(All_Primary cohort)
This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 8 different clustering approaches and 7 clinical features across 31 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
5 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.
-
CNMF clustering analysis on RPPA data identified 2 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on RPPA data identified 2 subtypes that do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 7 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.
Clinical Features |
Time to Death |
AGE |
PRIMARY SITE OF DISEASE |
GENDER |
LYMPH NODE METASTASIS |
TUMOR STAGECODE |
NEOPLASM DISEASESTAGE |
Statistical Tests | logrank test | ANOVA | Chi-square test | Fisher's exact test | Chi-square test | ANOVA | Chi-square test |
Copy Number Ratio CNMF subtypes |
0.646 (1.00) |
0.589 (1.00) |
0.23 (1.00) |
0.278 (1.00) |
0.595 (1.00) |
0.602 (1.00) |
|
METHLYATION CNMF |
0.365 (1.00) |
0.839 (1.00) |
0.203 (1.00) |
0.115 (1.00) |
0.576 (1.00) |
0.644 (1.00) |
|
RPPA CNMF subtypes |
0.841 (1.00) |
0.679 (1.00) |
1 (1.00) |
0.109 (1.00) |
0.443 (1.00) |
||
RPPA cHierClus subtypes |
0.841 (1.00) |
0.679 (1.00) |
1 (1.00) |
0.109 (1.00) |
0.443 (1.00) |
||
RNAseq CNMF subtypes |
0.918 (1.00) |
0.303 (1.00) |
0.468 (1.00) |
0.231 (1.00) |
0.517 (1.00) |
0.325 (1.00) |
|
RNAseq cHierClus subtypes |
0.918 (1.00) |
0.215 (1.00) |
0.492 (1.00) |
0.399 (1.00) |
0.366 (1.00) |
0.212 (1.00) |
|
MIRSEQ CNMF |
0.302 (1.00) |
0.776 (1.00) |
0.132 (1.00) |
1 (1.00) |
0.485 (1.00) |
0.586 (1.00) |
|
MIRSEQ CHIERARCHICAL |
0.336 (1.00) |
0.201 (1.00) |
0.617 (1.00) |
1 (1.00) |
0.708 (1.00) |
0.523 (1.00) |
Table S1. Get Full Table Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 10 | 8 | 11 |
P value = 0.646 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 22 | 5 | 0.0 - 27.0 (1.2) |
subtype1 | 6 | 1 | 0.1 - 12.1 (0.9) |
subtype2 | 8 | 1 | 0.0 - 24.0 (0.5) |
subtype3 | 8 | 3 | 0.3 - 27.0 (7.8) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.589 (ANOVA), Q value = 1
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 26 | 61.1 (15.3) |
subtype1 | 8 | 61.9 (14.1) |
subtype2 | 8 | 56.5 (10.9) |
subtype3 | 10 | 64.1 (19.4) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.23 (Chi-square test), Q value = 1
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 25 | 2 |
subtype1 | 2 | 7 | 1 |
subtype2 | 0 | 7 | 1 |
subtype3 | 0 | 11 | 0 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 0.278 (Fisher's exact test), Q value = 1
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 20 |
subtype1 | 5 | 5 |
subtype2 | 2 | 6 |
subtype3 | 2 | 9 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.595 (Chi-square test), Q value = 1
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N1B | N2A | N2B | N2C | N3 | NX |
---|---|---|---|---|---|---|---|---|
ALL | 15 | 1 | 1 | 1 | 3 | 1 | 3 | 3 |
subtype1 | 6 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
subtype2 | 4 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
subtype3 | 5 | 0 | 0 | 0 | 1 | 1 | 2 | 2 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.602 (Chi-square test), Q value = 1
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE II | STAGE IIA | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 1 | 15 | 1 | 3 | 4 | 1 |
subtype1 | 1 | 0 | 1 | 5 | 0 | 1 | 0 | 0 |
subtype2 | 0 | 0 | 0 | 4 | 1 | 1 | 2 | 0 |
subtype3 | 0 | 1 | 0 | 6 | 0 | 1 | 2 | 1 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S8. Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 4 | 7 | 11 | 5 | 4 |
P value = 0.365 (logrank test), Q value = 1
Table S9. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 24 | 5 | 0.0 - 27.0 (1.2) |
subtype1 | 4 | 0 | 0.1 - 3.9 (0.9) |
subtype2 | 7 | 1 | 0.0 - 24.0 (7.8) |
subtype3 | 6 | 3 | 0.5 - 27.0 (3.6) |
subtype4 | 4 | 0 | 0.1 - 1.3 (0.3) |
subtype5 | 3 | 1 | 0.4 - 12.1 (0.4) |
Figure S7. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.839 (ANOVA), Q value = 1
Table S10. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 28 | 59.4 (16.0) |
subtype1 | 4 | 64.5 (11.1) |
subtype2 | 7 | 63.9 (15.8) |
subtype3 | 8 | 56.9 (21.2) |
subtype4 | 5 | 56.0 (14.0) |
subtype5 | 4 | 56.0 (15.1) |
Figure S8. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.203 (Chi-square test), Q value = 1
Table S11. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 27 | 2 |
subtype1 | 0 | 4 | 0 |
subtype2 | 0 | 5 | 2 |
subtype3 | 2 | 9 | 0 |
subtype4 | 0 | 5 | 0 |
subtype5 | 0 | 4 | 0 |
Figure S9. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 0.115 (Chi-square test), Q value = 1
Table S12. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 10 | 21 |
subtype1 | 2 | 2 |
subtype2 | 1 | 6 |
subtype3 | 4 | 7 |
subtype4 | 0 | 5 |
subtype5 | 3 | 1 |
Figure S10. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'

