This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 9 clinical features across 260 patients, 56 significant findings detected with P value < 0.05 and Q value < 0.25.
-
4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
7 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
CNMF clustering analysis on RPPA data identified 4 subtypes that correlate to 'Time to Death', 'TUMOR_TISSUE_SITE', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
Consensus hierarchical clustering analysis on RPPA data identified 6 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'HISTOLOGICAL_TYPE', 'RESIDUAL_TUMOR', and 'ETHNICITY'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'TUMOR_TISSUE_SITE', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
8 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 9 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 56 significant findings detected.
|
Clinical Features |
Time to Death |
YEARS TO BIRTH |
TUMOR TISSUE SITE |
GENDER |
RADIATION THERAPY |
HISTOLOGICAL TYPE |
RESIDUAL TUMOR |
RACE | ETHNICITY |
| Statistical Tests | logrank test | Kruskal-Wallis (anova) | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test |
| Copy Number Ratio CNMF subtypes |
0.223 (0.29) |
0.000388 (0.00116) |
9e-05 (0.000352) |
0.0153 (0.0292) |
0.018 (0.0325) |
1e-05 (5.29e-05) |
0.306 (0.353) |
0.518 (0.536) |
1 (1.00) |
| METHLYATION CNMF |
0.00377 (0.00894) |
0.000139 (0.000502) |
1e-05 (5.29e-05) |
0.0001 (0.000375) |
0.0106 (0.0224) |
1e-05 (5.29e-05) |
0.38 (0.422) |
0.17 (0.228) |
0.45 (0.487) |
| RPPA CNMF subtypes |
7.41e-05 (0.000303) |
0.157 (0.218) |
1e-05 (5.29e-05) |
0.12 (0.176) |
0.00152 (0.00391) |
1e-05 (5.29e-05) |
0.0245 (0.0416) |
0.904 (0.914) |
0.272 (0.335) |
| RPPA cHierClus subtypes |
0.00283 (0.00688) |
0.000601 (0.00175) |
1e-05 (5.29e-05) |
0.0259 (0.0431) |
0.00151 (0.00391) |
1e-05 (5.29e-05) |
0.00753 (0.0169) |
0.483 (0.517) |
0.256 (0.324) |
| RNAseq CNMF subtypes |
0.016 (0.03) |
0.000194 (0.000646) |
1e-05 (5.29e-05) |
0.00081 (0.00228) |
0.00017 (0.000588) |
1e-05 (5.29e-05) |
5e-05 (0.000237) |
0.715 (0.731) |
0.38 (0.422) |
| RNAseq cHierClus subtypes |
0.00677 (0.0156) |
6.45e-05 (0.00029) |
1e-05 (5.29e-05) |
0.00793 (0.0174) |
0.0142 (0.0283) |
1e-05 (5.29e-05) |
0.0003 (0.000964) |
0.142 (0.201) |
0.508 (0.532) |
| MIRSEQ CNMF |
0.29 (0.344) |
0.178 (0.235) |
0.00108 (0.00295) |
0.0401 (0.0656) |
0.0465 (0.0748) |
1e-05 (5.29e-05) |
0.0802 (0.124) |
0.494 (0.523) |
0.23 (0.295) |
| MIRSEQ CHIERARCHICAL |
0.299 (0.349) |
0.00035 (0.00109) |
2e-05 (1e-04) |
0.0184 (0.0325) |
0.121 (0.176) |
1e-05 (5.29e-05) |
7e-05 (3e-04) |
0.355 (0.405) |
0.0107 (0.0224) |
| MIRseq Mature CNMF subtypes |
0.443 (0.487) |
0.163 (0.222) |
1e-05 (5.29e-05) |
0.143 (0.201) |
0.0151 (0.0292) |
1e-05 (5.29e-05) |
0.0692 (0.109) |
0.276 (0.335) |
0.285 (0.343) |
| MIRseq Mature cHierClus subtypes |
0.087 (0.133) |
0.0112 (0.023) |
1e-05 (5.29e-05) |
0.00227 (0.00567) |
0.0172 (0.0317) |
1e-05 (5.29e-05) |
0.0187 (0.0325) |
0.0994 (0.149) |
0.273 (0.335) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Number of samples | 70 | 86 | 74 | 26 |
P value = 0.223 (logrank test), Q value = 0.29
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 256 | 94 | 0.5 - 188.2 (26.4) |
| subtype1 | 70 | 28 | 1.1 - 124.4 (23.4) |
| subtype2 | 86 | 27 | 0.5 - 143.4 (34.7) |
| subtype3 | 74 | 32 | 0.6 - 188.2 (27.2) |
| subtype4 | 26 | 7 | 3.9 - 124.7 (23.4) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.000388 (Kruskal-Wallis (anova)), Q value = 0.0012
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 255 | 60.9 (14.7) |
| subtype1 | 69 | 61.7 (14.1) |
| subtype2 | 86 | 56.0 (16.2) |
| subtype3 | 74 | 65.8 (11.9) |
| subtype4 | 26 | 61.5 (13.5) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 9e-05 (Fisher's exact test), Q value = 0.00035
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 2 | 1 | 2 | 1 | 28 | 2 | 1 | 2 | 1 | 2 | 10 | 2 | 4 | 2 | 17 | 5 | 43 | 4 | 2 | 5 | 8 | 2 | 1 | 73 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
| subtype1 | 0 | 2 | 0 | 1 | 1 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 7 | 4 | 19 | 1 | 1 | 0 | 1 | 0 | 0 | 8 | 0 | 1 | 1 | 2 | 0 | 4 | 1 |
| subtype2 | 1 | 3 | 2 | 0 | 0 | 0 | 6 | 2 | 1 | 2 | 1 | 0 | 4 | 2 | 4 | 2 | 2 | 0 | 10 | 3 | 1 | 3 | 4 | 1 | 0 | 24 | 2 | 0 | 2 | 1 | 1 | 0 | 2 |
| subtype3 | 0 | 2 | 0 | 0 | 1 | 1 | 9 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 8 | 1 | 13 | 0 | 0 | 1 | 1 | 0 | 1 | 23 | 1 | 1 | 2 | 1 | 0 | 3 | 0 |
| subtype4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 1 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.0153 (Fisher's exact test), Q value = 0.029
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 139 | 117 |
| subtype1 | 46 | 24 |
| subtype2 | 43 | 43 |
| subtype3 | 42 | 32 |
| subtype4 | 8 | 18 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.018 (Fisher's exact test), Q value = 0.032
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 180 | 69 |
| subtype1 | 40 | 28 |
| subtype2 | 68 | 15 |
| subtype3 | 52 | 20 |
| subtype4 | 20 | 6 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 59 | 2 | 1 | 103 | 9 | 23 | 28 | 2 | 2 | 6 | 21 |
