This is an overview of Brain Lower Grade Glioma analysis pipelines from Firehose run "28 January 2016".
Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.
-
Sequence and Copy Number Analyses
-
Analysis of mutagenesis by APOBEC cytidine deaminases (P-MACD).
View Report | There are 516 tumor samples in this analysis. The Benjamini-Hochberg-corrected p-value for enrichment of the APOBEC mutation signature in 1 samples is <=0.05. Out of these, 1 have enrichment values >2, which implies that in such samples at least 50% of APOBEC signature mutations have been in fact made by APOBEC enzyme(s). -
CHASM 1.0.5 (Cancer-Specific High-throughput Annotation of Somatic Mutations)
View Report | There are 24674 mutations identified by MuTect and 2476 mutations with significant functional impact at BHFDR <= 0.25. -
LowPass Copy number analysis (GISTIC2)
View Report | There were 52 tumor samples used in this analysis: 15 significant arm-level results, 3 significant focal amplifications, and 2 significant focal deletions were found. -
Mutation Analysis (MutSig 2CV v3.1)
View Report | -
Mutation Analysis (MutSig v2.0)
View Report | -
Mutation Analysis (MutSigCV v0.9)
View Report | -
Mutation Assessor
View Report | -
SNP6 Copy number analysis (GISTIC2)
View Report | There were 513 tumor samples used in this analysis: 24 significant arm-level results, 20 significant focal amplifications, and 29 significant focal deletions were found. -
Correlations to Clinical Parameters
-
Correlation between aggregated molecular cancer subtypes and selected clinical features
View Report | Testing the association between subtypes identified by 12 different clustering approaches and 8 clinical features across 515 patients, 48 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between copy number variation genes (focal events) and selected clinical features
View Report | Testing the association between copy number variation 49 focal events and 8 clinical features across 512 patients, 136 significant findings detected with Q value < 0.25. -
Correlation between copy number variations of arm-level result and selected clinical features
View Report | Testing the association between copy number variation 81 arm-level events and 8 clinical features across 512 patients, 157 significant findings detected with Q value < 0.25. -
Correlation between gene methylation status and clinical features
View Report | Testing the association between 17093 genes and 8 clinical features across 515 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 8 clinical features related to at least one genes. -
Correlation between gene mutation status and selected clinical features
View Report | Testing the association between mutation status of 92 genes and 8 clinical features across 515 patients, 29 significant findings detected with Q value < 0.25. -
Correlation between miRseq expression and clinical features
View Report | Testing the association between 548 miRs and 8 clinical features across 511 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 7 clinical features related to at least one miRs. -
Correlation between mRNA expression and clinical features
View Report | Testing the association between 17814 genes and 6 clinical features across 27 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 3 clinical features related to at least one genes. -
Correlation between mRNAseq expression and clinical features
View Report | Testing the association between 18334 genes and 8 clinical features across 515 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 8 clinical features related to at least one genes. -
Correlation between mutation rate and clinical features
View Report | Testing the association between 2 variables and 9 clinical features across 515 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 5 clinical features related to at least one variables. -
Correlation between RPPA expression and clinical features
View Report | Testing the association between 201 genes and 8 clinical features across 428 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 7 clinical features related to at least one genes. -
Clustering Analyses
-
Clustering of copy number data by focal peak region with absolute value: consensus NMF
View Report | The most robust consensus NMF clustering of 513 samples using the 49 copy number focal regions was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution. -
Clustering of copy number data by peak region with threshold value: consensus NMF
View Report | The most robust consensus NMF clustering of 513 samples using the 49 copy number focal regions was identified for k = 6 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution. -
Clustering of Methylation: consensus NMF
View Report | The most robust consensus NMF clustering of 516 samples using the 7933 most variable genes was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of miRseq mature expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 647 most variable miRs. Consensus ward linkage hierarchical clustering of 508 samples and 647 miRs identified 6 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of miRseq mature expression: consensus NMF
