This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 51 arm-level events and 6 clinical features across 80 patients, 3 significant findings detected with Q value < 0.25.
-
3p loss cnv correlated to 'Time to Death'.
-
3q loss cnv correlated to 'Time to Death'.
-
9p loss cnv correlated to 'YEARS_TO_BIRTH'.
Table 1. Get Full Table Overview of the association between significant copy number variation of 51 arm-level events and 6 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 3 significant findings detected.
|
Clinical Features |
Time to Death |
YEARS TO BIRTH |
NEOPLASM DISEASESTAGE |
PATHOLOGY T STAGE |
PATHOLOGY M STAGE |
GENDER | ||
| nCNV (%) | nWild-Type | logrank test | Wilcoxon-test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | |
| 3p loss | 43 (54%) | 37 |
0.00165 (0.194) |
0.322 (0.989) |
0.0601 (0.968) |
0.267 (0.989) |
0.117 (0.989) |
1 (1.00) |
| 3q loss | 43 (54%) | 37 |
0.00165 (0.194) |
0.322 (0.989) |
0.0585 (0.968) |
0.266 (0.989) |
0.117 (0.989) |
1 (1.00) |
| 9p loss | 8 (10%) | 72 |
0.017 (0.523) |
0.0019 (0.194) |
0.6 (1.00) |
0.887 (1.00) |
1 (1.00) |
0.724 (1.00) |
| 1q gain | 8 (10%) | 72 |
0.239 (0.989) |
0.34 (0.989) |
0.362 (0.989) |
0.49 (0.989) |
0.477 (0.989) |
0.288 (0.989) |
| 2p gain | 10 (12%) | 70 |
0.819 (1.00) |
0.344 (0.989) |
0.36 (0.989) |
0.667 (1.00) |
1 (1.00) |
0.32 (0.989) |
| 2q gain | 8 (10%) | 72 |
0.624 (1.00) |
0.11 (0.989) |
0.621 (1.00) |
0.551 (1.00) |
1 (1.00) |
0.288 (0.989) |
| 4p gain | 7 (9%) | 73 |
0.408 (0.989) |
0.17 (0.989) |
0.0333 (0.783) |
0.288 (0.989) |
0.379 (0.989) |
1 (1.00) |
| 4q gain | 4 (5%) | 76 |
0.914 (1.00) |
0.0849 (0.988) |
0.00544 (0.333) |
0.0949 (0.989) |
0.267 (0.989) |
0.314 (0.989) |
| 5p gain | 3 (4%) | 77 |
0.412 (0.989) |
0.447 (0.989) |
0.889 (1.00) |
1 (1.00) |
1 (1.00) |
0.578 (1.00) |
| 5q gain | 3 (4%) | 77 |
0.412 (0.989) |
0.447 (0.989) |
0.89 (1.00) |
1 (1.00) |
1 (1.00) |
0.578 (1.00) |
| 6p gain | 39 (49%) | 41 |
0.303 (0.989) |
0.256 (0.989) |
0.892 (1.00) |
0.873 (1.00) |
0.624 (1.00) |
0.822 (1.00) |
| 6q gain | 16 (20%) | 64 |
0.0542 (0.968) |
0.279 (0.989) |
0.473 (0.989) |
0.301 (0.989) |
1 (1.00) |
0.587 (1.00) |
| 7p gain | 9 (11%) | 71 |
0.42 (0.989) |
0.415 (0.989) |
0.518 (1.00) |
0.423 (0.989) |
0.325 (0.989) |
1 (1.00) |
| 7q gain | 8 (10%) | 72 |
0.231 (0.989) |
0.217 (0.989) |
0.394 (0.989) |
0.491 (0.989) |
0.267 (0.989) |
0.724 (1.00) |
| 8p gain | 33 (41%) | 47 |
0.05 (0.963) |
0.725 (1.00) |
0.426 (0.989) |
0.575 (1.00) |
0.307 (0.989) |
1 (1.00) |
| 8q gain | 53 (66%) | 27 |
0.0188 (0.523) |
0.768 (1.00) |
0.91 (1.00) |
0.779 (1.00) |
1 (1.00) |
1 (1.00) |
| 9p gain | 6 (8%) | 74 |
0.237 (0.989) |
0.136 (0.989) |
0.763 (1.00) |
0.223 (0.989) |
1 (1.00) |
