtype1 26 47.7 (27.9)
subtype2 31 57.9 (34.7)
subtype3 22 48.9 (60.9)
subtype4 30 39.0 (25.1)

Figure S36.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RPPA CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.488 (Kruskal-Wallis (anova)), Q value = 0.62

Table S40.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 116 1964.5 (11.9)
subtype1 27 1967.4 (11.2)
subtype2 32 1964.0 (9.8)
subtype3 24 1963.9 (14.8)
subtype4 33 1963.2 (12.2)

Figure S37.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RPPA CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.208 (Kruskal-Wallis (anova)), Q value = 0.36

Table S41.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 170 2.9 (5.1)
subtype1 42 2.9 (4.2)
subtype2 44 4.5 (8.3)
subtype3 30 1.2 (1.7)
subtype4 54 2.4 (2.8)

Figure S38.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'RPPA CNMF subtypes' versus 'RACE'

P value = 0.104 (Fisher's exact test), Q value = 0.24

Table S42.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 19 183
subtype1 1 0 8 44
subtype2 0 1 7 43
subtype3 0 0 1 36
subtype4 0 2 3 60

Figure S39.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'RACE'

'RPPA CNMF subtypes' versus 'ETHNICITY'

P value = 0.741 (Fisher's exact test), Q value = 0.81

Table S43.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 13 190
subtype1 5 47
subtype2 2 46
subtype3 2 35
subtype4 4 62

Figure S40.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S44.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 78 85 49
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.262 (logrank test), Q value = 0.41

Table S45.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 212 120 0.1 - 211.0 (20.7)
subtype1 78 43 2.5 - 156.5 (20.6)
subtype2 85 54 0.1 - 211.0 (19.8)
subtype3 49 23 2.1 - 111.2 (26.2)

Figure S41.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0759 (Kruskal-Wallis (anova)), Q value = 0.19

Table S46.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 212 62.1 (12.2)
subtype1 78 61.2 (13.2)
subtype2 85 64.3 (11.8)
subtype3 49 59.9 (10.8)

Figure S42.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA cHierClus subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.0299 (Fisher's exact test), Q value = 0.11

Table S47.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB
ALL 9 39 31 117 4
subtype1 3 18 12 41 1
subtype2 2 11 7 57 2
subtype3 4 10 12 19 1

Figure S43.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.196 (Fisher's exact test), Q value = 0.35

Table S48.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 13 59 53 79
subtype1 5 26 12 33
subtype2 4 19 27 31
subtype3 4 14 14 15

Figure S44.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 2e-05 (Fisher's exact test), Q value = 7e-04

Table S49.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 72 21 79 4
subtype1 29 9 26 1
subtype2 15 5 45 2
subtype3 28 7 8 1

Figure S45.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.219 (Fisher's exact test), Q value = 0.37

Table S50.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 62 150
subtype1 22 56
subtype2 21 64
subtype3 19 30

Figure S46.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA cHierClus subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.437 (Fisher's exact test), Q value = 0.57

Table S51.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 61 151
subtype1 22 56
subtype2 28 57
subtype3 11 38

Figure S47.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'RPPA cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.743 (Kruskal-Wallis (anova)), Q value = 0.81

Table S52.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 109 48.5 (38.2)
subtype1 38 51.3 (49.3)
subtype2 44 50.6 (35.6)
subtype3 27 40.9 (20.5)

Figure S48.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RPPA cHierClus subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.238 (Kruskal-Wallis (anova)), Q value = 0.39

Table S53.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 116 1964.5 (11.9)
subtype1 42 1965.3 (13.8)
subtype2 50 1962.6 (11.2)
subtype3 24 1967.2 (9.4)

Figure S49.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RPPA cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 4.76e-06 (Kruskal-Wallis (anova)), Q value = 0.00033

Table S54.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 170 2.9 (5.1)
subtype1 62 2.5 (3.8)
subtype2 70 4.4 (6.8)
subtype3 38 0.7 (1.3)

Figure S50.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'RPPA cHierClus subtypes' versus 'RACE'

P value = 0.428 (Fisher's exact test), Q value = 0.57

Table S55.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 19 183
subtype1 1 0 10 65
subtype2 0 2 6 74
subtype3 0 1 3 44

Figure S51.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'RACE'

'RPPA cHierClus subtypes' versus 'ETHNICITY'