| subtype1 | 2 | 0 | 0 | 37 | 1 | 10 | 13 | 0 | 0 | 0 | 7 |
| subtype2 | 21 | 2 | 1 | 37 | 3 | 4 | 4 | 2 | 2 | 6 | 4 |
| subtype3 | 14 | 0 | 0 | 28 | 5 | 8 | 11 | 0 | 0 | 0 | 8 |
| subtype4 | 22 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.306 (Fisher's exact test), Q value = 0.35
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 152 | 68 | 9 | 26 |
| subtype1 | 40 | 18 | 3 | 9 |
| subtype2 | 59 | 19 | 1 | 7 |
| subtype3 | 42 | 19 | 4 | 8 |
| subtype4 | 11 | 12 | 1 | 2 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.518 (Fisher's exact test), Q value = 0.54
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 18 | 223 |
| subtype1 | 2 | 8 | 55 |
| subtype2 | 2 | 6 | 77 |
| subtype3 | 2 | 4 | 65 |
| subtype4 | 0 | 0 | 26 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RACE'
P value = 1 (Fisher's exact test), Q value = 1
Table S10. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 5 | 220 |
| subtype1 | 1 | 62 |
| subtype2 | 2 | 70 |
| subtype3 | 2 | 62 |
| subtype4 | 0 | 26 |
Figure S9. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
Table S11. Description of clustering approach #2: 'METHLYATION CNMF'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| Number of samples | 49 | 47 | 62 | 35 | 47 | 15 | 5 |
P value = 0.00377 (logrank test), Q value = 0.0089
Table S12. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 260 | 95 | 0.5 - 188.2 (26.4) |
| subtype1 | 49 | 17 | 4.6 - 124.7 (34.5) |
| subtype2 | 47 | 12 | 0.7 - 102.0 (20.1) |
| subtype3 | 62 | 21 | 0.5 - 120.2 (35.1) |
| subtype4 | 35 | 19 | 0.7 - 135.5 (19.7) |
| subtype5 | 47 | 22 | 0.6 - 143.4 (20.3) |
| subtype6 | 15 | 3 | 7.5 - 123.8 (27.8) |
| subtype7 | 5 | 1 | 13.6 - 188.2 (31.6) |
Figure S10. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
P value = 0.000139 (Kruskal-Wallis (anova)), Q value = 5e-04
Table S13. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 259 | 61.0 (14.6) |
| subtype1 | 49 | 64.2 (12.8) |
| subtype2 | 47 | 63.9 (14.4) |
| subtype3 | 61 | 59.8 (12.0) |
| subtype4 | 35 | 51.2 (19.0) |
| subtype5 | 47 | 65.8 (14.0) |
| subtype6 | 15 | 52.9 (8.6) |
| subtype7 | 5 | 63.6 (6.7) |
Figure S11. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S14. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 2 | 1 | 2 | 1 | 29 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 17 | 5 | 44 | 4 | 2 | 5 | 8 | 2 | 1 | 74 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
| subtype1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2 | 1 | 12 | 0 | 0 | 0 | 1 | 0 | 0 | 22 | 0 | 0 | 2 | 2 | 0 | 1 | 1 |
| subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 3 | 0 | 8 | 0 | 0 | 2 | 0 | 0 | 0 | 16 | 0 | 2 | 2 | 0 | 0 | 2 | 2 |
| subtype3 | 0 | 0 | 0 | 1 | 1 | 0 | 9 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 6 | 3 | 1 | 0 | 4 | 1 | 1 | 23 | 2 | 0 | 1 | 0 | 0 | 1 | 0 |
| subtype4 | 1 | 1 | 2 | 0 | 1 | 1 | 6 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 6 | 0 | 0 | 2 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| subtype5 | 0 | 3 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 8 | 4 | 12 | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 3 | 1 |
| subtype6 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype7 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Figure S12. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 1e-04 (Fisher's exact test), Q value = 0.00037
Table S15. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 142 | 118 |
| subtype1 | 18 | 31 |
| subtype2 | 19 | 28 |
| subtype3 | 40 | 22 |
| subtype4 | 27 | 8 |
| subtype5 | 22 | 25 |
| subtype6 | 11 | 4 |
| subtype7 | 5 | 0 |
Figure S13. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'
P value = 0.0106 (Fisher's exact test), Q value = 0.022
Table S16. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 182 | 71 |
| subtype1 | 32 | 17 |
| subtype2 | 32 | 13 |
| subtype3 | 49 | 9 |
| subtype4 | 26 | 9 |
| subtype5 | 25 | 21 |
| subtype6 | 14 | 1 |
| subtype7 | 4 | 1 |
Figure S14. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 59 | 2 | 1 | 105 | 9 | 24 | 29 | 2 | 2 | 6 | 21 |
| subtype1 | 22 | 0 | 0 | 1 | 0 | 13 | 9 | 0 | 0 | 0 | 4 |
| subtype2 | 19 | 0 | 1 | 4 | 4 | 3 | 7 | 0 | 0 | 0 | 9 |
| subtype3 | 0 | 0 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype4 | 8 | 0 | 0 | 11 | 3 | 2 | 1 | 2 | 2 | 6 | 0 |
| subtype5 | 5 | 2 | 0 | 14 | 1 | 5 | 12 | 0 | 0 | 0 | 8 |
| subtype6 | 4 | 0 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| subtype7 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.38 (Fisher's exact test), Q value = 0.42
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 155 | 69 | 9 | 26 |
| subtype1 | 27 | 18 | 2 | 2 |
| subtype2 | 26 | 14 | 1 | 5 |
| subtype3 | 44 | 13 | 1 | 4 |
| subtype4 | 19 | 7 | 3 | 6 |
| subtype5 | 24 | 14 | 2 | 7 |
| subtype6 | 11 | 3 | 0 | 1 |
| subtype7 | 4 | 0 | 0 | 1 |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.17 (Fisher's exact test), Q value = 0.23
Table S19. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 18 | 227 |
| subtype1 | 0 | 2 | 47 |
| subtype2 | 2 | 2 | 42 |
| subtype3 | 0 | 7 | 52 |
| subtype4 | 1 | 1 | 32 |
| subtype5 | 1 | 4 | 39 |
| subtype6 | 2 | 2 | 11 |