0.0811 (0.988) |
| 9q gain | 5 (6%) | 75 |
0.302 (0.989) |
0.249 (0.989) |
0.575 (1.00) |
0.32 (0.989) |
1 (1.00) |
0.162 (0.989) |
| 11p gain | 9 (11%) | 71 |
0.571 (1.00) |
0.26 (0.989) |
0.779 (1.00) |
0.724 (1.00) |
1 (1.00) |
0.494 (0.989) |
| 11q gain | 10 (12%) | 70 |
0.478 (0.989) |
0.436 (0.989) |
0.777 (1.00) |
0.743 (1.00) |
1 (1.00) |
0.741 (1.00) |
| 12p gain | 3 (4%) | 77 |
0.412 (0.989) |
0.56 (1.00) |
1 (1.00) |
0.78 (1.00) |
1 (1.00) |
0.578 (1.00) |
| 12q gain | 3 (4%) | 77 |
0.412 (0.989) |
0.56 (1.00) |
1 (1.00) |
0.783 (1.00) |
1 (1.00) |
0.578 (1.00) |
| 13q gain | 6 (8%) | 74 |
0.968 (1.00) |
0.165 (0.989) |
0.789 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
| 14q gain | 3 (4%) | 77 |
0.488 (0.989) |
0.603 (1.00) |
0.889 (1.00) |
1 (1.00) |
1 (1.00) |
0.252 (0.989) |
| 16p gain | 4 (5%) | 76 |
0.536 (1.00) |
0.707 (1.00) |
0.795 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
| 17p gain | 8 (10%) | 72 |
0.677 (1.00) |
0.365 (0.989) |
0.97 (1.00) |
0.888 (1.00) |
1 (1.00) |
0.724 (1.00) |
| 17q gain | 9 (11%) | 71 |
0.582 (1.00) |
0.772 (1.00) |
0.868 (1.00) |
0.643 (1.00) |
1 (1.00) |
0.494 (0.989) |
| 20p gain | 8 (10%) | 72 |
0.827 (1.00) |
0.332 (0.989) |
0.696 (1.00) |
0.488 (0.989) |
1 (1.00) |
1 (1.00) |
| 20q gain | 9 (11%) | 71 |
0.521 (1.00) |
0.19 (0.989) |
0.599 (1.00) |
0.381 (0.989) |
1 (1.00) |
1 (1.00) |
| 21q gain | 14 (18%) | 66 |
0.219 (0.989) |
0.115 (0.989) |
0.779 (1.00) |
0.629 (1.00) |
0.477 (0.989) |
0.375 (0.989) |
| 22q gain | 6 (8%) | 74 |
0.871 (1.00) |
0.168 (0.989) |
0.881 (1.00) |
0.405 (0.989) |
1 (1.00) |
0.0811 (0.988) |
| xp gain | 10 (12%) | 70 |
0.122 (0.989) |
0.158 (0.989) |
0.962 (1.00) |
0.666 (1.00) |
1 (1.00) |
0.0949 (0.989) |
| xq gain | 9 (11%) | 71 |
0.154 (0.989) |
0.209 (0.989) |
0.977 (1.00) |
0.807 (1.00) |
1 (1.00) |
0.169 (0.989) |
| 1p loss | 19 (24%) | 61 |
0.188 (0.989) |
0.0503 (0.963) |
0.915 (1.00) |
0.833 (1.00) |
1 (1.00) |
0.433 (0.989) |
| 1q loss | 3 (4%) | 77 |
0.329 (0.989) |
0.494 (0.989) |
1 (1.00) |
0.137 (0.989) |
1 (1.00) |
0.578 (1.00) |
| 4q loss | 3 (4%) | 77 |
0.526 (1.00) |
0.939 (1.00) |
0.599 (1.00) |
0.297 (0.989) |
1 (1.00) |
1 (1.00) |
| 5q loss | 3 (4%) | 77 |
0.479 (0.989) |
0.462 (0.989) |
0.456 (0.989) |
0.58 (1.00) |
1 (1.00) |
0.0797 (0.988) |
| 6q loss | 17 (21%) | 63 |
0.0871 (0.988) |
0.167 (0.989) |
0.0668 (0.988) |
0.0372 (0.812) |
0.298 (0.989) |
0.583 (1.00) |
| 8p loss | 9 (11%) | 71 |
0.794 (1.00) |
0.61 (1.00) |
0.171 (0.989) |
0.199 (0.989) |
0.379 (0.989) |
1 (1.00) |
| 8q loss | 3 (4%) | 77 |
0.464 (0.989) |
0.751 (1.00) |
0.3 (0.989) |
1 (1.00) |
0.141 (0.989) |
1 (1.00) |
| 9q loss | 7 (9%) | 73 |
0.017 (0.523) |
0.00729 (0.372) |
0.375 (0.989) |
0.441 (0.989) |
