This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.
Testing the association between mutation status of 44 genes and 11 clinical features across 498 patients, 6 significant findings detected with Q value < 0.25.
-
TP53 mutation correlated to 'PATHOLOGY_T_STAGE', 'PATHOLOGY_N_STAGE', 'NUMBER_OF_LYMPH_NODES', and 'GLEASON_SCORE'.
-
ZMYM3 mutation correlated to 'GLEASON_SCORE'.
-
ZFP36L2 mutation correlated to 'Time to Death'.
Table 1. Get Full Table Overview of the association between mutation status of 44 genes and 11 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 6 significant findings detected.
Clinical Features |
Time to Death |
YEARS TO BIRTH |
PATHOLOGY T STAGE |
PATHOLOGY N STAGE |
RADIATION THERAPY |
HISTOLOGICAL TYPE |
RESIDUAL TUMOR |
NUMBER OF LYMPH NODES |
GLEASON SCORE |
PSA VALUE |
RACE | ||
nMutated (%) | nWild-Type | logrank test | Wilcoxon-test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Wilcoxon-test | Wilcoxon-test | Wilcoxon-test | Fisher's exact test | |
TP53 | 57 (11%) | 441 |
0.294 (1.00) |
0.883 (1.00) |
0.00309 (0.249) |
0.0029 (0.249) |
0.191 (1.00) |
0.686 (1.00) |
0.0103 (0.623) |
0.000136 (0.0219) |
1.97e-09 (9.55e-07) |
0.0284 (0.888) |
1 (1.00) |
ZMYM3 | 12 (2%) | 486 |
0.445 (1.00) |
0.126 (1.00) |
0.0725 (1.00) |
0.248 (1.00) |
0.129 (1.00) |
1 (1.00) |
0.0799 (1.00) |
0.213 (1.00) |
0.00304 (0.249) |
0.453 (1.00) |
1 (1.00) |
ZFP36L2 | 4 (1%) | 494 |
7.89e-05 (0.0191) |
0.63 (1.00) |
0.224 (1.00) |
0.562 (1.00) |
0.342 (1.00) |
1 (1.00) |
0.657 (1.00) |
0.644 (1.00) |
0.728 (1.00) |
0.133 (1.00) |
|
SPOP | 57 (11%) | 441 |
0.798 (1.00) |
0.349 (1.00) |
0.348 (1.00) |
0.123 (1.00) |
1 (1.00) |
0.686 (1.00) |
0.128 (1.00) |
0.0867 (1.00) |
0.903 (1.00) |
0.208 (1.00) |
0.553 (1.00) |
PTEN | 17 (3%) | 481 |
0.619 (1.00) |
0.524 (1.00) |
1 (1.00) |
0.747 (1.00) |
1 (1.00) |
0.411 (1.00) |
0.612 (1.00) |
0.495 (1.00) |
0.362 (1.00) |
0.0127 (0.682) |
1 (1.00) |
NUDT11 | 11 (2%) | 487 |
0.688 (1.00) |
0.0964 (1.00) |
0.452 (1.00) |
0.404 (1.00) |
0.161 (1.00) |
1 (1.00) |
0.584 (1.00) |
0.371 (1.00) |
0.476 (1.00) |
0.651 (1.00) |
1 (1.00) |
MLL2 | 29 (6%) | 469 |
0.444 (1.00) |
0.185 (1.00) |
0.0792 (1.00) |
1 (1.00) |
0.762 (1.00) |
0.599 (1.00) |
0.908 (1.00) |
0.997 (1.00) |
0.0211 (0.786) |
0.222 (1.00) |
1 (1.00) |
CTNNB1 | 13 (3%) | 485 |
0.456 (1.00) |
0.423 (1.00) |
0.678 (1.00) |
0.134 (1.00) |
1 (1.00) |
0.331 (1.00) |
0.2 (1.00) |
0.0847 (1.00) |
0.197 (1.00) |
0.992 (1.00) |
1 (1.00) |
PIK3CA | 14 (3%) | 484 |
0.431 (1.00) |
0.133 (1.00) |
0.453 (1.00) |
0.698 (1.00) |
1 (1.00) |
0.352 (1.00) |
0.00674 (0.466) |
0.342 (1.00) |
0.0197 (0.786) |
0.309 (1.00) |
1 (1.00) |
KDM6A | 13 (3%) | 485 |
0.681 (1.00) |
0.145 (1.00) |
0.0838 (1.00) |
0.477 (1.00) |
0.38 (1.00) |
1 (1.00) |
0.0951 (1.00) |
0.249 (1.00) |
0.529 (1.00) |