| subtype7 | 0 | 0 | 4 |
Figure S17. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RACE'
P value = 0.45 (Fisher's exact test), Q value = 0.49
Table S20. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 5 | 223 |
| subtype1 | 1 | 46 |
| subtype2 | 1 | 43 |
| subtype3 | 0 | 55 |
| subtype4 | 2 | 25 |
| subtype5 | 1 | 40 |
| subtype6 | 0 | 11 |
| subtype7 | 0 | 3 |
Figure S18. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'ETHNICITY'
Table S21. Description of clustering approach #3: 'RPPA CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Number of samples | 59 | 45 | 61 | 57 |
P value = 7.41e-05 (logrank test), Q value = 3e-04
Table S22. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 222 | 81 | 0.5 - 188.2 (25.6) |
| subtype1 | 59 | 16 | 8.6 - 124.7 (30.5) |
| subtype2 | 45 | 26 | 1.1 - 112.0 (19.7) |
| subtype3 | 61 | 16 | 0.5 - 188.2 (28.2) |
| subtype4 | 57 | 23 | 0.6 - 143.4 (25.4) |
Figure S19. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.157 (Kruskal-Wallis (anova)), Q value = 0.22
Table S23. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 221 | 62.0 (14.2) |
| subtype1 | 59 | 61.2 (15.1) |
| subtype2 | 45 | 63.6 (16.0) |
| subtype3 | 60 | 59.6 (11.6) |
| subtype4 | 57 | 64.2 (14.2) |
Figure S20. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S24. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 6 | 1 | 2 | 1 | 22 | 2 | 1 | 1 | 1 | 11 | 2 | 4 | 2 | 15 | 5 | 40 | 3 | 2 | 7 | 2 | 1 | 65 | 2 | 2 | 5 | 4 | 7 | 4 |
| subtype1 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 4 | 1 | 0 | 1 | 2 | 1 | 14 | 0 | 1 | 0 | 0 | 0 | 25 | 0 | 0 | 2 | 1 | 0 | 3 |
| subtype2 | 1 | 2 | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 4 | 3 | 13 | 0 | 1 | 2 | 1 | 0 | 5 | 0 | 0 | 0 | 1 | 1 | 0 |
| subtype3 | 0 | 0 | 0 | 1 | 1 | 14 | 1 | 1 | 1 | 1 | 3 | 0 | 0 | 0 | 2 | 0 | 3 | 3 | 0 | 5 | 1 | 1 | 18 | 2 | 0 | 1 | 1 | 1 | 0 |
| subtype4 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 1 | 7 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 2 | 2 | 1 | 5 | 1 |
Figure S21. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.12 (Fisher's exact test), Q value = 0.18
Table S25. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 117 | 105 |
| subtype1 | 27 | 32 |
| subtype2 | 23 | 22 |
| subtype3 | 40 | 21 |
| subtype4 | 27 | 30 |
Figure S22. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.00152 (Fisher's exact test), Q value = 0.0039
Table S26. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 158 | 59 |
| subtype1 | 42 | 17 |
| subtype2 | 25 | 19 |
| subtype3 | 52 | 6 |
| subtype4 | 39 | 17 |
Figure S23. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S27. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 54 | 1 | 82 | 9 | 22 | 29 | 1 | 1 | 4 | 19 |
| subtype1 | 30 | 0 | 3 | 2 | 14 | 4 | 1 | 0 | 0 | 5 |
| subtype2 | 7 | 0 | 16 | 2 | 2 | 10 | 0 | 1 | 3 | 4 |
| subtype3 | 1 | 0 | 57 | 2 | 0 | 1 | 0 | 0 | 0 | 0 |
| subtype4 | 16 | 1 | 6 | 3 | 6 | 14 | 0 | 0 | 1 | 10 |
Figure S24. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.0245 (Fisher's exact test), Q value = 0.042
Table S28. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 128 | 64 | 7 | 22 |
| subtype1 | 35 | 21 | 1 | 2 |
| subtype2 | 20 | 14 | 3 | 8 |
| subtype3 | 41 | 10 | 1 | 9 |
| subtype4 | 32 | 19 | 2 | 3 |
Figure S25. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.904 (Fisher's exact test), Q value = 0.91
Table S29. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 13 | 195 |
| subtype1 | 1 | 2 | 56 |
| subtype2 | 1 | 4 | 39 |
| subtype3 | 2 | 4 | 53 |
| subtype4 | 2 | 3 | 47 |
Figure S26. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RACE'
P value = 0.272 (Fisher's exact test), Q value = 0.34
Table S30. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 3 | 191 |
| subtype1 | 2 | 55 |
| subtype2 | 1 | 35 |
| subtype3 | 0 | 52 |
| subtype4 | 0 | 49 |
Figure S27. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
Table S31. Description of clustering approach #4: 'RPPA cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| Number of samples | 27 | 37 | 49 | 68 | 19 | 22 |
P value = 0.00283 (logrank test), Q value = 0.0069
Table S32. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 222 | 81 | 0.5 - 188.2 (25.6) |
| subtype1 | 27 | 7 | 4.6 - 124.7 (31.9) |
| subtype2 | 37 | 12 | 5.3 - 124.4 (33.4) |
| subtype3 | 49 | 22 | 0.6 - 188.2 (19.4) |
| subtype4 | 68 | 20 | 0.5 - 123.8 (30.5) |
| subtype5 | 19 | 8 | 1.1 - 86.8 (35.5) |
| subtype6 | 22 | 12 | 0.7 - 71.3 (18.7) |
Figure S28. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.000601 (Kruskal-Wallis (anova)), Q value = 0.0017
Table S33. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 221 | 62.0 (14.2) |
| subtype1 | 27 | 62.4 (14.5) |
| subtype2 | 37 | 63.6 (12.1) |
| subtype3 | 49 | 68.5 (13.8) |
| subtype4 | 67 | 58.0 (11.6) |
| subtype5 | 19 | 63.9 (14.7) |
| subtype6 | 22 | 54.7 (18.8) |
Figure S29. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S34. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 6 | 1 | 2 | 1 | 22 | 2 | 1 | 1 | 1 | 11 | 2 | 4 | 2 | 15 | 5 | 40 | 3 | 2 | 7 | 2 | 1 | 65 | 2 | 2 | 5 | 4 | 7 | 4 |
| subtype1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 0 | 0 | 1 | 0 | 0 | 10 | 0 | 0 | 2 | 1 | 0 | 1 |
| subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 | 4 | 1 | 5 | 0 | 1 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 2 | 1 |
| subtype3 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8 | 4 | 14 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 2 | 1 | 3 | 2 | 1 |
| subtype4 | 0 | 0 | 0 | 1 | 1 | 16 | 1 | 0 | 1 | 1 | 3 | 0 | 1 | 0 | 2 | 0 | 5 | 3 | 0 | 5 | 1 | 1 | 21 | 2 | 0 | 1 | 0 | 1 | 1 |
| subtype5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 1 | 0 |
| subtype6 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Figure S30. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.0259 (Fisher's exact test), Q value = 0.043
Table S35. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 117 | 105 |
| subtype1 | 12 | 15 |
| subtype2 | 14 | 23 |
| subtype3 | 23 | 26 |
| subtype4 | 46 | 22 |
| subtype5 | 8 | 11 |
| subtype6 | 14 | 8 |
Figure S31. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.00151 (Fisher's exact test), Q value = 0.0039
Table S36. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 158 | 59 |
| subtype1 | 17 | 10 |
| subtype2 | 28 | 9 |
| subtype3 | 28 | 20 |
| subtype4 | 58 | 7 |
| subtype5 | 15 | 4 |
| subtype6 | 12 | 9 |
Figure S32. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S37. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 54 | 1 | 82 | 9 | 22 | 29 | 1 | 1 | 4 | 19 |
| subtype1 | 11 | 0 | 1 | 0 | 10 | 2 | 0 | 0 | 0 | 3 |
| subtype2 | 24 | 0 | 0 | 1 | 5 | 5 | 0 | 0 | 0 | 2 |
| subtype3 | 4 | 0 | 12 | 2 | 5 | 15 | 0 | 0 | 0 | 11 |
| subtype4 | 3 | 0 | 62 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| subtype5 | 10 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 1 | 2 |
| subtype6 | 2 | 1 | 5 | 6 | 2 | 2 | 0 | 1 | 3 | 0 |
Figure S33. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.00753 (Fisher's exact test), Q value = 0.017
Table S38. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 128 | 64 | 7 | 22 |
| subtype1 | 15 | 10 | 1 | 1 |
| subtype2 | 18 | 15 | 1 | 2 |
| subtype3 | 27 | 15 | 1 | 6 |
| subtype4 | 49 | 12 | 1 | 6 |
| subtype5 | 9 | 9 | 1 | 0 |
| subtype6 | 10 | 3 | 2 | 7 |
Figure S34. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.483 (Fisher's exact test), Q value = 0.52
Table S39. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 13 | 195 |
| subtype1 | 0 | 1 | 26 |
| subtype2 | 1 | 0 | 36 |
| subtype3 | 1 | 5 | 39 |
| subtype4 | 3 | 5 | 57 |
| subtype5 | 1 | 0 | 18 |
| subtype6 | 0 | 2 | 19 |
Figure S35. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RACE'
P value = 0.256 (Fisher's exact test), Q value = 0.32
Table S40. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 3 | 191 |
| subtype1 | 1 | 25 |
| subtype2 | 0 | 35 |
| subtype3 | 2 | 40 |
| subtype4 | 0 | 59 |
| subtype5 | 0 | 16 |
| subtype6 | 0 | 16 |
Figure S36. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
Table S41. Description of clustering approach #5: 'RNAseq CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 116 | 78 | 64 |
P value = 0.016 (logrank test), Q value = 0.03
Table S42. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 258 | 94 | 0.5 - 188.2 (26.4) |
| subtype1 | 116 | 39 | 0.6 - 143.4 (27.1) |
| subtype2 | 78 | 25 | 0.5 - 123.8 (34.9) |
| subtype3 | 64 | 30 | 0.7 - 188.2 (19.7) |
Figure S37. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.000194 (Kruskal-Wallis (anova)), Q value = 0.00065
Table S43. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 257 | 60.8 (14.6) |
| subtype1 | 116 | 65.1 (13.1) |
| subtype2 | 77 | 57.9 (11.5) |
| subtype3 | 64 | 56.5 (18.0) |
Figure S38. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S44. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 2 | 1 | 2 | 1 | 29 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 17 | 5 | 44 | 4 | 2 | 5 | 8 | 2 | 1 | 72 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
| subtype1 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 5 | 1 | 0 | 2 | 13 | 4 | 31 | 0 | 0 | 2 | 0 | 0 | 0 | 35 | 0 | 2 | 3 | 2 | 0 | 4 | 4 |
| subtype2 | 0 | 0 | 0 | 1 | 1 | 0 | 22 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 1 | 0 | 3 | 0 | 6 | 4 | 1 | 0 | 5 | 1 | 1 | 22 | 3 | 0 | 1 | 0 | 0 | 1 | 0 |
| subtype3 | 1 | 3 | 2 | 0 | 1 | 1 | 6 | 0 | 1 | 1 | 1 | 0 | 3 | 1 | 3 | 0 | 1 | 1 | 7 | 0 | 1 | 3 | 3 | 1 | 0 | 15 | 0 | 0 | 1 | 2 | 1 | 2 | 1 |
Figure S39. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.00081 (Fisher's exact test), Q value = 0.0023
Table S45. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 141 | 117 |
| subtype1 | 50 | 66 |
| subtype2 | 55 | 23 |
| subtype3 | 36 | 28 |
Figure S40. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.00017 (Fisher's exact test), Q value = 0.00059
Table S46. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 180 | 71 |
| subtype1 | 68 | 46 |
| subtype2 | 63 | 10 |
| subtype3 | 49 | 15 |
Figure S41. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S47. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 58 | 2 | 1 | 104 | 9 | 24 | 29 | 2 | 2 | 6 | 21 |
| subtype1 | 38 | 0 | 1 | 12 | 1 | 22 | 26 | 0 | 0 | 0 | 16 |
| subtype2 | 1 | 0 | 0 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype3 | 19 | 2 | 0 | 15 | 8 | 2 | 3 | 2 | 2 | 6 | 5 |
