Correlation between miRseq expression and clinical features
Mesothelioma (Primary solid tumor)
28 January 2016  |  analyses__2016_01_28
Maintainer Information
Citation Information
Maintained by Juok Cho (Broad Institute)
Cite as Broad Institute TCGA Genome Data Analysis Center (2016): Correlation between miRseq expression and clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1HQ3ZB5
Overview
Introduction

This pipeline uses various statistical tests to identify miRs whose log2 expression levels correlated to selected clinical features. The input file " MESO-TP.miRseq_RPKM_log2.txt " is generated in the pipeline miRseq_Preprocess in the stddata run.

Summary

Testing the association between 519 miRs and 11 clinical features across 87 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 4 clinical features related to at least one miRs.

  • 30 miRs correlated to 'DAYS_TO_DEATH_OR_LAST_FUP'.

    • HSA-MIR-500B ,  HSA-MIR-3129 ,  HSA-MIR-100 ,  HSA-MIR-653 ,  HSA-MIR-101-1 ,  ...

  • 1 miR correlated to 'PATHOLOGY_N_STAGE'.

    • HSA-MIR-31

  • 1 miR correlated to 'RADIATION_THERAPY'.

    • HSA-MIR-548Q

  • 24 miRs correlated to 'HISTOLOGICAL_TYPE'.

    • HSA-MIR-30B ,  HSA-MIR-200A ,  HSA-MIR-95 ,  HSA-MIR-212 ,  HSA-MIR-200B ,  ...

  • No miRs correlated to 'YEARS_TO_BIRTH', 'PATHOLOGIC_STAGE', 'PATHOLOGY_T_STAGE', 'PATHOLOGY_M_STAGE', 'GENDER', 'KARNOFSKY_PERFORMANCE_SCORE', and 'RESIDUAL_TUMOR'.

Results
Overview of the results

Complete statistical result table is provided in Supplement Table 1

Table 1.  Get Full Table This table shows the clinical features, statistical methods used, and the number of miRs that are significantly associated with each clinical feature at P value < 0.05 and Q value < 0.3.

Clinical feature Statistical test Significant miRs Associated with                 Associated with
DAYS_TO_DEATH_OR_LAST_FUP Cox regression test N=30   N=NA   N=NA
YEARS_TO_BIRTH Spearman correlation test   N=0        
PATHOLOGIC_STAGE Kruskal-Wallis test   N=0        
PATHOLOGY_T_STAGE Spearman correlation test   N=0        
PATHOLOGY_N_STAGE Spearman correlation test N=1 higher stage N=1 lower stage N=0
PATHOLOGY_M_STAGE Wilcoxon test   N=0        
GENDER Wilcoxon test   N=0        
RADIATION_THERAPY Wilcoxon test N=1 yes N=1 no N=0
KARNOFSKY_PERFORMANCE_SCORE Spearman correlation test   N=0        
HISTOLOGICAL_TYPE Kruskal-Wallis test N=24        
RESIDUAL_TUMOR Kruskal-Wallis test   N=0        
Clinical variable #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

30 miRs related to 'DAYS_TO_DEATH_OR_LAST_FUP'.

Table S1.  Basic characteristics of clinical feature: 'DAYS_TO_DEATH_OR_LAST_FUP'

DAYS_TO_DEATH_OR_LAST_FUP Duration (Months) 0.7-91.7 (median=16.9)
  censored N = 13
  death N = 73
     
  Significant markers N = 30
  associated with shorter survival NA
  associated with longer survival NA
List of top 10 miRs differentially expressed by 'DAYS_TO_DEATH_OR_LAST_FUP'

Table S2.  Get Full Table List of top 10 miRs significantly associated with 'Time to Death' by Cox regression test. For the survival curves, it compared quantile intervals at c(0, 0.25, 0.50, 0.75, 1) and did not try survival analysis if there is only one interval.

logrank_P Q C_index
HSA-MIR-500B 9e-06 0.0027 0.464
HSA-MIR-3129 1.22e-05 0.0027 0.687
HSA-MIR-100 1.58e-05 0.0027 0.362
HSA-MIR-653 2.21e-05 0.0027 0.377
HSA-MIR-101-1 2.97e-05 0.0027 0.326
HSA-MIR-29C 3.42e-05 0.0027 0.323
HSA-MIR-30B 3.6e-05 0.0027 0.351
HSA-MIR-1245 5.01e-05 0.0033 0.646
HSA-MIR-450B 0.00012 0.0069 0.585
HSA-MIR-30D 0.000158 0.0082 0.332
Clinical variable #2: 'YEARS_TO_BIRTH'

No miR related to 'YEARS_TO_BIRTH'.