P value = 0.542 (Fisher's exact test), Q value = 0.66

Table S56.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 13 190
subtype1 7 69
subtype2 4 75
subtype3 2 46

Figure S52.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S57.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 144 210 160
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.3 (logrank test), Q value = 0.44

Table S58.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 511 200 0.1 - 211.0 (18.5)
subtype1 142 63 0.2 - 180.2 (18.2)
subtype2 210 71 0.1 - 139.4 (19.7)
subtype3 159 66 0.1 - 211.0 (17.9)

Figure S53.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.281 (Kruskal-Wallis (anova)), Q value = 0.42

Table S59.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 513 60.9 (11.9)
subtype1 143 59.5 (12.5)
subtype2 210 61.4 (10.3)
subtype3 160 61.4 (13.2)

Figure S54.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.215 (Fisher's exact test), Q value = 0.37

Table S60.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 27 75 76 253 12 1
subtype1 15 24 20 71 4 0
subtype2 4 25 30 97 5 1
subtype3 8 26 26 85 3 0

Figure S55.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.115 (Fisher's exact test), Q value = 0.25

Table S61.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 49 132 98 173
subtype1 19 49 27 41
subtype2 18 45 39 64
subtype3 12 38 32 68

Figure S56.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.363 (Fisher's exact test), Q value = 0.5

Table S62.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 175 65 166 8
subtype1 47 19 59 3
subtype2 62 23 61 4
subtype3 66 23 46 1

Figure S57.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S63.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 179 1
subtype1 53 0
subtype2 64 1
subtype3 62 0

Figure S58.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.00237 (Fisher's exact test), Q value = 0.02

Table S64.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 135 379
subtype1 37 107
subtype2 41 169
subtype3 57 103

Figure S59.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.00028 (Fisher's exact test), Q value = 0.0044

Table S65.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 503 1 10
subtype1 143 1 0
subtype2 200 0 10
subtype3 160 0 0

Figure S60.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'RNAseq CNMF subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.321 (Fisher's exact test), Q value = 0.46

Table S66.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 83 431
subtype1 29 115
subtype2 31 179
subtype3 23 137

Figure S61.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'RNAseq CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0326 (Kruskal-Wallis (anova)), Q value = 0.11

Table S67.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 290 45.2 (35.5)
subtype1 77 42.6 (39.8)
subtype2 131 50.9 (39.1)
subtype3 82 38.6 (21.0)

Figure S62.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RNAseq CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.207 (Kruskal-Wallis (anova)), Q value = 0.36

Table S68.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 278 1967.2 (12.6)
subtype1 81 1969.2 (12.3)
subtype2 120 1965.6 (12.1)
subtype3 77 1967.5 (13.5)

Figure S63.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RNAseq CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.0348 (Kruskal-Wallis (anova)), Q value = 0.12

Table S69.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 399 2.2 (4.3)
subtype1 128 2.7 (4.8)
subtype2 135 2.3 (5.0)
subtype3 136 1.6 (2.8)

Figure S64.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.147 (Fisher's exact test), Q value = 0.29

Table S70.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 45 439
subtype1 1 4 11 121
subtype2 1 1 23 179
subtype3 0 6 11 139

Figure S65.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.277 (Fisher's exact test), Q value = 0.42

Table S71.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 24 453
subtype1 10 126
subtype2 9 179
subtype3 5 148

Figure S66.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S72.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 179 102 169 64
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0157 (logrank test), Q value = 0.071

Table S73.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 511 200 0.1 - 211.0 (18.5)
subtype1 177 82 0.2 - 180.2 (19.0)
subtype2 102 41 0.1 - 129.2 (20.7)
subtype3 168 66 0.1 - 211.0 (15.9)
subtype4 64 11 0.1 - 139.4 (20.4)

Figure S67.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.00486 (Kruskal-Wallis (anova)), Q value = 0.031

Table S74.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 513 60.9 (11.9)
subtype1 178 59.2 (13.0)
subtype2 102 61.8 (9.7)
subtype3 169 63.0 (12.0)
subtype4 64 58.1 (10.4)

Figure S68.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.0898 (Fisher's exact test), Q value = 0.21

Table S75.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 27 75 76 253 12 1
subtype1 17 26 31 88 4 0
subtype2 0 15 17 54 3 1
subtype3 6 29 22 90 4 0
subtype4 4 5 6 21 1 0

Figure S69.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 3e-05 (Fisher's exact test), Q value = 7e-04