Figure S42. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 5e-05 (Fisher's exact test), Q value = 0.00024
Table S48. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 154 | 68 | 9 | 26 |
| subtype1 | 69 | 40 | 3 | 4 |
| subtype2 | 57 | 13 | 1 | 7 |
| subtype3 | 28 | 15 | 5 | 15 |
Figure S43. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.715 (Fisher's exact test), Q value = 0.73
Table S49. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 18 | 225 |
| subtype1 | 3 | 6 | 103 |
| subtype2 | 2 | 8 | 64 |
| subtype3 | 1 | 4 | 58 |
Figure S44. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RACE'
P value = 0.38 (Fisher's exact test), Q value = 0.42
Table S50. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 5 | 222 |
| subtype1 | 3 | 104 |
| subtype2 | 0 | 66 |
| subtype3 | 2 | 52 |
Figure S45. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
Table S51. Description of clustering approach #6: 'RNAseq cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| Number of samples | 47 | 23 | 50 | 47 | 29 | 29 | 33 |
P value = 0.00677 (logrank test), Q value = 0.016
Table S52. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 258 | 94 | 0.5 - 188.2 (26.4) |
| subtype1 | 47 | 17 | 3.2 - 124.4 (33.5) |
| subtype2 | 23 | 3 | 5.3 - 102.0 (33.1) |
| subtype3 | 50 | 16 | 0.5 - 120.2 (38.4) |
| subtype4 | 47 | 21 | 0.7 - 188.2 (22.4) |
| subtype5 | 29 | 11 | 0.6 - 112.0 (17.5) |
| subtype6 | 29 | 9 | 7.5 - 123.8 (24.6) |
| subtype7 | 33 | 17 | 1.1 - 143.4 (17.8) |
Figure S46. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 6.45e-05 (Kruskal-Wallis (anova)), Q value = 0.00029
Table S53. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 257 | 60.8 (14.6) |
| subtype1 | 47 | 67.0 (12.4) |
| subtype2 | 23 | 61.4 (11.1) |
| subtype3 | 50 | 60.0 (12.0) |
| subtype4 | 47 | 54.5 (18.3) |
| subtype5 | 29 | 67.7 (14.3) |
| subtype6 | 28 | 54.1 (9.9) |
| subtype7 | 33 | 61.5 (15.1) |
Figure S47. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S54. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 2 | 1 | 2 | 1 | 29 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 17 | 5 | 44 | 4 | 2 | 5 | 8 | 2 | 1 | 72 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
| subtype1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 11 | 0 | 0 | 1 | 0 | 0 | 0 | 23 | 0 | 0 | 1 | 1 | 0 | 2 | 1 |
| subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 1 | 2 | 0 | 0 | 1 | 2 |
| subtype3 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 3 | 0 | 6 | 2 | 1 | 0 | 4 | 1 | 1 | 21 | 2 | 0 | 1 | 0 | 0 | 1 | 0 |
| subtype4 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 7 | 0 | 1 | 2 | 3 | 1 | 0 | 12 | 0 | 0 | 1 | 2 | 1 | 1 | 0 |
| subtype5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 2 |
| subtype6 | 0 | 0 | 0 | 0 | 0 | 1 | 20 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype7 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 1 | 2 | 2 | 7 | 0 | 0 | 1 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Figure S48. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.00793 (Fisher's exact test), Q value = 0.017
Table S55. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 141 | 117 |
| subtype1 | 21 | 26 |
| subtype2 | 10 | 13 |
| subtype3 | 30 | 20 |
| subtype4 | 25 | 22 |
| subtype5 | 14 | 15 |
| subtype6 | 25 | 4 |
| subtype7 | 16 | 17 |
Figure S49. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.0142 (Fisher's exact test), Q value = 0.028
Table S56. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 180 | 71 |
| subtype1 | 32 | 14 |
| subtype2 | 13 | 9 |
| subtype3 | 40 | 8 |
| subtype4 | 33 | 14 |
| subtype5 | 18 | 11 |
| subtype6 | 25 | 2 |
| subtype7 | 19 | 13 |
Figure S50. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S57. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 58 | 2 | 1 | 104 | 9 | 24 | 29 | 2 | 2 | 6 | 21 |
| subtype1 | 22 | 0 | 0 | 0 | 0 | 14 | 6 | 0 | 0 | 0 | 5 |
| subtype2 | 10 | 0 | 0 | 1 | 0 | 3 | 6 | 0 | 0 | 0 | 3 |
| subtype3 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype4 | 16 | 0 | 0 | 7 | 8 | 2 | 2 | 1 | 2 | 6 | 3 |
| subtype5 | 2 | 0 | 0 | 8 | 0 | 5 | 9 | 1 | 0 | 0 | 4 |
| subtype6 | 1 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype7 | 7 | 2 | 1 | 10 | 1 | 0 | 6 | 0 | 0 | 0 | 6 |
Figure S51. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 3e-04 (Fisher's exact test), Q value = 0.00096
Table S58. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 154 | 68 | 9 | 26 |
| subtype1 | 25 | 21 | 1 | 0 |
| subtype2 | 14 | 6 | 0 | 3 |
| subtype3 | 38 | 11 | 0 | 1 |
| subtype4 | 21 | 11 | 5 | 9 |
| subtype5 | 18 | 8 | 1 | 2 |
| subtype6 | 20 | 2 | 1 | 6 |
| subtype7 | 18 | 9 | 1 | 5 |
Figure S52. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.142 (Fisher's exact test), Q value = 0.2
Table S59. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 18 | 225 |
| subtype1 | 1 | 1 | 45 |
| subtype2 | 1 | 2 | 20 |
| subtype3 | 0 | 5 | 44 |
| subtype4 | 1 | 2 | 43 |
| subtype5 | 1 | 0 | 24 |
| subtype6 | 2 | 3 | 21 |
| subtype7 | 0 | 5 | 28 |
Figure S53. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RACE'
P value = 0.508 (Fisher's exact test), Q value = 0.53