0.454 (1.00) |
1 (1.00) |
FOXA1 | 28 (6%) | 470 |
0.378 (1.00) |
0.193 (1.00) |
0.914 (1.00) |
0.0952 (1.00) |
0.745 (1.00) |
0.586 (1.00) |
0.73 (1.00) |
0.0982 (1.00) |
0.962 (1.00) |
0.411 (1.00) |
0.0539 (1.00) |
MLL3 | 29 (6%) | 469 |
0.133 (1.00) |
0.791 (1.00) |
0.434 (1.00) |
1 (1.00) |
0.0628 (1.00) |
0.599 (1.00) |
0.728 (1.00) |
0.69 (1.00) |
0.175 (1.00) |
0.405 (1.00) |
1 (1.00) |
GAGE2A | 5 (1%) | 493 |
0.84 (1.00) |
0.518 (1.00) |
0.441 (1.00) |
1 (1.00) |
0.503 (1.00) |
1 (1.00) |
0.722 (1.00) |
0.325 (1.00) |
0.911 (1.00) |
0.544 (1.00) |
|
TNRC18 | 9 (2%) | 489 |
0.476 (1.00) |
0.264 (1.00) |
0.286 (1.00) |
0.646 (1.00) |
0.0725 (1.00) |
1 (1.00) |
0.371 (1.00) |
0.658 (1.00) |
0.243 (1.00) |
0.368 (1.00) |
|
AGAP6 | 5 (1%) | 493 |
0.783 (1.00) |
0.929 (1.00) |
0.108 (1.00) |
0.589 (1.00) |
0.503 (1.00) |
0.142 (1.00) |
0.238 (1.00) |
0.271 (1.00) |
0.151 (1.00) |
0.548 (1.00) |
|
IDH1 | 6 (1%) | 492 |
0.667 (1.00) |
0.315 (1.00) |
0.477 (1.00) |
1 (1.00) |
0.568 (1.00) |
1 (1.00) |
0.0537 (1.00) |
0.787 (1.00) |
0.017 (0.786) |
0.526 (1.00) |
|
GATA6 | 4 (1%) | 494 |
0.837 (1.00) |
0.324 (1.00) |
0.672 (1.00) |
0.562 (1.00) |
0.428 (1.00) |
1 (1.00) |
1 (1.00) |
0.737 (1.00) |
0.728 (1.00) |
0.0385 (0.888) |
|
SMG7 | 8 (2%) | 490 |
0.645 (1.00) |
0.0879 (1.00) |
0.287 (1.00) |
0.361 (1.00) |
0.602 (1.00) |
1 (1.00) |
1 (1.00) |
0.162 (1.00) |
0.939 (1.00) |
0.271 (1.00) |
1 (1.00) |
CNTNAP1 | 9 (2%) | 489 |
0.791 (1.00) |
0.21 (1.00) |
1 (1.00) |
0.619 (1.00) |
0.279 (1.00) |
0.242 (1.00) |
0.227 (1.00) |
0.573 (1.00) |
0.233 (1.00) |
0.278 (1.00) |
|
CDKN1B | 6 (1%) | 492 |
0.689 (1.00) |
0.316 (1.00) |
0.109 (1.00) |
1 (1.00) |
0.568 (1.00) |
1 (1.00) |
0.0723 (1.00) |
0.941 (1.00) |
0.897 (1.00) |
0.811 (1.00) |
1 (1.00) |
EOMES | 5 (1%) | 493 |
0.488 (1.00) |
0.483 (1.00) |
0.106 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.46 (1.00) |
0.325 (1.00) |
0.902 (1.00) |
0.282 (1.00) |
|
NBPF1 | 9 (2%) | 489 |
0.719 (1.00) |
0.404 (1.00) |
0.114 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.0835 (1.00) |
0.763 (1.00) |
0.0383 (0.888) |
0.637 (1.00) |
1 (1.00) |
LMOD2 | 6 (1%) | 492 |
0.831 (1.00) |
0.699 (1.00) |
0.717 (1.00) |
1 (1.00) |
0.503 (1.00) |
1 (1.00) |
1 (1.00) |
0.941 (1.00) |
0.859 (1.00) |
0.0904 (1.00) |
|
EHHADH | 5 (1%) | 493 |
0.708 (1.00) |
0.431 (1.00) |
0.686 (1.00) |
1 (1.00) |
0.128 (1.00) |
1 (1.00) |
0.721 (1.00) |
0.941 (1.00) |
0.57 (1.00) |
0.746 (1.00) |
|
MED12 | 8 (2%) | 490 |
0.737 (1.00) |
0.377 (1.00) |
0.761 (1.00) |
0.619 (1.00) |
1 (1.00) |
1 (1.00) |
0.112 (1.00) |
0.49 (1.00) |
0.304 (1.00) |
0.93 (1.00) |
1 (1.00) |
ZNF709 | 5 (1%) | 493 |
0.708 (1.00) |
0.459 (1.00) |
0.244 (1.00) |
0.589 (1.00) |
0.128 (1.00) |
1 (1.00) |
0.22 (1.00) |
0.271 (1.00) |
0.212 (1.00) |
0.468 (1.00) |
|
TCEB3 | 4 (1%) | 494 |
0.871 (1.00) |