Table S76.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 49 132 98 173
subtype1 25 54 42 47
subtype2 5 22 23 41
subtype3 9 42 25 77
subtype4 10 14 8 8

Figure S70.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.139 (Fisher's exact test), Q value = 0.28

Table S77.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 175 65 166 8
subtype1 58 25 71 3
subtype2 37 12 31 3
subtype3 70 23 45 1
subtype4 10 5 19 1

Figure S71.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.251 (Fisher's exact test), Q value = 0.41

Table S78.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 179 1
subtype1 68 0
subtype2 27 1
subtype3 67 0
subtype4 17 0

Figure S72.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 3e-05 (Fisher's exact test), Q value = 7e-04

Table S79.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 135 379
subtype1 53 126
subtype2 22 80
subtype3 56 113
subtype4 4 60

Figure S73.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.00034 (Fisher's exact test), Q value = 0.0048

Table S80.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 503 1 10
subtype1 178 0 1
subtype2 98 0 4
subtype3 168 1 0
subtype4 59 0 5

Figure S74.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.0237 (Fisher's exact test), Q value = 0.097

Table S81.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 83 431
subtype1 35 144
subtype2 14 88
subtype3 18 151
subtype4 16 48

Figure S75.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'RNAseq cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.00105 (Kruskal-Wallis (anova)), Q value = 0.011

Table S82.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 290 45.2 (35.5)
subtype1 94 42.1 (37.4)
subtype2 71 54.2 (29.0)
subtype3 91 41.0 (34.6)
subtype4 34 46.1 (42.0)

Figure S76.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RNAseq cHierClus subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.258 (Kruskal-Wallis (anova)), Q value = 0.41

Table S83.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 278 1967.2 (12.6)
subtype1 97 1968.7 (12.8)
subtype2 64 1964.7 (10.6)
subtype3 84 1968.0 (13.2)
subtype4 33 1965.6 (13.7)

Figure S77.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RNAseq cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.00912 (Kruskal-Wallis (anova)), Q value = 0.048

Table S84.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 399 2.2 (4.3)
subtype1 155 2.4 (4.3)
subtype2 82 2.4 (6.1)
subtype3 133 1.8 (3.1)
subtype4 29 2.8 (3.1)

Figure S78.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.181 (Fisher's exact test), Q value = 0.33

Table S85.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 45 439
subtype1 1 8 11 152
subtype2 0 1 14 83
subtype3 1 2 15 145
subtype4 0 0 5 59

Figure S79.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.527 (Fisher's exact test), Q value = 0.65

Table S86.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 24 453
subtype1 10 159
subtype2 2 88
subtype3 8 149
subtype4 4 57

Figure S80.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S87.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 219 151 148
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.447 (logrank test), Q value = 0.58

Table S88.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 515 201 0.1 - 211.0 (18.4)
subtype1 219 82 0.1 - 153.9 (18.7)
subtype2 150 52 0.1 - 211.0 (17.7)
subtype3 146 67 0.5 - 180.2 (18.9)

Figure S81.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.0658 (Kruskal-Wallis (anova)), Q value = 0.18

Table S89.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 517 60.9 (12.0)
subtype1 219 61.8 (10.7)
subtype2 151 62.0 (11.9)
subtype3 147 58.6 (13.5)

Figure S82.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.439 (Fisher's exact test), Q value = 0.57

Table S90.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 27 77 75 257 12 1
subtype1 6 28 27 113 7 1
subtype2 10 23 25 70 2 0
subtype3 11 26 23 74 3 0

Figure S83.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.137 (Fisher's exact test), Q value = 0.28

Table S91.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 49 134 99 174
subtype1 15 45 43 81
subtype2 16 39 29 50
subtype3 18 50 27 43

Figure S84.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_N_STAGE'

P value = 0.0752 (Fisher's exact test), Q value = 0.19

Table S92.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 176 66 168 8
subtype1 78 20 69 5
subtype2 56 23 40 2
subtype3 42 23 59 1

Figure S85.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S93.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 183 1
subtype1 69 1
subtype2 67 0
subtype3 47 0

Figure S86.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.0384 (Fisher's exact test), Q value = 0.12

Table S94.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 141 377
subtype1 47 172
subtype2 48 103
subtype3 46 102

Figure S87.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'HISTOLOGICAL_TYPE'