Table S60. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 5 | 222 |
| subtype1 | 1 | 44 |
| subtype2 | 1 | 21 |
| subtype3 | 0 | 46 |
| subtype4 | 2 | 37 |
| subtype5 | 1 | 24 |
| subtype6 | 0 | 21 |
| subtype7 | 0 | 29 |
Figure S54. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
Table S61. Description of clustering approach #7: 'MIRSEQ CNMF'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 109 | 51 | 98 |
P value = 0.29 (logrank test), Q value = 0.34
Table S62. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 258 | 95 | 0.5 - 188.2 (26.4) |
| subtype1 | 109 | 44 | 0.6 - 188.2 (25.4) |
| subtype2 | 51 | 16 | 3.1 - 124.4 (26.2) |
| subtype3 | 98 | 35 | 0.5 - 123.8 (27.4) |
Figure S55. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
P value = 0.178 (Kruskal-Wallis (anova)), Q value = 0.24
Table S63. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 257 | 61.0 (14.7) |
| subtype1 | 109 | 60.7 (16.9) |
| subtype2 | 51 | 64.1 (13.2) |
| subtype3 | 97 | 59.6 (12.5) |
Figure S56. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.00108 (Fisher's exact test), Q value = 0.0029
Table S64. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 2 | 1 | 2 | 1 | 28 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 16 | 5 | 44 | 4 | 2 | 5 | 8 | 2 | 1 | 74 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
| subtype1 | 1 | 3 | 2 | 0 | 1 | 0 | 6 | 0 | 1 | 1 | 0 | 0 | 8 | 1 | 2 | 1 | 6 | 2 | 15 | 0 | 1 | 4 | 3 | 1 | 0 | 36 | 0 | 1 | 2 | 3 | 1 | 2 | 4 |
| subtype2 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 6 | 2 | 15 | 0 | 0 | 1 | 0 | 0 | 0 | 13 | 0 | 1 | 2 | 1 | 0 | 2 | 1 |
| subtype3 | 0 | 2 | 0 | 1 | 1 | 1 | 21 | 1 | 0 | 1 | 1 | 2 | 3 | 1 | 0 | 0 | 4 | 1 | 14 | 4 | 1 | 0 | 5 | 1 | 1 | 25 | 3 | 0 | 1 | 0 | 0 | 3 | 0 |
Figure S57. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.0401 (Fisher's exact test), Q value = 0.066
Table S65. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 140 | 118 |
| subtype1 | 52 | 57 |
| subtype2 | 25 | 26 |
| subtype3 | 63 | 35 |
Figure S58. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'
P value = 0.0465 (Fisher's exact test), Q value = 0.075
Table S66. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 181 | 70 |
| subtype1 | 81 | 28 |
| subtype2 | 29 | 21 |
| subtype3 | 71 | 21 |
Figure S59. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S67. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 59 | 2 | 1 | 104 | 9 | 24 | 29 | 2 | 2 | 6 | 20 |
| subtype1 | 41 | 2 | 0 | 17 | 6 | 8 | 14 | 2 | 2 | 6 | 11 |
| subtype2 | 15 | 0 | 0 | 6 | 3 | 9 | 12 | 0 | 0 | 0 | 6 |
| subtype3 | 3 | 0 | 1 | 81 | 0 | 7 | 3 | 0 | 0 | 0 | 3 |
Figure S60. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.0802 (Fisher's exact test), Q value = 0.12
Table S68. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 154 | 68 | 9 | 26 |
| subtype1 | 57 | 36 | 6 | 10 |
| subtype2 | 29 | 13 | 0 | 8 |
| subtype3 | 68 | 19 | 3 | 8 |
Figure S61. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.494 (Fisher's exact test), Q value = 0.52
Table S69. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 18 | 226 |
| subtype1 | 1 | 6 | 101 |
| subtype2 | 1 | 4 | 44 |
| subtype3 | 4 | 8 | 81 |
Figure S62. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RACE'
P value = 0.23 (Fisher's exact test), Q value = 0.3
Table S70. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 5 | 222 |
| subtype1 | 3 | 94 |
| subtype2 | 2 | 47 |
| subtype3 | 0 | 81 |
Figure S63. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'ETHNICITY'
Table S71. Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'
| Cluster Labels | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Number of samples | 81 | 53 | 101 | 23 |
P value = 0.299 (logrank test), Q value = 0.35
Table S72. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 258 | 95 | 0.5 - 188.2 (26.4) |
| subtype1 | 81 | 32 | 0.6 - 143.4 (24.7) |
| subtype2 | 53 | 17 | 0.7 - 124.4 (29.0) |
| subtype3 | 101 | 35 | 0.5 - 123.8 (26.9) |
| subtype4 | 23 | 11 | 1.1 - 188.2 (19.7) |
Figure S64. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
P value = 0.00035 (Kruskal-Wallis (anova)), Q value = 0.0011
Table S73. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 257 | 61.0 (14.7) |
| subtype1 | 81 | 64.4 (13.9) |
| subtype2 | 53 | 64.0 (13.6) |
| subtype3 | 100 | 59.5 (12.6) |
| subtype4 | 23 | 47.8 (20.0) |
Figure S65. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 2e-05 (Fisher's exact test), Q value = 1e-04
Table S74. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 2 | 1 | 2 | 1 | 28 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 16 | 5 | 44 | 4 | 2 | 5 | 8 | 2 | 1 | 74 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
| subtype1 | 0 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 1 | 3 | 2 | 14 | 0 | 1 | 4 | 1 | 1 | 0 | 33 | 0 | 1 | 2 | 1 | 0 | 2 | 3 |
| subtype2 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 9 | 2 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 1 | 2 | 2 | 0 | 2 | 2 |
| subtype3 | 0 | 3 | 0 | 1 | 1 | 0 | 21 | 1 | 0 | 1 | 1 | 2 | 4 | 1 | 1 | 0 | 4 | 1 | 14 | 4 | 1 | 0 | 5 | 1 | 1 | 26 | 3 | 0 | 1 | 0 | 0 | 3 | 0 |
