Correlation between gene mutation status and selected clinical features
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 7 genes and 7 clinical features across 80 patients, 3 significant findings detected with Q value < 0.25.

  • GNAQ mutation correlated to 'PATHOLOGIC_STAGE'.

  • SF3B1 mutation correlated to 'Time to Death'.

  • BAP1 mutation correlated to 'Time to Death'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 7 genes and 7 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 3 significant findings detected.

Clinical
Features
Time
to
Death
YEARS
TO
BIRTH
PATHOLOGIC
STAGE
PATHOLOGY
T
STAGE
PATHOLOGY
M
STAGE
GENDER RADIATION
THERAPY
nMutated (%) nWild-Type logrank test Wilcoxon-test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
GNAQ 40 (50%) 40 0.0429
(0.487)
0.467
(1.00)
0.00158
(0.0774)
0.801
(1.00)
0.0515
(0.487)
1
(1.00)
0.615
(1.00)
SF3B1 18 (22%) 62 0.00713
(0.147)
0.231
(1.00)
0.879
(1.00)
0.881
(1.00)
0.573
(1.00)
0.596
(1.00)
0.545
(1.00)
BAP1 22 (28%) 58 0.00901
(0.147)
0.119
(0.73)
0.434
(1.00)
0.43
(1.00)
0.265
(1.00)
0.458
(1.00)
1
(1.00)
GNA11 36 (45%) 44 0.203
(1.00)
0.749
(1.00)
0.0597
(0.487)
0.837
(1.00)
0.307
(1.00)
0.653
(1.00)
0.0828
(0.579)
EIF1AX 10 (12%) 70 0.255
(1.00)
0.419
(1.00)
1
(1.00)
0.666
(1.00)
1
(1.00)
0.32
(1.00)
1
(1.00)
CYSLTR2 3 (4%) 77 0.676
(1.00)
0.425
(1.00)
0.684
(1.00)
0.78
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
SFRS2 3 (4%) 77 0.832
(1.00)
0.704
(1.00)
1
(1.00)
0.578
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
'GNAQ MUTATION STATUS' versus 'PATHOLOGIC_STAGE'

P value = 0.00158 (Fisher's exact test), Q value = 0.077

Table S1.  Gene #1: 'GNAQ MUTATION STATUS' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
GNAQ MUTATED 8 11 19 2 0 0
GNAQ WILD-TYPE 4 16 6 8 1 4

Figure S1.  Get High-res Image Gene #1: 'GNAQ MUTATION STATUS' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'SF3B1 MUTATION STATUS' versus 'Time to Death'

P value = 0.00713 (logrank test), Q value = 0.15

Table S2.  Gene #4: 'SF3B1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 23 0.1 - 85.5 (25.8)
SF3B1 MUTATED 18 1 14.9 - 82.2 (38.4)
SF3B1 WILD-TYPE 62 22 0.1 - 85.5 (23.7)

Figure S2.  Get High-res Image Gene #4: 'SF3B1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

'BAP1 MUTATION STATUS' versus 'Time to Death'

P value = 0.00901 (logrank test), Q value = 0.15

Table S3.  Gene #5: 'BAP1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 23 0.1 - 85.5 (25.8)
BAP1 MUTATED 22 11 1.6 - 61.2 (22.1)
BAP1 WILD-TYPE 58 12 0.1 - 85.5 (26.4)

Figure S3.  Get High-res Image Gene #5: 'BAP1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

Methods & Data
Input
  • Mutation data file = sample_sig_gene_table.txt from Mutsig_2CV pipeline

  • Processed Mutation data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_Correlate_Genomic_Events_Preprocess/UVM-TP/22572045/transformed.cor.cli.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/UVM-TP/22507229/UVM-TP.merged_data.txt

  • Number of patients = 80

  • Number of significantly mutated genes = 7

  • Number of selected clinical features = 7

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[3] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)