P value = 0.576 (Chi-square test), Q value = 1
Table S13. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1 | N1A | N1B | N2A | N2B | N2C | N3 | NX |
---|---|---|---|---|---|---|---|---|---|
ALL | 16 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 3 |
subtype1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
subtype2 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype3 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 |
subtype4 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
subtype5 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Figure S11. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.644 (Chi-square test), Q value = 1
Table S14. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE II | STAGE IIA | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 1 | 16 | 1 | 4 | 4 | 1 |
subtype1 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 |
subtype2 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 |
subtype3 | 0 | 1 | 0 | 4 | 0 | 2 | 2 | 1 |
subtype4 | 1 | 0 | 0 | 3 | 0 | 0 | 1 | 0 |
subtype5 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 |
Figure S12. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S15. Get Full Table Description of clustering approach #3: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 6 | 2 | 4 |
P value = 0.841 (t-test), Q value = 1
Table S16. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 8 | 61.5 (11.8) |
subtype1 | 5 | 62.2 (13.4) |
subtype3 | 3 | 60.3 (11.2) |
Figure S13. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.679 (Chi-square test), Q value = 1
Table S17. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 7 | 1 |
subtype1 | 1 | 4 | 1 |
subtype3 | 1 | 3 | 0 |
Figure S14. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 1 (Fisher's exact test), Q value = 1
Table S18. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 2 | 8 |
subtype1 | 1 | 5 |
subtype3 | 1 | 3 |
Figure S15. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.109 (Chi-square test), Q value = 1
Table S19. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N2A | N2B | N3 | NX |
---|---|---|---|---|---|---|
ALL | 2 | 1 | 1 | 3 | 1 | 1 |
subtype1 | 0 | 1 | 1 | 3 | 0 | 1 |
subtype3 | 2 | 0 | 0 | 0 | 1 | 0 |
Figure S16. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.443 (Chi-square test), Q value = 1
Table S20. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC |
---|---|---|---|---|---|
ALL | 1 | 2 | 1 | 2 | 2 |
subtype1 | 0 | 1 | 1 | 2 | 1 |
subtype3 | 1 | 1 | 0 | 0 | 1 |
Figure S17. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S21. Get Full Table Description of clustering approach #4: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 4 | 2 | 6 |
P value = 0.841 (t-test), Q value = 1
Table S22. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 8 | 61.5 (11.8) |
subtype1 | 3 | 60.3 (11.2) |
subtype3 | 5 | 62.2 (13.4) |
Figure S18. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.679 (Chi-square test), Q value = 1
Table S23. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 7 | 1 |
subtype1 | 1 | 3 | 0 |
subtype3 | 1 | 4 | 1 |
Figure S19. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 1 (Fisher's exact test), Q value = 1
Table S24. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 2 | 8 |
subtype1 | 1 | 3 |
subtype3 | 1 | 5 |
Figure S20. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.109 (Chi-square test), Q value = 1
Table S25. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N2A | N2B | N3 | NX |
---|---|---|---|---|---|---|
ALL | 2 | 1 | 1 | 3 | 1 | 1 |
subtype1 | 2 | 0 | 0 | 0 | 1 | 0 |
subtype3 | 0 | 1 | 1 | 3 | 0 | 1 |
Figure S21. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.443 (Chi-square test), Q value = 1
Table S26. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC |
---|---|---|---|---|---|
ALL | 1 | 2 | 1 | 2 | 2 |
subtype1 | 1 | 1 | 0 | 0 | 1 |
subtype3 | 0 | 1 | 1 | 2 | 1 |
Figure S22. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S27. Get Full Table Description of clustering approach #5: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 |
---|---|---|
Number of samples | 16 | 11 |
P value = 0.918 (logrank test), Q value = 1
Table S28. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 20 | 4 | 0.0 - 27.0 (0.9) |
subtype1 | 12 | 3 | 0.1 - 27.0 (2.5) |
subtype2 | 8 | 1 | 0.0 - 24.0 (0.5) |