| subtype4 | 1 | 1 | 2 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
Figure S66. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.0184 (Fisher's exact test), Q value = 0.032
Table S75. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 140 | 118 |
| subtype1 | 34 | 47 |
| subtype2 | 27 | 26 |
| subtype3 | 63 | 38 |
| subtype4 | 16 | 7 |
Figure S67. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'
P value = 0.121 (Fisher's exact test), Q value = 0.18
Table S76. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 181 | 70 |
| subtype1 | 60 | 21 |
| subtype2 | 31 | 21 |
| subtype3 | 74 | 21 |
| subtype4 | 16 | 7 |
Figure S68. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S77. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 59 | 2 | 1 | 104 | 9 | 24 | 29 | 2 | 2 | 6 | 20 |
| subtype1 | 36 | 2 | 0 | 12 | 0 | 9 | 15 | 0 | 0 | 0 | 7 |
| subtype2 | 15 | 0 | 0 | 7 | 5 | 7 | 9 | 1 | 0 | 0 | 9 |
| subtype3 | 4 | 0 | 1 | 81 | 0 | 8 | 4 | 0 | 0 | 0 | 3 |
| subtype4 | 4 | 0 | 0 | 4 | 4 | 0 | 1 | 1 | 2 | 6 | 1 |
Figure S69. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 7e-05 (Fisher's exact test), Q value = 3e-04
Table S78. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 154 | 68 | 9 | 26 |
| subtype1 | 39 | 35 | 3 | 4 |
| subtype2 | 31 | 10 | 0 | 11 |
| subtype3 | 70 | 21 | 3 | 7 |
| subtype4 | 14 | 2 | 3 | 4 |
Figure S70. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.355 (Fisher's exact test), Q value = 0.4
Table S79. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 6 | 18 | 226 |
| subtype1 | 1 | 2 | 76 |
| subtype2 | 1 | 5 | 46 |
| subtype3 | 4 | 9 | 83 |
| subtype4 | 0 | 2 | 21 |
Figure S71. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RACE'
P value = 0.0107 (Fisher's exact test), Q value = 0.022
Table S80. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 5 | 222 |
| subtype1 | 1 | 75 |
| subtype2 | 2 | 49 |
| subtype3 | 0 | 84 |
| subtype4 | 2 | 14 |
Figure S72. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'ETHNICITY'
Table S81. Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 85 | 65 | 47 |
P value = 0.443 (logrank test), Q value = 0.49
Table S82. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 197 | 74 | 0.5 - 188.2 (25.2) |
| subtype1 | 85 | 34 | 0.6 - 188.2 (21.7) |
| subtype2 | 65 | 26 | 0.5 - 120.2 (25.2) |
| subtype3 | 47 | 14 | 3.1 - 124.4 (25.7) |
Figure S73. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.163 (Kruskal-Wallis (anova)), Q value = 0.22
Table S83. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 196 | 61.4 (14.8) |
| subtype1 | 85 | 60.1 (17.0) |
| subtype2 | 64 | 60.0 (12.4) |
| subtype3 | 47 | 65.5 (12.9) |
Figure S74. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S84. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 1 | 1 | 2 | 1 | 21 | 1 | 1 | 1 | 2 | 8 | 2 | 4 | 1 | 13 | 4 | 41 | 2 | 2 | 3 | 5 | 1 | 52 | 2 | 2 | 4 | 2 | 5 | 4 |
| subtype1 | 1 | 3 | 1 | 0 | 1 | 1 | 5 | 0 | 1 | 0 | 0 | 5 | 1 | 2 | 0 | 3 | 2 | 12 | 0 | 1 | 3 | 3 | 1 | 33 | 0 | 0 | 1 | 2 | 1 | 2 |
| subtype2 | 0 | 2 | 0 | 1 | 1 | 0 | 16 | 0 | 0 | 1 | 2 | 3 | 0 | 1 | 0 | 2 | 1 | 11 | 2 | 1 | 0 | 2 | 0 | 16 | 2 | 0 | 0 | 0 | 1 | 0 |
| subtype3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8 | 1 | 18 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 3 | 0 | 3 | 2 |
Figure S75. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.143 (Fisher's exact test), Q value = 0.2
Table S85. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 111 | 86 |
| subtype1 | 43 | 42 |
| subtype2 | 43 | 22 |
| subtype3 | 25 | 22 |
Figure S76. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.0151 (Fisher's exact test), Q value = 0.029
Table S86. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 134 | 59 |
| subtype1 | 65 | 20 |
| subtype2 | 45 | 17 |
| subtype3 | 24 | 22 |
Figure S77. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S87. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 43 | 2 | 72 | 8 | 20 | 28 | 2 | 1 | 5 | 16 |
| subtype1 | 35 | 2 | 15 | 4 | 6 | 9 | 2 | 1 | 5 | 6 |
| subtype2 | 4 | 0 | 52 | 1 | 5 | 3 | 0 | 0 | 0 | 0 |
| subtype3 | 4 | 0 | 5 | 3 | 9 | 16 | 0 | 0 | 0 | 10 |
Figure S78. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.0692 (Fisher's exact test), Q value = 0.11
Table S88. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 115 | 55 | 8 | 18 |
| subtype1 | 40 | 31 | 6 | 8 |
| subtype2 | 43 | 13 | 2 | 7 |
| subtype3 | 32 | 11 | 0 | 3 |
Figure S79. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.276 (Fisher's exact test), Q value = 0.34
Table S89. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 4 | 13 | 172 |
| subtype1 | 1 | 3 | 80 |
| subtype2 | 1 | 6 | 54 |
| subtype3 | 2 | 4 | 38 |
Figure S80. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RACE'
P value = 0.285 (Fisher's exact test), Q value = 0.34
Table S90. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 4 | 172 |
| subtype1 | 2 | 73 |
| subtype2 | 0 | 58 |
| subtype3 | 2 | 41 |
Figure S81. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
Table S91. Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| Number of samples | 24 | 33 | 38 | 24 | 11 | 22 | 22 | 23 |
P value = 0.087 (logrank test), Q value = 0.13