0.384 (1.00) |
1 (1.00) |
0.461 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.641 (1.00) |
0.467 (1.00) |
0.931 (1.00) |
|
MED15 | 7 (1%) | 491 |
0.718 (1.00) |
0.193 (1.00) |
1 (1.00) |
0.357 (1.00) |
0.568 (1.00) |
1 (1.00) |
0.764 (1.00) |
0.191 (1.00) |
0.212 (1.00) |
0.149 (1.00) |
0.164 (1.00) |
ERF | 5 (1%) | 493 |
0.72 (1.00) |
0.302 (1.00) |
0.105 (1.00) |
0.589 (1.00) |
0.503 (1.00) |
1 (1.00) |
0.459 (1.00) |
0.325 (1.00) |
0.0758 (1.00) |
0.721 (1.00) |
|
ERN1 | 4 (1%) | 494 |
0.78 (1.00) |
0.283 (1.00) |
0.675 (1.00) |
0.562 (1.00) |
1 (1.00) |
1 (1.00) |
0.238 (1.00) |
0.875 (1.00) |
0.812 (1.00) |
0.37 (1.00) |
|
MLLT10 | 5 (1%) | 493 |
0.766 (1.00) |
0.498 (1.00) |
1 (1.00) |
0.589 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.271 (1.00) |
0.704 (1.00) |
0.218 (1.00) |
1 (1.00) |
ZFHX3 | 16 (3%) | 482 |
0.641 (1.00) |
0.198 (1.00) |
1 (1.00) |
0.716 (1.00) |
0.706 (1.00) |
0.392 (1.00) |
0.354 (1.00) |
0.71 (1.00) |
0.0366 (0.888) |
0.634 (1.00) |
0.26 (1.00) |
FMN1 | 4 (1%) | 494 |
0.78 (1.00) |
0.234 (1.00) |
0.0668 (1.00) |
0.562 (1.00) |
0.0838 (1.00) |
1 (1.00) |
0.659 (1.00) |
0.633 (1.00) |
0.467 (1.00) |
0.0266 (0.888) |
|
AKT1 | 3 (1%) | 495 |
0.841 (1.00) |
0.998 (1.00) |
0.586 (1.00) |
0.461 (1.00) |
0.342 (1.00) |
1 (1.00) |
1 (1.00) |
0.641 (1.00) |
0.944 (1.00) |
0.908 (1.00) |
|
ATM | 22 (4%) | 476 |
0.324 (1.00) |
0.563 (1.00) |
0.073 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.0772 (1.00) |
0.841 (1.00) |
0.314 (1.00) |
0.804 (1.00) |
0.347 (1.00) |
STRC | 5 (1%) | 493 |
0.802 (1.00) |
0.515 (1.00) |
0.243 (1.00) |
0.159 (1.00) |
1 (1.00) |
1 (1.00) |
0.22 (1.00) |
0.12 (1.00) |
0.212 (1.00) |
0.468 (1.00) |
|
APC | 10 (2%) | 488 |
0.179 (1.00) |
0.607 (1.00) |
0.577 (1.00) |
1 (1.00) |
0.613 (1.00) |
1 (1.00) |
0.164 (1.00) |
0.559 (1.00) |
0.0377 (0.888) |
0.767 (1.00) |
|
MYOT | 5 (1%) | 493 |
0.725 (1.00) |
0.019 (0.786) |
0.244 (1.00) |
0.562 (1.00) |
1 (1.00) |
0.142 (1.00) |
0.22 (1.00) |
0.875 (1.00) |
0.0344 (0.888) |
0.409 (1.00) |
|
KIRREL | 6 (1%) | 492 |
0.725 (1.00) |
0.736 (1.00) |
0.721 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.742 (1.00) |
0.884 (1.00) |
0.605 (1.00) |
0.453 (1.00) |
1 (1.00) |
PGBD2 | 3 (1%) | 495 |
0.752 (1.00) |
0.032 (0.888) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.395 (1.00) |
0.0619 (1.00) |
0.897 (1.00) |
|
LOC100132247 | 3 (1%) | 495 |
0.887 (1.00) |
0.45 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.0878 (1.00) |
0.605 (1.00) |
0.944 (1.00) |
0.788 (1.00) |
||
EMG1 | 4 (1%) | 494 |
0.469 (1.00) |
0.736 (1.00) |
0.672 (1.00) |
1 (1.00) |
1 (1.00) |
0.115 (1.00) |
0.421 (1.00) |
0.325 (1.00) |
0.977 (1.00) |
0.295 (1.00) |
|
CDH16 | 4 (1%) | 494 |
0.811 (1.00) |
0.932 (1.00) |
0.226 (1.00) |
1 (1.00) |
0.428 (1.00) |
1 (1.00) |
0.42 (1.00) |
0.395 (1.00) |
