This is an overview of Colorectal Adenocarcinoma analysis pipelines from Firehose run "28 January 2016".
Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.
-
Sequence and Copy Number Analyses
-
Analysis of mutagenesis by APOBEC cytidine deaminases (P-MACD).
View Report | There are 489 tumor samples in this analysis. The Benjamini-Hochberg-corrected p-value for enrichment of the APOBEC mutation signature in 1 samples is <=0.05. Out of these, 0 have enrichment values >2, which implies that in such samples at least 50% of APOBEC signature mutations have been in fact made by APOBEC enzyme(s). -
CHASM 1.0.5 (Cancer-Specific High-throughput Annotation of Somatic Mutations)
View Report | There are 131056 mutations identified by MuTect and 9305 mutations with significant functional impact at BHFDR <= 0.25. -
LowPass Copy number analysis (GISTIC2)
View Report | There were 103 tumor samples used in this analysis: 18 significant arm-level results, 17 significant focal amplifications, and 22 significant focal deletions were found. -
Mutation Analysis (MutSig 2CV v3.1)
View Report | -
Mutation Analysis (MutSigCV v0.9)
View Report | -
Mutation Assessor
View Report | -
SNP6 Copy number analysis (GISTIC2)
View Report | There were 616 tumor samples used in this analysis: 31 significant arm-level results, 24 significant focal amplifications, and 48 significant focal deletions were found. -
Correlations to Clinical Parameters
-
Correlation between aggregated molecular cancer subtypes and selected clinical features
View Report | Testing the association between subtypes identified by 12 different clustering approaches and 13 clinical features across 626 patients, 61 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between copy number variation genes (focal events) and selected clinical features
View Report | Testing the association between copy number variation 72 focal events and 13 clinical features across 614 patients, 353 significant findings detected with Q value < 0.25. -
Correlation between copy number variations of arm-level result and selected clinical features
View Report | Testing the association between copy number variation 82 arm-level events and 13 clinical features across 614 patients, 210 significant findings detected with Q value < 0.25. -
Correlation between gene methylation status and clinical features
View Report | Testing the association between 16791 genes and 13 clinical features across 391 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 10 clinical features related to at least one genes. -
Correlation between gene mutation status and selected clinical features
View Report | Testing the association between mutation status of 2222 genes and 12 clinical features across 489 patients, 9 significant findings detected with Q value < 0.25. -
Correlation between miRseq expression and clinical features
View Report | Testing the association between 420 miRs and 12 clinical features across 549 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 10 clinical features related to at least one miRs. -
Correlation between mRNA expression and clinical features
View Report | Testing the association between 17814 genes and 12 clinical features across 222 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 10 clinical features related to at least one genes. -
Correlation between mRNAseq expression and clinical features
View Report | Testing the association between 18041 genes and 13 clinical features across 621 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 11 clinical features related to at least one genes. -
Correlation between RPPA expression and clinical features
View Report | Testing the association between 208 genes and 12 clinical features across 489 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 10 clinical features related to at least one genes. -
Clustering Analyses
-
Clustering of copy number data by focal peak region with absolute value: consensus NMF
View Report | The most robust consensus NMF clustering of 616 samples using the 72 copy number focal regions was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution. -
Clustering of copy number data by peak region with threshold value: consensus NMF
View Report | The most robust consensus NMF clustering of 616 samples using the 72 copy number focal regions was identified for k = 5 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution. -
Clustering of Methylation: consensus NMF
View Report | The most robust consensus NMF clustering of 393 samples using the 6072 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of miRseq mature expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 647 most variable miRs. Consensus ward linkage hierarchical clustering of 136 samples and 647 miRs identified 4 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of miRseq mature expression: consensus NMF
View Report | The most robust consensus NMF clustering of 136 samples using the 647 most variable miRs was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of miRseq precursor expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 105 most variable miRs. Consensus ward linkage hierarchical clustering of 549 samples and 105 miRs identified 9 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of miRseq precursor expression: consensus NMF