Table S92. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 197 | 74 | 0.5 - 188.2 (25.2) |
| subtype1 | 24 | 6 | 4.8 - 124.4 (34.9) |
| subtype2 | 33 | 12 | 1.1 - 124.7 (32.7) |
| subtype3 | 38 | 16 | 0.5 - 120.2 (36.8) |
| subtype4 | 24 | 11 | 0.7 - 102.0 (22.3) |
| subtype5 | 11 | 1 | 9.0 - 53.3 (22.6) |
| subtype6 | 22 | 11 | 0.6 - 143.4 (18.1) |
| subtype7 | 22 | 6 | 3.1 - 106.5 (17.2) |
| subtype8 | 23 | 11 | 1.1 - 188.2 (19.6) |
Figure S82. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.0112 (Kruskal-Wallis (anova)), Q value = 0.023
Table S93. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 196 | 61.4 (14.8) |
| subtype1 | 24 | 59.4 (11.5) |
| subtype2 | 33 | 63.3 (13.1) |
| subtype3 | 38 | 60.1 (11.6) |
| subtype4 | 24 | 66.5 (13.0) |
| subtype5 | 10 | 56.0 (11.8) |
| subtype6 | 22 | 66.7 (15.4) |
| subtype7 | 22 | 66.6 (14.1) |
| subtype8 | 23 | 49.7 (20.5) |
Figure S83. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S94. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
| nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 1 | 7 | 1 | 1 | 2 | 1 | 21 | 1 | 1 | 1 | 2 | 8 | 2 | 4 | 1 | 13 | 4 | 41 | 2 | 2 | 3 | 5 | 1 | 52 | 2 | 2 | 4 | 2 | 5 | 4 |
| subtype1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 10 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 1 | 1 | 1 |
| subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 21 | 0 | 0 | 1 | 0 | 1 | 0 |
| subtype3 | 0 | 0 | 0 | 1 | 1 | 0 | 9 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 6 | 1 | 1 | 0 | 2 | 0 | 10 | 2 | 0 | 0 | 0 | 1 | 0 |
| subtype4 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 9 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 |
| subtype5 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype6 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8 | 0 | 0 | 1 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 3 | 0 | 2 | 2 |
| subtype8 | 1 | 1 | 1 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 1 |
Figure S84. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
P value = 0.00227 (Fisher's exact test), Q value = 0.0057
Table S95. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
| nPatients | FEMALE | MALE |
|---|---|---|
| ALL | 111 | 86 |
| subtype1 | 11 | 13 |
| subtype2 | 11 | 22 |
| subtype3 | 28 | 10 |
| subtype4 | 14 | 10 |
| subtype5 | 7 | 4 |
| subtype6 | 9 | 13 |
| subtype7 | 12 | 10 |
| subtype8 | 19 | 4 |
Figure S85. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
P value = 0.0172 (Fisher's exact test), Q value = 0.032
Table S96. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 134 | 59 |
| subtype1 | 12 | 11 |
| subtype2 | 27 | 6 |
| subtype3 | 28 | 9 |
| subtype4 | 13 | 10 |
| subtype5 | 10 | 0 |
| subtype6 | 16 | 6 |
| subtype7 | 11 | 11 |
| subtype8 | 17 | 6 |
Figure S86. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 5.3e-05
Table S97. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
| nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH'/ UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
|---|---|---|---|---|---|---|---|---|---|---|
| ALL | 43 | 2 | 72 | 8 | 20 | 28 | 2 | 1 | 5 | 16 |
| subtype1 | 7 | 0 | 3 | 1 | 4 | 7 | 0 | 0 | 0 | 2 |
| subtype2 | 22 | 0 | 1 | 0 | 5 | 4 | 0 | 0 | 0 | 1 |
| subtype3 | 0 | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype4 | 3 | 0 | 5 | 0 | 6 | 6 | 0 | 0 | 0 | 4 |
| subtype5 | 1 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| subtype6 | 4 | 2 | 9 | 0 | 2 | 2 | 0 | 0 | 0 | 3 |
| subtype7 | 2 | 0 | 0 | 3 | 3 | 8 | 0 | 0 | 0 | 6 |
| subtype8 | 4 | 0 | 6 | 4 | 0 | 1 | 2 | 1 | 5 | 0 |
Figure S87. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
P value = 0.0187 (Fisher's exact test), Q value = 0.032
Table S98. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 115 | 55 | 8 | 18 |
| subtype1 | 13 | 4 | 2 | 5 |
| subtype2 | 17 | 15 | 1 | 0 |
| subtype3 | 28 | 8 | 0 | 2 |
| subtype4 | 13 | 8 | 2 | 1 |
| subtype5 | 8 | 2 | 0 | 1 |
| subtype6 | 8 | 11 | 1 | 2 |
| subtype7 | 15 | 3 | 0 | 3 |
| subtype8 | 13 | 4 | 2 | 4 |
Figure S88. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
P value = 0.0994 (Fisher's exact test), Q value = 0.15
Table S99. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RACE'
| nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|
| ALL | 4 | 13 | 172 |
| subtype1 | 0 | 2 | 22 |
| subtype2 | 0 | 0 | 33 |
| subtype3 | 0 | 4 | 32 |
| subtype4 | 1 | 2 | 19 |
| subtype5 | 1 | 2 | 7 |
| subtype6 | 0 | 0 | 21 |
| subtype7 | 1 | 1 | 18 |
| subtype8 | 1 | 2 | 20 |
Figure S89. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RACE'
P value = 0.273 (Fisher's exact test), Q value = 0.34
Table S100. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 4 | 172 |
| subtype1 | 0 | 23 |
| subtype2 | 1 | 31 |
| subtype3 | 0 | 34 |
| subtype4 | 0 | 20 |
| subtype5 | 0 | 10 |
| subtype6 | 0 | 19 |
| subtype7 | 2 | 19 |
| subtype8 | 1 | 16 |
Figure S90. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/SARC-TP/20140640/SARC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/SARC-TP/19775498/SARC-TP.merged_data.txt
-
Number of patients = 260
-
Number of clustering approaches = 10
-
Number of selected clinical features = 9
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.