P value = 0.00923 (Fisher's exact test), Q value = 0.048

Table S95.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 507 1 10
subtype1 209 1 9
subtype2 151 0 0
subtype3 147 0 1

Figure S88.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'MIRSEQ CNMF' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.122 (Fisher's exact test), Q value = 0.26

Table S96.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 82 436
subtype1 32 187
subtype2 19 132
subtype3 31 117

Figure S89.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'MIRSEQ CNMF' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.674 (Kruskal-Wallis (anova)), Q value = 0.78

Table S97.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 289 45.0 (35.3)
subtype1 130 45.8 (31.3)
subtype2 87 44.3 (35.6)
subtype3 72 44.6 (41.8)

Figure S90.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRSEQ CNMF' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.181 (Kruskal-Wallis (anova)), Q value = 0.33

Table S98.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 276 1967.0 (12.6)
subtype1 119 1965.4 (12.4)
subtype2 77 1968.1 (12.7)
subtype3 80 1968.5 (12.7)

Figure S91.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRSEQ CNMF' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.027 (Kruskal-Wallis (anova)), Q value = 0.1

Table S99.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 405 2.2 (4.3)
subtype1 161 2.3 (5.0)
subtype2 119 1.6 (2.5)
subtype3 125 2.6 (4.7)

Figure S92.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.0315 (Fisher's exact test), Q value = 0.11

Table S100.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 44 444
subtype1 1 1 25 188
subtype2 0 7 11 128
subtype3 1 3 8 128

Figure S93.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.431 (Fisher's exact test), Q value = 0.57

Table S101.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 25 456
subtype1 8 190
subtype2 7 135
subtype3 10 131

Figure S94.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S102.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 193 142 183
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.0395 (logrank test), Q value = 0.13

Table S103.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 515 201 0.1 - 211.0 (18.4)
subtype1 191 88 0.2 - 180.2 (17.9)
subtype2 142 55 0.1 - 153.9 (17.9)
subtype3 182 58 0.1 - 211.0 (19.6)

Figure S95.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.0499 (Kruskal-Wallis (anova)), Q value = 0.15

Table S104.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 517 60.9 (12.0)
subtype1 192 59.6 (13.5)
subtype2 142 63.0 (11.1)
subtype3 183 60.7 (10.7)

Figure S96.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.0655 (Fisher's exact test), Q value = 0.18

Table S105.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 27 77 75 257 12 1
subtype1 19 32 30 94 5 0
subtype2 3 18 19 79 5 1
subtype3 5 27 26 84 2 0

Figure S97.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_T_STAGE'

P value = 0.0021 (Fisher's exact test), Q value = 0.018

Table S106.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 49 134 99 174
subtype1 27 58 41 55
subtype2 5 29 27 65
subtype3 17 47 31 54

Figure S98.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_N_STAGE'

P value = 0.0808 (Fisher's exact test), Q value = 0.2

Table S107.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 176 66 168 8
subtype1 67 25 73 3
subtype2 61 14 39 4
subtype3 48 27 56 1

Figure S99.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_M_STAGE'

P value = 0.278 (Fisher's exact test), Q value = 0.42

Table S108.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 183 1
subtype1 74 0
subtype2 50 1
subtype3 59 0

Figure S100.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.0118 (Fisher's exact test), Q value = 0.057

Table S109.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 141 377
subtype1 58 135
subtype2 47 95
subtype3 36 147

Figure S101.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'HISTOLOGICAL_TYPE'

P value = 0.239 (Fisher's exact test), Q value = 0.39

Table S110.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 507 1 10
subtype1 191 0 2
subtype2 139 1 2
subtype3 177 0 6

Figure S102.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'MIRSEQ CHIERARCHICAL' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.0628 (Fisher's exact test), Q value = 0.18

Table S111.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 82 436
subtype1 35 158
subtype2 14 128
subtype3 33 150

Figure S103.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.127 (Kruskal-Wallis (anova)), Q value = 0.26

Table S112.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 289 45.0 (35.3)
subtype1 94 43.3 (37.3)
subtype2 75 49.4 (29.2)
subtype3 120 43.8 (37.2)

Figure S104.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRSEQ CHIERARCHICAL' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.0705 (Kruskal-Wallis (anova)), Q value = 0.18

Table S113.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 276 1967.0 (12.6)
subtype1 98 1969.0 (12.9)
subtype2 71 1964.4 (10.3)
subtype3 107 1967.0 (13.5)

