Skin Cutaneous Melanoma: Correlation between molecular cancer subtypes and selected clinical features
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 6 different clustering approaches and 3 clinical features across 144 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based miR expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 6 different clustering approaches and 3 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER
Statistical Tests logrank test ANOVA Fisher's exact test
CN CNMF 0.343
(1.00)
0.304
(1.00)
0.975
(1.00)
METHLYATION CNMF 0.0535
(0.855)
0.249
(1.00)
0.172
(1.00)
RNAseq CNMF subtypes 0.000585
(0.0105)
0.0536
(0.855)
0.408
(1.00)
RNAseq cHierClus subtypes 0.0189
(0.321)
0.0729
(1.00)
0.467
(1.00)
MIRseq CNMF subtypes 0.135
(1.00)
0.37
(1.00)
0.609
(1.00)
MIRseq cHierClus subtypes 0.197
(1.00)
0.398
(1.00)
0.861
(1.00)
Clustering Approach #1: 'CN CNMF'

Table S1.  Get Full Table Description of clustering approach #1: 'CN CNMF'

Cluster Labels 1 2 3
Number of samples 56 47 41
'CN CNMF' versus 'Time to Death'

P value = 0.343 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 141 68 0.2 - 346.0 (47.5)
subtype1 55 29 0.2 - 248.6 (41.6)
subtype2 47 19 4.2 - 314.5 (46.8)
subtype3 39 20 6.4 - 346.0 (58.8)

Figure S1.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

'CN CNMF' versus 'AGE'

P value = 0.304 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 142 56.0 (16.2)
subtype1 55 57.5 (18.0)
subtype2 47 57.1 (13.7)
subtype3 40 52.6 (16.3)

Figure S2.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

'CN CNMF' versus 'GENDER'

P value = 0.975 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 51 93
subtype1 20 36
subtype2 16 31
subtype3 15 26

Figure S3.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #2: 'METHLYATION CNMF'

Table S5.  Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 38 53 48
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.0535 (logrank test), Q value = 0.86

Table S6.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 136 67 0.2 - 346.0 (47.5)
subtype1 38 25 0.2 - 204.6 (39.9)
subtype2 51 22 2.6 - 248.6 (53.9)
subtype3 47 20 2.7 - 346.0 (47.3)

Figure S4.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.249 (ANOVA), Q value = 1

Table S7.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 137 56.5 (16.2)
subtype1 38 55.3 (17.1)
subtype2 51 59.4 (16.6)
subtype3 48 54.2 (14.7)

Figure S5.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.172 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 51 88
subtype1 14 24
subtype2 24 29
subtype3 13 35

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S9.  Get Full Table Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 51 40 50
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.000585 (logrank test), Q value = 0.011

Table S10.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 138 68 0.2 - 346.0 (47.5)
subtype1 50 27 6.4 - 346.0 (61.3)
subtype2 39 10 4.2 - 203.0 (53.3)
subtype3 49 31 0.2 - 228.6 (35.9)

Figure S7.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.0536 (ANOVA), Q value = 0.86

Table S11.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 139 56.1 (16.3)
subtype1 50 51.7 (16.7)
subtype2 40 57.8 (15.8)
subtype3 49 59.1 (15.7)

Figure S8.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.408 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 50 91
subtype1 21 30
subtype2 11 29
subtype3 18 32

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S13.  Get Full Table Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 36 69 36
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0189 (logrank test), Q value = 0.32

Table S14.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 138 68 0.2 - 346.0 (47.5)
subtype1 35 21 7.8 - 346.0 (61.2)
subtype2 68 25 2.7 - 248.6 (49.2)
subtype3 35 22 0.2 - 228.6 (33.2)

Figure S10.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0729 (ANOVA), Q value = 1

Table S15.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 139 56.1 (16.3)
subtype1 35 51.5 (15.5)
subtype2 69 56.1 (16.3)
subtype3 35 60.5 (16.5)

Figure S11.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.467 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 50 91
subtype1 15 21
subtype2 21 48
subtype3 14 22

Figure S12.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #5: 'MIRseq CNMF subtypes'

Table S17.  Get Full Table Description of clustering approach #5: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 31 50 31 22 2
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.135 (logrank test), Q value = 1

Table S18.  Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 132 65 0.2 - 346.0 (47.5)
subtype1 31 14 17.0 - 346.0 (44.0)
subtype2 49 28 2.6 - 216.9 (43.2)
subtype3 31 17 7.8 - 314.5 (55.9)
subtype4 21 6 0.2 - 248.6 (46.8)

Figure S13.  Get High-res Image Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.37 (ANOVA), Q value = 1

Table S19.  Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 132 56.2 (16.2)
subtype1 31 54.5 (13.7)
subtype2 49 59.0 (16.6)
subtype3 31 52.8 (17.3)
subtype4 21 56.8 (17.0)

Figure S14.  Get High-res Image Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.609 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 47 87
subtype1 13 18
subtype2 18 32
subtype3 8 23
subtype4 8 14

Figure S15.  Get High-res Image Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #6: 'MIRseq cHierClus subtypes'

Table S21.  Get Full Table Description of clustering approach #6: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 16 89 31
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.197 (logrank test), Q value = 1

Table S22.  Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 134 66 0.2 - 346.0 (47.7)
subtype1 15 3 0.2 - 203.0 (28.8)
subtype2 88 49 2.6 - 314.5 (47.3)
subtype3 31 14 10.1 - 346.0 (61.2)

Figure S16.  Get High-res Image Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.398 (ANOVA), Q value = 1

Table S23.  Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 134 56.1 (16.1)
subtype1 15 58.5 (15.8)
subtype2 88 56.9 (16.9)
subtype3 31 52.8 (13.7)

Figure S17.  Get High-res Image Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.861 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 49 87
subtype1 6 10
subtype2 33 56
subtype3 10 21

Figure S18.  Get High-res Image Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Methods & Data
Input
  • Cluster data file = SKCM-TM.mergedcluster.txt

  • Clinical data file = SKCM-TM.clin.merged.picked.txt

  • Number of patients = 144

  • Number of clustering approaches = 6

  • Number of selected clinical features = 3

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)