Figure S23. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.303 (t-test), Q value = 1
Table S29. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 24 | 60.7 (15.9) |
subtype1 | 13 | 63.8 (17.8) |
subtype2 | 11 | 57.1 (13.1) |
Figure S24. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.468 (Chi-square test), Q value = 1
Table S30. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 23 | 2 |
subtype1 | 2 | 13 | 1 |
subtype2 | 0 | 10 | 1 |
Figure S25. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 0.231 (Fisher's exact test), Q value = 1
Table S31. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 18 |
subtype1 | 7 | 9 |
subtype2 | 2 | 9 |
Figure S26. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.517 (Chi-square test), Q value = 1
Table S32. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N1B | N2A | N2B | N2C | N3 | NX |
---|---|---|---|---|---|---|---|---|
ALL | 14 | 1 | 1 | 1 | 3 | 1 | 2 | 3 |
subtype1 | 7 | 0 | 1 | 1 | 2 | 1 | 2 | 1 |
subtype2 | 7 | 1 | 0 | 0 | 1 | 0 | 0 | 2 |
Figure S27. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.325 (Chi-square test), Q value = 1
Table S33. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE II | STAGE IIA | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 1 | 14 | 1 | 3 | 3 | 1 |
subtype1 | 0 | 1 | 0 | 7 | 0 | 2 | 3 | 1 |
subtype2 | 1 | 0 | 1 | 7 | 1 | 1 | 0 | 0 |
Figure S28. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S34. Get Full Table Description of clustering approach #6: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 10 | 1 | 16 |
P value = 0.918 (logrank test), Q value = 1
Table S35. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 19 | 4 | 0.0 - 27.0 (0.5) |
subtype1 | 7 | 1 | 0.0 - 24.0 (0.4) |
subtype3 | 12 | 3 | 0.1 - 27.0 (2.5) |
Figure S29. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.215 (t-test), Q value = 1
Table S36. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 23 | 60.2 (16.0) |
subtype1 | 10 | 55.6 (12.8) |
subtype3 | 13 | 63.8 (17.8) |
Figure S30. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.492 (Chi-square test), Q value = 1
Table S37. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 22 | 2 |
subtype1 | 0 | 9 | 1 |
subtype3 | 2 | 13 | 1 |
Figure S31. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 0.399 (Fisher's exact test), Q value = 1
Table S38. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 17 |
subtype1 | 2 | 8 |
subtype3 | 7 | 9 |
Figure S32. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.366 (Chi-square test), Q value = 1
Table S39. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N1B | N2A | N2B | N2C | N3 | NX |
---|---|---|---|---|---|---|---|---|
ALL | 14 | 1 | 1 | 1 | 2 | 1 | 2 | 3 |
subtype1 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
subtype3 | 7 | 0 | 1 | 1 | 2 | 1 | 2 | 1 |
Figure S33. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.212 (Chi-square test), Q value = 1
Table S40. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE II | STAGE IIA | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 1 | 14 | 1 | 2 | 3 | 1 |
subtype1 | 1 | 0 | 1 | 7 | 1 | 0 | 0 | 0 |
subtype3 | 0 | 1 | 0 | 7 | 0 | 2 | 3 | 1 |
Figure S34. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S41. Get Full Table Description of clustering approach #7: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 |
---|---|---|
Number of samples | 15 | 13 |
P value = 0.302 (logrank test), Q value = 1
Table S42. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 21 | 4 | 0.0 - 27.0 (1.2) |
subtype1 | 13 | 2 | 0.0 - 24.0 (0.5) |
subtype2 | 8 | 2 | 0.2 - 27.0 (7.0) |
Figure S35. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.776 (t-test), Q value = 1
Table S43. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 25 | 60.7 (15.5) |
subtype1 | 15 | 61.5 (15.8) |
subtype2 | 10 | 59.6 (15.9) |
Figure S36. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.132 (Chi-square test), Q value = 1
Table S44. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 24 | 2 |
subtype1 | 0 | 13 | 2 |
subtype2 | 2 | 11 | 0 |
Figure S37. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 1 (Fisher's exact test), Q value = 1
Table S45. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 19 |
subtype1 | 5 | 10 |
subtype2 | 4 | 9 |
Figure S38. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'