View Report | The most robust consensus NMF clustering of 508 samples using the 647 most variable miRs was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of miRseq precursor expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 137 most variable miRs. Consensus ward linkage hierarchical clustering of 512 samples and 137 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of miRseq precursor expression: consensus NMF
View Report | The most robust consensus NMF clustering of 512 samples using the 150 most variable miRs was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of mRNA expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 1500 most variable genes. Consensus ward linkage hierarchical clustering of 27 samples and 1500 genes identified 4 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of mRNA expression: consensus NMF
View Report | The most robust consensus NMF clustering of 27 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of mRNAseq gene expression: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 1500 most variable genes. Consensus ward linkage hierarchical clustering of 516 samples and 1500 genes identified 7 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of mRNAseq gene expression: consensus NMF
View Report | The most robust consensus NMF clustering of 516 samples using the 1500 most variable genes was identified for k = 5 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Clustering of RPPA data: consensus hierarchical
View Report | Median absolute deviation (MAD) was used to select 199 most variable proteins. Consensus ward linkage hierarchical clustering of 429 samples and 199 proteins identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 10. -
Clustering of RPPA data: consensus NMF
View Report | The most robust consensus NMF clustering of 429 samples using the 199 most variable proteins was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 10 and uused the cophenetic correlation coefficient and the average silhouette width calculation to determine the robust clusters. -
Other Analyses
-
Aggregate Analysis Features
View Report | 517 samples and 570 features are included in this feature table. The figures below show which genomic pair events are co-occurring and which are mutually-exclusive. -
Identification of putative miR direct targets by sequencing data
View Report | The CLR algorithm was applied on 776 miRs and 18334 mRNAs across 512 samples. After 2 filtering steps, the number of 91 miR:genes pairs were detected. -
Pathway Analyses
-
Association of mutation, copy number alteration, and subtype markers with pathways
View Report | There are 70 genes with significant mutation (Q value <= 0.1) and 298 genes with significant copy number alteration (Q value <= 0.25). The identified marker genes (Q value <= 0.01 or within top 2000) are 2000 for subtype 1, 2000 for subtype 2, 2000 for subtype 3, 2000 for subtype 4, 2000 for subtype 5, 2000 for subtype 6, 2000 for subtype 7. Pathways significantly enriched with these genes (Q value <= 0.01) are identified : -
GSEA Class2: Canonical Pathways enriched in each subtypes of mRNAseq_cNMF in LGG-TP
View Report | basic data info -
PARADIGM pathway analysis of mRNA expression and copy number data
View Report | There were 31 significant pathways identified in this analysis. -
PARADIGM pathway analysis of mRNA expression data
View Report | There were 36 significant pathways identified in this analysis. -
PARADIGM pathway analysis of mRNASeq expression and copy number data
View Report | There were 56 significant pathways identified in this analysis. -
PARADIGM pathway analysis of mRNASeq expression data
View Report | There were 69 significant pathways identified in this analysis. -
Significant over-representation of pathway gene sets for a given gene list
View Report | For a given gene list, a hypergeometric test was tried to find significant overlapping canonical pathways using 1320 gene sets. In terms of FDR adjusted p.values, top 5 significant overlapping gene sets are listed as below. -
Other Correlation Analyses
-
Correlation between copy number variation genes (focal events) and molecular subtypes
View Report | Testing the association between copy number variation 49 focal events and 12 molecular subtypes across 513 patients, 358 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between copy number variations of arm-level result and molecular subtypes
View Report | Testing the association between copy number variation 81 arm-level events and 12 molecular subtypes across 513 patients, 459 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between gene mutation status and molecular subtypes
View Report | Testing the association between mutation status of 92 genes and 12 molecular subtypes across 516 patients, 183 significant findings detected with P value < 0.05 and Q value < 0.25. -
Correlation between mRNA expression and DNA methylation
View Report | The top 25 correlated methylation probes per gene are displayed. Total number of matched samples = 516. Number of gene expression samples = 516. Number of methylation samples = 516. -
Correlations between copy number and mRNA expression
View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are -0.16326, -0.0528, 0.03412, 0.1106, 0.1875, 0.27314, 0.36446, 0.47504, 0.61766, respectively. -
Correlations between copy number and mRNAseq expression
View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are 772, 1505.6, 1953, 2384, 2868, 3380, 3972, 4633, 5500.2, respectively.
-
Summary Report Date = Thu Apr 7 17:31:37 2016
-
Protection = FALSE