View Report | The most robust consensus NMF clustering of 549 samples using the 150 most variable miRs was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of mRNA expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 1500 most variable genes. Consensus ward linkage hierarchical clustering of 222 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of mRNA expression: consensus NMF
View Report | The most robust consensus NMF clustering of 222 samples using the 1500 most variable genes was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of mRNAseq gene expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 1500 most variable genes. Consensus ward linkage hierarchical clustering of 623 samples and 1500 genes identified 7 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of mRNAseq gene expression: consensus NMF
View Report | The most robust consensus NMF clustering of 623 samples using the 1500 most variable genes was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of RPPA data: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 208 most variable proteins. Consensus ward linkage hierarchical clustering of 491 samples and 208 proteins identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of RPPA data: consensus NMF
View Report | The most robust consensus NMF clustering of 491 samples using the 208 most variable proteins was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Other Analyses
-
Aggregate Analysis Features
View Report | 632 samples and 3641 features are included in this feature table. The figures below show which genomic pair events are co-occurring and which are mutually-exclusive. -
Identification of putative miR direct targets by sequencing data
View Report | The CLR algorithm was applied on 624 miRs and 18041 mRNAs across 295 samples. After 2 filtering steps, the number of 27 miR:genes pairs were detected. -
Pathway Analyses
-
Association of mutation, copy number alteration, and subtype markers with pathways
View Report | There are 1637 genes with significant mutation (Q value <= 0.1) and 397 genes with significant copy number alteration (Q value <= 0.25). The identified marker genes (Q value <= 0.01 or within top 2000) are 2000 for subtype 1, 2000 for subtype 2, 2000 for subtype 3, 2000 for subtype 4, 2000 for subtype 5, 2000 for subtype 6, 2000 for subtype 7. Pathways significantly enriched with these genes (Q value <= 0.01) are identified : -
GSEA Class2: Canonical Pathways enriched in each subtypes of mRNAseq_cNMF in COADREAD-TP
View Report | basic data info -
PARADIGM pathway analysis of mRNA expression and copy number data
View Report | There were 32 significant pathways identified in this analysis. -
PARADIGM pathway analysis of mRNA expression data
View Report | There were 46 significant pathways identified in this analysis. -
PARADIGM pathway analysis of mRNASeq expression and copy number data
View Report | There were 35 significant pathways identified in this analysis. -
PARADIGM pathway analysis of mRNASeq expression data
View Report | There were 36 significant pathways identified in this analysis. -
Significant over-representation of pathway gene sets for a given gene list
View Report | For a given gene list, a hypergeometric test was tried to find significant overlapping canonical pathways using 1320 gene sets. In terms of FDR adjusted p.values, top 5 significant overlapping gene sets are listed as below. -
Other Correlation Analyses
-
Correlation between copy number variation genes (focal events) and molecular subtypes
View Report | Testing the association between copy number variation 72 focal events and 12 molecular subtypes across 616 patients, 433 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between copy number variations of arm-level result and molecular subtypes
View Report | Testing the association between copy number variation 82 arm-level events and 12 molecular subtypes across 616 patients, 349 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between gene mutation status and molecular subtypes
View Report | Testing the association between mutation status of 2222 genes and 12 molecular subtypes across 489 patients, 5558 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between mRNA expression and DNA methylation
View Report | The top 25 correlated methylation probes per gene are displayed. Total number of matched samples = 393. Number of gene expression samples = 623. Number of methylation samples = 393. -
Correlations between copy number and mRNA expression
View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are -0.0337, 0.0186, 0.0685, 0.1249, 0.1922, 0.2655, 0.3344, 0.40882, 0.49876, respectively. -
Correlations between copy number and mRNAseq expression
View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are 745.5, 1336, 1860, 2445, 3019, 3567, 4095.5, 4676, 5397, respectively.
-
Summary Report Date = Thu Apr 7 16:23:29 2016
-
Protection = FALSE