Table S3.  Basic characteristics of clinical feature: 'YEARS_TO_BIRTH'

YEARS_TO_BIRTH Mean (SD) 62.99 (9.8)
  Significant markers N = 0
Clinical variable #3: 'PATHOLOGIC_STAGE'

No miR related to 'PATHOLOGIC_STAGE'.

Table S4.  Basic characteristics of clinical feature: 'PATHOLOGIC_STAGE'

PATHOLOGIC_STAGE Labels N
  STAGE I 7
  STAGE IA 2
  STAGE IB 1
  STAGE II 16
  STAGE III 45
  STAGE IV 16
     
  Significant markers N = 0
Clinical variable #4: 'PATHOLOGY_T_STAGE'

No miR related to 'PATHOLOGY_T_STAGE'.

Table S5.  Basic characteristics of clinical feature: 'PATHOLOGY_T_STAGE'

PATHOLOGY_T_STAGE Mean (SD) 2.52 (0.95)
  N
  T1 14
  T2 26
  T3 32
  T4 13
     
  Significant markers N = 0
Clinical variable #5: 'PATHOLOGY_N_STAGE'

One miR related to 'PATHOLOGY_N_STAGE'.

Table S6.  Basic characteristics of clinical feature: 'PATHOLOGY_N_STAGE'

PATHOLOGY_N_STAGE Mean (SD) 0.86 (0.99)
  N
  N0 44
  N1 10
  N2 26
  N3 3
     
  Significant markers N = 1
  pos. correlated 1
  neg. correlated 0
List of one miR differentially expressed by 'PATHOLOGY_N_STAGE'

Table S7.  Get Full Table List of one miR significantly correlated to 'PATHOLOGY_N_STAGE' by Spearman correlation test

SpearmanCorr corrP Q
HSA-MIR-31 0.4209 9.111e-05 0.0473
Clinical variable #6: 'PATHOLOGY_M_STAGE'

No miR related to 'PATHOLOGY_M_STAGE'.

Table S8.  Basic characteristics of clinical feature: 'PATHOLOGY_M_STAGE'

PATHOLOGY_M_STAGE Labels N
  class0 57
  class1 3
     
  Significant markers N = 0
Clinical variable #7: 'GENDER'

No miR related to 'GENDER'.

Table S9.  Basic characteristics of clinical feature: 'GENDER'

GENDER Labels N
  FEMALE 16
  MALE 71
     
  Significant markers N = 0
Clinical variable #8: 'RADIATION_THERAPY'

One miR related to 'RADIATION_THERAPY'.

Table S10.  Basic characteristics of clinical feature: 'RADIATION_THERAPY'

RADIATION_THERAPY Labels N
  NO 62
  YES 24
     
  Significant markers N = 1
  Higher in YES 1
  Higher in NO 0
List of one miR differentially expressed by 'RADIATION_THERAPY'

Table S11.  Get Full Table List of one miR differentially expressed by 'RADIATION_THERAPY'

W(pos if higher in 'YES') wilcoxontestP Q AUC
HSA-MIR-548Q 67 0.0004449 0.231 0.835
Clinical variable #9: 'KARNOFSKY_PERFORMANCE_SCORE'

No miR related to 'KARNOFSKY_PERFORMANCE_SCORE'.

Table S12.  Basic characteristics of clinical feature: 'KARNOFSKY_PERFORMANCE_SCORE'

KARNOFSKY_PERFORMANCE_SCORE Mean (SD) 77.65 (32)
  Score N
  0 2
  50 1
  80 3
  90 7
  100 4
     
  Significant markers N = 0
Clinical variable #10: 'HISTOLOGICAL_TYPE'

24 miRs related to 'HISTOLOGICAL_TYPE'.