P value = 0.485 (Chi-square test), Q value = 1
Table S46. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N1B | N2A | N2B | N2C | N3 | NX |
---|---|---|---|---|---|---|---|---|
ALL | 15 | 1 | 1 | 1 | 3 | 1 | 2 | 3 |
subtype1 | 8 | 1 | 1 | 0 | 2 | 1 | 0 | 2 |
subtype2 | 7 | 0 | 0 | 1 | 1 | 0 | 2 | 1 |
Figure S39. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.586 (Chi-square test), Q value = 1
Table S47. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE II | STAGE IIA | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 1 | 15 | 1 | 3 | 3 | 1 |
subtype1 | 0 | 1 | 1 | 8 | 1 | 2 | 1 | 0 |
subtype2 | 1 | 0 | 0 | 7 | 0 | 1 | 2 | 1 |
Figure S40. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

Table S48. Get Full Table Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 9 | 6 | 13 |
P value = 0.336 (logrank test), Q value = 1
Table S49. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 21 | 4 | 0.0 - 27.0 (1.2) |
subtype1 | 6 | 2 | 0.0 - 17.2 (6.3) |
subtype2 | 5 | 1 | 0.2 - 27.0 (3.9) |
subtype3 | 10 | 1 | 0.1 - 24.0 (0.9) |
Figure S41. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.201 (ANOVA), Q value = 1
Table S50. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 25 | 60.7 (15.5) |
subtype1 | 7 | 53.1 (18.6) |
subtype2 | 5 | 69.4 (9.1) |
subtype3 | 13 | 61.5 (14.7) |
Figure S42. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

P value = 0.617 (Chi-square test), Q value = 1
Table S51. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'
nPatients | DISTANT METASTASIS | PRIMARY TUMOR | REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE (INCLUDES SATELLITE AND IN-TRANSIT METASTASIS) |
---|---|---|---|
ALL | 2 | 24 | 2 |
subtype1 | 1 | 7 | 1 |
subtype2 | 1 | 5 | 0 |
subtype3 | 0 | 12 | 1 |
Figure S43. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PRIMARY.SITE.OF.DISEASE'

P value = 1 (Fisher's exact test), Q value = 1
Table S52. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 19 |
subtype1 | 3 | 6 |
subtype2 | 2 | 4 |
subtype3 | 4 | 9 |
Figure S44. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'

P value = 0.708 (Chi-square test), Q value = 1
Table S53. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'
nPatients | N0 | N1A | N1B | N2A | N2B | N2C | N3 | NX |
---|---|---|---|---|---|---|---|---|
ALL | 15 | 1 | 1 | 1 | 3 | 1 | 2 | 3 |
subtype1 | 5 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
subtype2 | 3 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
subtype3 | 7 | 1 | 1 | 0 | 2 | 0 | 0 | 2 |
Figure S45. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'LYMPH.NODE.METASTASIS'

P value = 0.523 (Chi-square test), Q value = 1
Table S54. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IB | STAGE II | STAGE IIA | STAGE IIC | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 1 | 15 | 1 | 3 | 3 | 1 |
subtype1 | 0 | 0 | 0 | 6 | 0 | 2 | 0 | 1 |
subtype2 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 0 |
subtype3 | 1 | 1 | 1 | 6 | 1 | 1 | 1 | 0 |
Figure S46. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'NEOPLASM.DISEASESTAGE'

-
Cluster data file = SKCM-All_Primary.mergedcluster.txt
-
Clinical data file = SKCM-All_Primary.clin.merged.picked.txt
-
Number of patients = 31
-
Number of clustering approaches = 8
-
Number of selected clinical features = 7
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.