
Highly Configurable Analysis:

Lessons From
A Decade In
Astrophysics

Michael S. Noble
Kavli Institute For Astrophysics

M.I.T.
June 8, 2010

Observation: All Science Is
Interdisciplinary

Newton inextricably linked science with math

Turing inextricably linked science with computers

Biologists will write math & code

Gets
In The
Way

Seamless
Helpful
Fluid

Sigh ...

This is Your
 Researcher

Brain

When Coding
Or Data

Exploration
Is Hard

Computing
MathBiology

When
 Easier

Biology

Math

Computing

But Most Parents
Will Say This

Is More Accurate

Math
Kids

ComputingBio

Math

Seem Familiar?

We all work hard,
and have good intentions.

So, why does scientific data
exploration & software
sometimes feel harder

 than it need be?

A Tale of Two Coders
Software Engineer Researcher

Towards production deployment
Careful, deliberate design Exploratory, open-ended analysis

Towards publication

Overlapping, But Not Identical, Aims

Must be fastidious Can be messy

A Tale of Two Coders
Software Engineer Researcher

Robust / predictable / clarity Intuitive / flexible / contextual

OO is best Not if mandatory for common/simple case

Static typing catches bugs earlier Variable declaration a nuisance

Compiled/Binaries: C/C++/Java/etc Interpreted Scripts: compiling nuisance

Version control, Makefiles, Regression tests What?

 Creating new S/W
 is most fun/rewarding

Prefers trusted methods, vetted by
years of research / publication use

Careful design Speed of obtaining result

Novice in science domain? Novice in CS domain?

Classic Case : new / malloc Errors
ENOMEM is Fatal

isis> load_data

isis> fit_model

 ... WAIT 2 DAYS ...

isis> volview(3D_gas_cloud)

Out Of Memory!
Aborted

linux%

Human Context Trumps Dogma

isis> load_data

isis> fit_model

 ... WAIT 2 DAYS ...

isis> volview(3D_gas_cloud)

Out Of Memory:
Close applications and retry.

isis> save_results
isis> volview(3D_gas_cloud)

Not Necessarily

Not if I lose days of analysis!assert() or exit() on error?

What to do?

Scientific analysis S/W is never truly complete

Claim

Given that science pushes boundaries of knowledge

And of technology to acquire / distill / analyze it

Claim II

In our best interest, then, that it be EXTENSIBLE

Or perhaps even envisioned by its creators

Researchers to incorporate custom/experimental codes

And drive system in directions not yet supported

To Enable

Without programmer-army rewrite every few years

Claim III

Simply, but WLOG / power / flexibility

Freeing practitioners to concentrate on

Scientific and algorithmic concerns
Biology

Math

Computing

Rather than

Plumbing details of computational platform
Computing

MathBiology

(benefits developer, too: see modularity)

Case Study in Serendipity

MRIs in Astro Spectral Modeling S/W

• Series of 2D images in DICOM format

• On CD with Windows XP reader software

• Read as PNG, stacked as 3D & rendered on Linux

• With 120 Kb module wrapper of VOLPACK (1994)

10 Minutes of Goofing Around

Flexible S/W adapts for unintended uses
OLD BAD : volpack VERY FAST (Go NetLib!)

n = 73
vol = UInt_Type[n, 128, 128]

foreach i ([1:n])
 vol [i-1, *, *] = png_read(...)

volview(vol)

h5_write("mri.h5", vol)

 Create 3D
From 2D Slices

Render
volume

Save as HDF5
for later ease

The Entire Script

Clean noise
from sides

vol [*, [49:99], [6:11]] = 0
vol [*, [28:99], [115:123]] = 0
vol [*, [103:106], [101:118]] = 0

vol [*, [:64],[64:]] = 0

volview(vol)

Cut out
quadrant
to see
interior

No Need To Convene Design-By-Committee

Real Science : Spatial+Spectral Fitting

2D and 3D renderings of model of X1822 binary system

Schematic & Renderings of Markert (1983) model geometry of Cassiopeia A supernova remnant

Qualitative Visualizations Steer
Quantitative Analyses

ND Arrays are Scientific Clay

isis> image = ds9_get_array()
isis> image
Float_Type[1024, 1024]

 DS9 visualizer showing
 ACIS CCD image &
 3 regions of interest

... and seen in arbitrary ways

To be shaped ...

isis> hist = sum(im, 0)
isis> range = [440:680]
isis> hplot(range-1, range, hist[range])
isis> xa = [440:680:4], ya = hist[xa]

isis> require(“gsl”)
isis> smooth = interp_cspline(range, xa, ya)
isis> oplot(range, smooth)

Using a numerical interpreter as potter’s wheel

Previous Example : So What?

DS9 single most widely
used tool in astronomy

Mostly qualitative, though

Importing Controller Module

isis> import(“ds9”)

 Merges DS9 imaging with
ISIS numerics & extensibility

Without changing either app!

Modernity: Melange Of

File formats ...

... monolithic GUIs

Given this complexity ...

... programming languages,

Pick Your Favorite: MatLab, R, S-Lang, Python, ...

• Quickly (by end-user / scientist)
• With little or no low-level coding
• Through ad-hoc mixtures of intrinsic functions,
• Plugin modules, scripts, interactive commands,
• Or even compiled code (dynamically loaded)

... so I can decide

More Concerned With How To

 Load your data as ND array ...