Table S13.  Basic characteristics of clinical feature: 'HISTOLOGICAL_TYPE'

HISTOLOGICAL_TYPE Labels N
  BIPHASIC MESOTHELIOMA 23
  DIFFUSE MALIGNANT MESOTHELIOMA - NOS 5
  EPITHELIOID MESOTHELIOMA 57
  SARCOMATOID MESOTHELIOMA 2
     
  Significant markers N = 24
List of top 10 miRs differentially expressed by 'HISTOLOGICAL_TYPE'

Table S14.  Get Full Table List of top 10 miRs differentially expressed by 'HISTOLOGICAL_TYPE'

kruskal_wallis_P Q
HSA-MIR-30B 0.0002585 0.111
HSA-MIR-200A 0.0004381 0.111
HSA-MIR-95 0.0006409 0.111
HSA-MIR-212 0.001023 0.119
HSA-MIR-200B 0.001149 0.119
HSA-MIR-30D 0.001528 0.132
HSA-MIR-3129 0.002837 0.165
HSA-MIR-676 0.00284 0.165
HSA-MIR-193A 0.002891 0.165
HSA-MIR-29C 0.003361 0.165
Clinical variable #11: 'RESIDUAL_TUMOR'

No miR related to 'RESIDUAL_TUMOR'.

Table S15.  Basic characteristics of clinical feature: 'RESIDUAL_TUMOR'

RESIDUAL_TUMOR Labels N
  R0 17
  R1 3
  R2 15
  RX 11
     
  Significant markers N = 0
Methods & Data
Input
  • Expresson data file = MESO-TP.miRseq_RPKM_log2.txt

  • Clinical data file = MESO-TP.merged_data.txt

  • Number of patients = 87

  • Number of miRs = 519

  • Number of clinical features = 11

Selected clinical features
  • Further details on clinical features selected for this analysis, please find a documentation on selected CDEs (Clinical Data Elements). The first column of the file is a formula to convert values and the second column is a clinical parameter name.

  • Survival time data

    • Survival time data is a combined value of days_to_death and days_to_last_followup. For each patient, it creates a combined value 'days_to_death_or_last_fup' using conversion process below.

      • if 'vital_status'==1(dead), 'days_to_last_followup' is always NA. Thus, uses 'days_to_death' value for 'days_to_death_or_fup'

      • if 'vital_status'==0(alive),

        • if 'days_to_death'==NA & 'days_to_last_followup'!=NA, uses 'days_to_last_followup' value for 'days_to_death_or_fup'

        • if 'days_to_death'!=NA, excludes this case in survival analysis and report the case.

      • if 'vital_status'==NA,excludes this case in survival analysis and report the case.

    • cf. In certain diesase types such as SKCM, days_to_death parameter is replaced with time_from_specimen_dx or time_from_specimen_procurement_to_death .

  • This analysis excluded clinical variables that has only NA values.

Survival analysis

For survival clinical features, logrank test in univariate Cox regression analysis with proportional hazards model (Andersen and Gill 1982) was used to estimate the P values comparing quantile intervals using the 'coxph' function in R. Kaplan-Meier survival curves were plotted using quantile intervals at c(0, 0.25, 0.50, 0.75, 1). If there is only one interval group, it will not try survival analysis.

Correlation analysis

For continuous numerical clinical features, Spearman's rank correlation coefficients (Spearman 1904) and two-tailed P values were estimated using 'cor.test' function in R

Wilcoxon rank sum test (Mann-Whitney U test)

For two groups (mutant or wild-type) of continuous type of clinical data, wilcoxon rank sum test (Mann and Whitney, 1947) was applied to compare their mean difference using 'wilcox.test(continuous.clinical ~ as.factor(group), exact=FALSE)' function in R. This test is equivalent to the Mann-Whitney test.

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Andersen and Gill, Cox's regression model for counting processes, a large sample study, Annals of Statistics 10(4):1100-1120 (1982)
[2] Spearman, C, The proof and measurement of association between two things, Amer. J. Psychol 15:72-101 (1904)
[3] Mann and Whitney, On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Annals of Mathematical Statistics 18 (1), 50-60 (1947)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)