Figure S105.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.00351 (Kruskal-Wallis (anova)), Q value = 0.026

Table S114.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 405 2.2 (4.3)
subtype1 167 2.4 (4.2)
subtype2 117 1.6 (3.5)
subtype3 121 2.5 (5.0)

Figure S106.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.0578 (Fisher's exact test), Q value = 0.17

Table S115.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 44 444
subtype1 1 8 12 164
subtype2 0 2 18 118
subtype3 1 1 14 162

Figure S107.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.375 (Fisher's exact test), Q value = 0.51

Table S116.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 25 456
subtype1 12 169
subtype2 4 126
subtype3 9 161

Figure S108.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S117.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 74 137 98 116 47
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.159 (logrank test), Q value = 0.3

Table S118.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 469 180 0.1 - 211.0 (18.0)
subtype1 73 34 0.1 - 211.0 (16.7)
subtype2 137 49 0.2 - 180.2 (15.2)
subtype3 98 26 0.5 - 139.4 (20.6)
subtype4 114 52 0.1 - 153.9 (22.6)
subtype5 47 19 0.1 - 159.7 (17.2)

Figure S109.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.774 (Kruskal-Wallis (anova)), Q value = 0.83

Table S119.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 471 61.0 (11.8)
subtype1 73 61.9 (9.6)
subtype2 137 61.4 (12.8)
subtype3 98 61.4 (9.9)
subtype4 116 60.4 (13.3)
subtype5 47 59.5 (11.6)

Figure S110.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.134 (Fisher's exact test), Q value = 0.28

Table S120.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 25 73 70 230 10 1
subtype1 2 14 9 44 3 0
subtype2 7 21 25 64 2 0
subtype3 2 7 15 47 3 1
subtype4 11 20 18 58 1 0
subtype5 3 11 3 17 1 0

Figure S111.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.0479 (Fisher's exact test), Q value = 0.15

Table S121.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 46 121 90 157
subtype1 4 22 13 33
subtype2 12 37 28 45
subtype3 6 18 22 29
subtype4 13 31 21 43
subtype5 11 13 6 7

Figure S112.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.533 (Fisher's exact test), Q value = 0.66

Table S122.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 161 63 151 6
subtype1 29 10 28 1
subtype2 50 22 40 1
subtype3 27 12 30 3
subtype4 41 17 36 0
subtype5 14 2 17 1

Figure S113.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.56 (Fisher's exact test), Q value = 0.67

Table S123.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 170 1
subtype1 21 0
subtype2 75 0
subtype3 29 1
subtype4 30 0
subtype5 15 0

Figure S114.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.0264 (Fisher's exact test), Q value = 0.1

Table S124.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 130 342
subtype1 20 54
subtype2 50 87
subtype3 17 81
subtype4 32 84
subtype5 11 36

Figure S115.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.00065 (Fisher's exact test), Q value = 0.0076

Table S125.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 461 1 10
subtype1 73 0 1
subtype2 136 1 0
subtype3 91 0 7
subtype4 116 0 0
subtype5 45 0 2

Figure S116.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'MIRseq Mature CNMF subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.00337 (Fisher's exact test), Q value = 0.026

Table S126.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 63 409
subtype1 8 66
subtype2 8 129
subtype3 13 85
subtype4 25 91
subtype5 9 38

Figure S117.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'MIRseq Mature CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.00911 (Kruskal-Wallis (anova)), Q value = 0.048

Table S127.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 256 45.1 (36.4)
subtype1 40 43.3 (29.5)
subtype2 71 34.4 (19.2)
subtype3 61 53.5 (36.5)
subtype4 61 50.3 (41.9)
subtype5 23 46.0 (59.8)

Figure S118.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRseq Mature CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.017 (Kruskal-Wallis (anova)), Q value = 0.074

Table S128.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 252 1967.0 (12.7)
subtype1 42 1965.0 (11.8)
subtype2 60 1971.3 (12.4)
subtype3 54 1965.0 (11.9)
subtype4 72 1965.7 (13.0)
subtype5 24 1967.9 (14.4)

Figure S119.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRseq Mature CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.357 (Kruskal-Wallis (anova)), Q value = 0.49

Table S129.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 371 2.2 (4.3)
subtype1 61 3.4 (7.9)
subtype2 115 1.6 (2.6)
subtype3 71 2.5 (4.4)
subtype4 94 1.9 (3.0)
subtype5 30 1.8 (2.1)