 ... how to best SHAPE & SEE it

Bulk of functionality provided by modules

Most can be downloaded/used outside of ISIS

10 Years In ISIS

}

volview
module

volpack
rendering

library

PVM
module

PVM
toolkit

scriptable
interpreter
backbone

endowed
with ND
numerics

interactive command line
+ small, focused GUIs

(optional)

main() is thin ANSI C layer:
establishes module hooks

gathers user input

Spectral Modeling Innovations

Years Ahead Of Other Groups : Very Small Team

 Beyond XSPEC: Toward Highly Configurable
Astrophysical Analysis (Noble & Nowak, 2008, PASP)

• Programmable Atomic Database API
• Model == arbitrary interpreted math expression (not text)
• Model evaluation caching
• Hooks to customize nearly every aspect of fitting
• Natural multi-wavelength: X-ray, Radio, Visible, IR, Gamma
• Volume rendering : leading to spatial + spectral fitting
• Data Mining GUI-lets
• Nearly Transparent Parallelism: conf limits, model fit eval, etc
• Read/write access to FORTRAN common blocks
• Automated Vector-Parallel Bindings Generation
• HDF5 I/O

Modules: Evolutionary Advantage
Harder to extend venerable/monolithic app with arbitrary

features than to add new modules to extensible system

Contrast With: import(“hdf5”)

Consider addition of HDF5 to Genome Workbench
Large C++ codebase; Long-ish NCBI institutional cycle

 Design/write/test/document/release of ENTIRE APP?

Leverages Internet: “All problems shallow” (Raymond/Torvalds)
Someone, somewhere likely to have written a module ...

Feature sets evolve MUCH more rapidly

Modules: Developer Advantage

Most of porting problem solved in interpreter, by someone else

“Small team, supported only on Linux”

Then the common refrain

begins to fade away.

JAVA Solves Portability, Too, BUT :

Anyone write interactive numerical interpreters in JAVA?
(Byte) Compiled, static typing == not for itinerant bio coders

Modules: Yet More Advantages

More Nimble Schedule: modules released as ready, not app

More Nimble Response: modules can be loaded JIT, per use

Functional Orthogonality == needs smaller mental map
(internal core need not be mastered by module developer)

More Stable: internal core of app unchanged as features added
(better partition of test/doc/release workload)

Case Study: 2D + 2D Data Mining

isis> arr = [1, 2, 3, 4, 1]
isis> i = where(arr < 2)
isis> print(i)
0, 4

Surprisingly Powerful Feature

Like R “subset()’’ but more concise?

Array Selection
With

where()

VWhere : Visual Where Function

isis> table = read("cygnus_x1")
isis> table
Struct_Type with 17 fields

isis> points = vwhere(table)

GUI-let launched from interactive cmd line

Create new axes on fly with arbitrary numerical expressions,
including calls to C, C++, Fortran modules

Points selected via regions
on plots of 2 axes

Effect instantly seen on
 plots of other axes

Returns same array of indices as where()

Faster than file-based command-line tools (10x or more)
Filters accumulated in memory, not files

No file litter
More intutive : no tool filter syntax needed
Far more powerful, too (extensible math)

VWhere Benefits

ND arrays, shaped & seen
in arbitrary ways

Same Paradigm Combines power of
interactive analysis
cmd line with GUI

modules, where useful

Case Study: Parallel Model Fitting

You calculate p-value We calculate χ2

Model components
mathematically independent

Embarrassingly parallel

isis> require(“pmodel”)

Evaluations farmed to
 independent CPUs / hosts

ISIS unaware model is parallel:

fit performed as if serial
internals unchanged

Parallelism in ISIS: 5+ years before any others

Case Study: SLIRP Wrapper Generator

 Dramatically reduce effort to call C/C++/Fortran from S-Lang.

Can vectorize funcs for natural S-Lang array usage.

Optionally with OpenMP for multicore.

Turnkey mechanism for scientists to include their
custom models into modern analysis system.

Quick way for developer to generate wrapper
modules for OTS libs being considered for use.

Read / write access to Fortran common blocks.

SLIRP Example : ASCII Volume

Problem: Visualize 320x320x320 cube
of Doppler velocities, from ASCII file

Solution: Convert to real-values with atof()

Problem II: Will be slow, atof() not vectorized

Solution II : replace it with vector-parallel version

linux% slirp -make -openmp atof.h && make

SLIRP Example : Performance

Using only 1003 strings : 33x smaller dataset

S-Lang intrinsic : 13.8 sec
Vector-parallel replacement: 0.144 sec

95X faster on dual-core 1.8 GHz

Random Browse of Bio S/W

Overwhelmed by sheer volume of data

Impressed by maintenance of provenance

NCBI: CDTree, NCBI Toolbox, Genome Workbench
Allen Brain Institute: Brain Explorer, etc

Broad Institute: IGV, Arachne, ALLPATHS

... and many more ...

Layman’s Concern With

3D molecules, 2D gene trees, Contig assemblies, ...
Sense of qualitative, visualization orientation

“Small team, supported only on Linux”
Tough to swallow by R, MatLab, Python, etc crowd

 Then what?
How does it lead to quantitative analysis?

Stated Differently: Difficult to see data flow between
 between disparate but similar tools

Conclusion: Concern Turns To Joy

Deeply Resonant
With Themes
Of This Talk

Flexible, Modular, Extensible, Reproducible

But where is FireHose? Why no (Bio)Python?

Beautiful