1 (1.00) |
1 (1.00) |
| 11p loss | 3 (4%) | 77 |
0.0176 (0.523) |
0.305 (0.989) |
1 (1.00) |
0.138 (0.989) |
1 (1.00) |
0.578 (1.00) |
| 12p loss | 3 (4%) | 77 |
0.485 (0.989) |
0.761 (1.00) |
0.337 (0.989) |
0.137 (0.989) |
1 (1.00) |
0.578 (1.00) |
| 13q loss | 3 (4%) | 77 |
0.412 (0.989) |
0.761 (1.00) |
1 (1.00) |
0.137 (0.989) |
1 (1.00) |
0.0797 (0.988) |
| 15q loss | 4 (5%) | 76 |
0.464 (0.989) |
0.208 (0.989) |
0.793 (1.00) |
0.394 (0.989) |
1 (1.00) |
1 (1.00) |
| 16p loss | 3 (4%) | 77 |
0.133 (0.989) |
0.254 (0.989) |
0.0869 (0.988) |
0.209 (0.989) |
0.206 (0.989) |
0.578 (1.00) |
| 16q loss | 16 (20%) | 64 |
0.00361 (0.277) |
0.125 (0.989) |
0.167 (0.989) |
0.379 (0.989) |
0.204 (0.989) |
0.779 (1.00) |
| 19p loss | 3 (4%) | 77 |
0.585 (1.00) |
0.879 (1.00) |
0.418 (0.989) |
0.389 (0.989) |
1 (1.00) |
1 (1.00) |
| 19q loss | 3 (4%) | 77 |
0.585 (1.00) |
0.879 (1.00) |
0.41 (0.989) |
0.39 (0.989) |
1 (1.00) |
1 (1.00) |
| xp loss | 12 (15%) | 68 |
0.473 (0.989) |
0.0119 (0.521) |
0.171 (0.989) |
0.223 (0.989) |
0.522 (1.00) |
0.349 (0.989) |
| xq loss | 13 (16%) | 67 |
0.671 (1.00) |
0.0248 (0.632) |
0.393 (0.989) |
0.201 (0.989) |
0.563 (1.00) |
0.223 (0.989) |
P value = 0.00165 (logrank test), Q value = 0.19
Table S1. Gene #33: '3p loss' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 80 | 13 | 0.1 - 74.5 (19.1) |
| 3P LOSS MUTATED | 43 | 12 | 0.1 - 52.6 (15.0) |
| 3P LOSS WILD-TYPE | 37 | 1 | 0.1 - 74.5 (20.2) |
Figure S1. Get High-res Image Gene #33: '3p loss' versus Clinical Feature #1: 'Time to Death'
P value = 0.00165 (logrank test), Q value = 0.19
Table S2. Gene #34: '3q loss' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 80 | 13 | 0.1 - 74.5 (19.1) |
| 3Q LOSS MUTATED | 43 | 12 | 0.1 - 52.6 (15.0) |
| 3Q LOSS WILD-TYPE | 37 | 1 | 0.1 - 74.5 (20.2) |
Figure S2. Get High-res Image Gene #34: '3q loss' versus Clinical Feature #1: 'Time to Death'
P value = 0.0019 (Wilcoxon-test), Q value = 0.19
Table S3. Gene #40: '9p loss' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 80 | 61.6 (13.9) |
| 9P LOSS MUTATED | 8 | 75.4 (9.6) |
| 9P LOSS WILD-TYPE | 72 | 60.1 (13.6) |
Figure S3. Get High-res Image Gene #40: '9p loss' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
-
Copy number data file = broad_values_by_arm.txt from GISTIC pipeline
-
Processed Copy number data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_Correlate_Genomic_Events_Preprocess/UVM-TP/15908355/transformed.cor.cli.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/UVM-TP/15096076/UVM-TP.merged_data.txt
-
Number of patients = 80
-
Number of significantly arm-level cnvs = 51
-
Number of selected clinical features = 6
-
Exclude regions that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.