Correlation between miR expression and clinical features
Ovarian Serous Cystadenocarcinoma (Primary solid tumor)
02 April 2015  |  analyses__2015_04_02
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2015): Correlation between miR expression and clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1KD1X01
Overview
Introduction

This pipeline uses various statistical tests to identify miRs whose log2 expression levels correlated to selected clinical features.

Summary

Testing the association between 817 miRs and 8 clinical features across 561 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 3 clinical features related to at least one miRs.

  • 30 miRs correlated to 'DAYS_TO_DEATH_OR_LAST_FUP'.

    • HSA-MIR-551B* ,  HSA-MIR-198 ,  HSA-MIR-298 ,  HSA-MIR-422A ,  HSA-MIR-193B* ,  ...

  • 30 miRs correlated to 'YEARS_TO_BIRTH'.

    • HSA-MIR-30B* ,  HSA-MIR-30D* ,  HSA-MIR-30B ,  HUR_4 ,  HSA-MIR-30D ,  ...

  • 1 miR correlated to 'RACE'.

    • HSA-MIR-145

  • No miRs correlated to 'PRIMARY_SITE_OF_DISEASE', 'KARNOFSKY_PERFORMANCE_SCORE', 'RADIATIONS_RADIATION_REGIMENINDICATION', 'COMPLETENESS_OF_RESECTION', and 'ETHNICITY'.

Results
Overview of the results

Complete statistical result table is provided in Supplement Table 1

Table 1.  Get Full Table This table shows the clinical features, statistical methods used, and the number of miRs that are significantly associated with each clinical feature at P value < 0.05 and Q value < 0.3.

Clinical feature Statistical test Significant miRs Associated with                 Associated with
DAYS_TO_DEATH_OR_LAST_FUP Cox regression test N=30 shorter survival N=19 longer survival N=11
YEARS_TO_BIRTH Spearman correlation test N=30 older N=8 younger N=22
PRIMARY_SITE_OF_DISEASE Kruskal-Wallis test   N=0        
KARNOFSKY_PERFORMANCE_SCORE Spearman correlation test   N=0        
RADIATIONS_RADIATION_REGIMENINDICATION Wilcoxon test   N=0        
COMPLETENESS_OF_RESECTION Kruskal-Wallis test   N=0        
RACE Kruskal-Wallis test N=1        
ETHNICITY Wilcoxon test   N=0        
Clinical variable #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

30 miRs related to 'DAYS_TO_DEATH_OR_LAST_FUP'.

Table S1.  Basic characteristics of clinical feature: 'DAYS_TO_DEATH_OR_LAST_FUP'

DAYS_TO_DEATH_OR_LAST_FUP Duration (Months) 0.3-180.2 (median=28.7)
  censored N = 268
  death N = 292
     
  Significant markers N = 30
  associated with shorter survival 19
  associated with longer survival 11
List of top 10 miRs differentially expressed by 'DAYS_TO_DEATH_OR_LAST_FUP'

Table S2.  Get Full Table List of top 10 miRs significantly associated with 'Time to Death' by Cox regression test

HazardRatio Wald_P Q C_index
HSA-MIR-551B* 9.8 0.0001053 0.078 0.578
HSA-MIR-198 1.9 0.0001908 0.078 0.571
HSA-MIR-298 20 0.0003771 0.099 0.563
HSA-MIR-422A 2.1 0.0006343 0.099 0.554
HSA-MIR-193B* 2.1 0.0008353 0.099 0.559
HUR_2 0 0.0008426 0.099 0.471
HSA-MIR-519E* 3.4 0.0008472 0.099 0.552
HCMV-MIR-UL112 14 0.001126 0.11 0.566
HSA-MIR-505 0.65 0.00134 0.11 0.438
HSA-MIR-518C* 1.49 0.001456 0.11 0.569
Clinical variable #2: 'YEARS_TO_BIRTH'

30 miRs related to 'YEARS_TO_BIRTH'.

Table S3.  Basic characteristics of clinical feature: 'YEARS_TO_BIRTH'

YEARS_TO_BIRTH Mean (SD) 59.72 (12)
  Significant markers N = 30
  pos. correlated 8
  neg. correlated 22
List of top 10 miRs differentially expressed by 'YEARS_TO_BIRTH'

Table S4.  Get Full Table List of top 10 miRs significantly correlated to 'YEARS_TO_BIRTH' by Spearman correlation test

SpearmanCorr corrP Q
HSA-MIR-30B* -0.2247 1.001e-07 4.83e-05
HSA-MIR-30D* -0.2235 1.183e-07 4.83e-05
HSA-MIR-30B -0.2034 1.515e-06 0.000413
HUR_4 0.1978 2.942e-06 0.000558
HSA-MIR-30D -0.1965 3.414e-06 0.000558
HSA-LET-7A* -0.1643 0.0001082 0.0147
HSA-MIR-331-3P 0.162 0.0001356 0.0158
HSA-MIR-449A -0.1582 0.0001943 0.017
HSA-MIR-338-3P 0.1573 0.0002122 0.017
HSA-MIR-193B -0.1566 0.0002274 0.017
Clinical variable #3: 'PRIMARY_SITE_OF_DISEASE'

No miR related to 'PRIMARY_SITE_OF_DISEASE'.