Figure S120.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.0117 (Fisher's exact test), Q value = 0.057

Table S130.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 41 401
subtype1 0 0 9 60
subtype2 1 8 5 120
subtype3 0 1 13 81
subtype4 0 2 8 101
subtype5 1 0 6 39

Figure S121.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.972 (Fisher's exact test), Q value = 1

Table S131.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 24 412
subtype1 3 63
subtype2 7 121
subtype3 4 82
subtype4 7 105
subtype5 3 41

Figure S122.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S132.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 143 241 88
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.0952 (logrank test), Q value = 0.22

Table S133.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 469 180 0.1 - 211.0 (18.0)
subtype1 142 64 0.5 - 153.9 (18.9)
subtype2 240 77 0.1 - 156.5 (18.9)
subtype3 87 39 0.1 - 211.0 (15.1)

Figure S123.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.741 (Kruskal-Wallis (anova)), Q value = 0.81

Table S134.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 471 61.0 (11.8)
subtype1 143 60.4 (13.1)
subtype2 241 61.7 (10.2)
subtype3 87 60.2 (13.4)

Figure S124.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.484 (Fisher's exact test), Q value = 0.62

Table S135.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IVA STAGE IVB STAGE IVC
ALL 25 73 70 230 10 1
subtype1 14 23 22 73 3 0
subtype2 7 34 33 116 4 1
subtype3 4 16 15 41 3 0

Figure S125.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.745 (Fisher's exact test), Q value = 0.81

Table S136.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1 T2 T3 T4
ALL 46 121 90 157
subtype1 18 42 31 44
subtype2 20 55 40 83
subtype3 8 24 19 30

Figure S126.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.906 (Fisher's exact test), Q value = 0.96

Table S137.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 161 63 151 6
subtype1 49 21 54 1
subtype2 81 31 67 4
subtype3 31 11 30 1

Figure S127.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S138.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 170 1
subtype1 44 0
subtype2 76 1
subtype3 50 0

Figure S128.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.565 (Fisher's exact test), Q value = 0.67

Table S139.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 130 342
subtype1 44 99
subtype2 62 179
subtype3 24 64

Figure S129.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.0994 (Fisher's exact test), Q value = 0.23

Table S140.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

nPatients HEAD AND NECK SQUAMOUS CELL CARCINOMA HEAD AND NECK SQUAMOUS CELL CARCINOMA SPINDLE CELL VARIANT HEAD AND NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE
ALL 461 1 10
subtype1 141 0 2
subtype2 233 0 8
subtype3 87 1 0

Figure S130.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL_TYPE'

'MIRseq Mature cHierClus subtypes' versus 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.00045 (Fisher's exact test), Q value = 0.0057

Table S141.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

nPatients NO YES
ALL 63 409
subtype1 26 117
subtype2 35 206
subtype3 2 86

Figure S131.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS_RADIATION_REGIMENINDICATION'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.253 (Kruskal-Wallis (anova)), Q value = 0.41

Table S142.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 256 45.1 (36.4)
subtype1 66 48.1 (43.0)
subtype2 146 46.2 (36.7)
subtype3 44 37.0 (21.0)

Figure S132.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRseq Mature cHierClus subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.31 (Kruskal-Wallis (anova)), Q value = 0.45

Table S143.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 252 1967.0 (12.7)
subtype1 77 1967.4 (13.0)
subtype2 138 1966.0 (12.3)
subtype3 37 1969.4 (13.7)

Figure S133.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.289 (Kruskal-Wallis (anova)), Q value = 0.43

Table S144.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 371 2.2 (4.3)
subtype1 121 2.3 (4.4)
subtype2 176 2.1 (4.6)
subtype3 74 2.1 (3.5)

Figure S134.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.123 (Fisher's exact test), Q value = 0.26

Table S145.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 11 41 401
subtype1 0 2 9 127
subtype2 1 4 26 204
subtype3 1 5 6 70

Figure S135.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.886 (Fisher's exact test), Q value = 0.95

Table S146.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 24 412
subtype1 8 129
subtype2 11 209
subtype3 5 74

Figure S136.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/HNSC-TP/15111022/HNSC-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/HNSC-TP/15078978/HNSC-TP.merged_data.txt

  • Number of patients = 522

  • Number of clustering approaches = 10

  • Number of selected clinical features = 14

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)