0.188 (1.00) |
0.439 (1.00) |
|
KRT25 | 6 (1%) | 492 |
0.829 (1.00) |
0.407 (1.00) |
0.477 (1.00) |
0.233 (1.00) |
0.177 (1.00) |
1 (1.00) |
0.46 (1.00) |
0.268 (1.00) |
0.147 (1.00) |
0.645 (1.00) |
1 (1.00) |
P value = 0.00309 (Fisher's exact test), Q value = 0.25
Table S1. Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'
nPatients | T2 | T3 | T4 |
---|---|---|---|
ALL | 188 | 293 | 10 |
TP53 MUTATED | 11 | 44 | 2 |
TP53 WILD-TYPE | 177 | 249 | 8 |
Figure S1. Get High-res Image Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #3: 'PATHOLOGY_T_STAGE'

P value = 0.0029 (Fisher's exact test), Q value = 0.25
Table S2. Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 346 | 79 |
TP53 MUTATED | 37 | 19 |
TP53 WILD-TYPE | 309 | 60 |
Figure S2. Get High-res Image Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #4: 'PATHOLOGY_N_STAGE'

P value = 0.000136 (Wilcoxon-test), Q value = 0.022
Table S3. Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #8: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 407 | 0.4 (1.4) |
TP53 MUTATED | 53 | 1.2 (2.3) |
TP53 WILD-TYPE | 354 | 0.3 (1.1) |
Figure S3. Get High-res Image Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #8: 'NUMBER_OF_LYMPH_NODES'

P value = 1.97e-09 (Wilcoxon-test), Q value = 9.5e-07
Table S4. Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #9: 'GLEASON_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 498 | 7.6 (1.0) |
TP53 MUTATED | 57 | 8.4 (0.9) |
TP53 WILD-TYPE | 441 | 7.5 (1.0) |
Figure S4. Get High-res Image Gene #2: 'TP53 MUTATION STATUS' versus Clinical Feature #9: 'GLEASON_SCORE'

P value = 0.00304 (Wilcoxon-test), Q value = 0.25
Table S5. Gene #31: 'ZMYM3 MUTATION STATUS' versus Clinical Feature #9: 'GLEASON_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 498 | 7.6 (1.0) |
ZMYM3 MUTATED | 12 | 8.5 (0.9) |
ZMYM3 WILD-TYPE | 486 | 7.6 (1.0) |
Figure S5. Get High-res Image Gene #31: 'ZMYM3 MUTATION STATUS' versus Clinical Feature #9: 'GLEASON_SCORE'

P value = 7.89e-05 (logrank test), Q value = 0.019
Table S6. Gene #37: 'ZFP36L2 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 498 | 10 | 0.8 - 165.2 (30.4) |
ZFP36L2 MUTATED | 4 | 1 | 25.9 - 49.9 (33.0) |
ZFP36L2 WILD-TYPE | 494 | 9 | 0.8 - 165.2 (30.4) |
Figure S6. Get High-res Image Gene #37: 'ZFP36L2 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

-
Mutation data file = sample_sig_gene_table.txt from Mutsig_2CV pipeline
-
Processed Mutation data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_Correlate_Genomic_Events_Preprocess/PRAD-TP/22592901/transformed.cor.cli.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/PRAD-TP/22506989/PRAD-TP.merged_data.txt
-
Number of patients = 498
-
Number of significantly mutated genes = 44
-
Number of selected clinical features = 11
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.