Table S5.  Basic characteristics of clinical feature: 'PRIMARY_SITE_OF_DISEASE'

PRIMARY_SITE_OF_DISEASE Labels N
  OMENTUM 2
  OVARY 557
  PERITONEUM OVARY 2
     
  Significant markers N = 0
Clinical variable #4: 'KARNOFSKY_PERFORMANCE_SCORE'

No miR related to 'KARNOFSKY_PERFORMANCE_SCORE'.

Table S6.  Basic characteristics of clinical feature: 'KARNOFSKY_PERFORMANCE_SCORE'

KARNOFSKY_PERFORMANCE_SCORE Mean (SD) 75.64 (13)
  Score N
  40 2
  60 20
  80 49
  100 7
     
  Significant markers N = 0
Clinical variable #5: 'RADIATIONS_RADIATION_REGIMENINDICATION'

No miR related to 'RADIATIONS_RADIATION_REGIMENINDICATION'.

Table S7.  Basic characteristics of clinical feature: 'RADIATIONS_RADIATION_REGIMENINDICATION'

RADIATIONS_RADIATION_REGIMENINDICATION Labels N
  NO 3
  YES 558
     
  Significant markers N = 0
Clinical variable #6: 'COMPLETENESS_OF_RESECTION'

No miR related to 'COMPLETENESS_OF_RESECTION'.

Table S8.  Basic characteristics of clinical feature: 'COMPLETENESS_OF_RESECTION'

COMPLETENESS_OF_RESECTION Labels N
  R0 14
  R1 27
  R2 1
     
  Significant markers N = 0
Clinical variable #7: 'RACE'

One miR related to 'RACE'.

Table S9.  Basic characteristics of clinical feature: 'RACE'

RACE Labels N
  AMERICAN INDIAN OR ALASKA NATIVE 2
  ASIAN 20
  BLACK OR AFRICAN AMERICAN 23
  NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 1
  WHITE 485
     
  Significant markers N = 1
List of one miR differentially expressed by 'RACE'

Table S10.  Get Full Table List of one miR differentially expressed by 'RACE'

kruskal_wallis_P Q
HSA-MIR-145 0.0002809 0.229
Clinical variable #8: 'ETHNICITY'

No miR related to 'ETHNICITY'.

Table S11.  Basic characteristics of clinical feature: 'ETHNICITY'

ETHNICITY Labels N
  HISPANIC OR LATINO 11
  NOT HISPANIC OR LATINO 329
     
  Significant markers N = 0
Methods & Data
Input
  • Expresson data file = OV-TP.mirna__h_mirna_8x15kv2__unc_edu__Level_3__unc_DWD_Batch_adjusted__data.data.txt

  • Clinical data file = OV-TP.merged_data.txt

  • Number of patients = 561

  • Number of miRs = 817

  • Number of clinical features = 8

Selected clinical features
  • For clinical features selected for this analysis and their value conozzle.versions, please find a documentation on selected CDEs .

  • Survival time data

    • Survival time data is a combined value of days_to_death and days_to_last_followup. For each patient, it creates a combined value 'days_to_death_or_last_fup' using conversion process below.

      • if 'vital_status'==1(dead), 'days_to_last_followup' is always NA. Thus, uses 'days_to_death' value for 'days_to_death_or_fup'

      • if 'vital_status'==0(alive),

        • if 'days_to_death'==NA & 'days_to_last_followup'!=NA, uses 'days_to_last_followup' value for 'days_to_death_or_fup'

        • if 'days_to_death'!=NA, excludes this case in survival analysis and report the case.

      • if 'vital_status'==NA,excludes this case in survival analysis and report the case.

    • cf. In certain diesase types such as SKCM, days_to_death parameter is replaced with time_from_specimen_dx or time_from_specimen_procurement_to_death .

  • This analysis excluded clinical variables that has only NA values.

Survival analysis

For survival clinical features, Wald's test in univariate Cox regression analysis with proportional hazards model (Andersen and Gill 1982) was used to estimate the P values using the 'coxph' function in R. Kaplan-Meier survival curves were plot using the four quartile subgroups of patients based on expression levels

Correlation analysis

For continuous numerical clinical features, Spearman's rank correlation coefficients (Spearman 1904) and two-tailed P values were estimated using 'cor.test' function in R

Wilcoxon rank sum test (Mann-Whitney U test)

For two groups (mutant or wild-type) of continuous type of clinical data, wilcoxon rank sum test (Mann and Whitney, 1947) was applied to compare their mean difference using 'wilcox.test(continuous.clinical ~ as.factor(group), exact=FALSE)' function in R. This test is equivalent to the Mann-Whitney test.

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Andersen and Gill, Cox's regression model for counting processes, a large sample study, Annals of Statistics 10(4):1100-1120 (1982)
[2] Spearman, C, The proof and measurement of association between two things, Amer. J. Psychol 15:72-101 (1904)
[3] Mann and Whitney, On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Annals of Mathematical Statistics 18 (1), 50-60 (1947)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)