Summary of TCGA GBM analysis

Lihua Zou

Jan 23rd, 2011

Summary

The analysis performed within firehose workspace *prod_2011_01_14_gbm_02*, can be grouped into three general categories: mutation and copy number analysis, molecular subtype clustering, and correlation analysis across data types. For an overview of workflow, please see Figure 1.

The analysis pipeline identified 106 significant mutated genes (q<0.1); and 10 significant genes with mutations from COSMIC. The molecular subtype analysis identified one mRNA subtype cluster significantly associated with *VITALSTATUS* (p<0.00167). A large number of DNA regions have copy amplification and deletion. No mutation gene and miRNA subtype clusters are found to be associated with clinical parameters. A list of mRNA genes is highly correlated with methylation, clinical variables and copy number change.

(d) Correlation analysis among data types

Result

Figure 1: analysis overview

locult

Mutation and copy number analysis

Mutation analysis: We use our in-house gene significance calling method (MutSig: unpublished; [16]) to call significant mutated genes. We identified 106 (q<0.1) significantly mutated genes from sequences of 169 individuals. There are 10 significant genes with mutation found previously from COSMIC. There are 362 genes with clustered mutations (<=3 amino acids apart). There are 21622 mutations after filtering mutations outside of gene sets and from zero-coverage samples [16]. There are 16281 non-silent mutations. The top ranked genes and breakdown of mutations by type and categories is shown in Figure 2.

Administrator 1/24/11 11:07 AM

Comment: 169 are WGA now. There are 24 native samples for WES coming. Need to include this information. 19 of 20 WGS is available. 1 sample with incomplete checksum. Aaron is running co-cleaning on 14-15 WGS samples now.

Administrator 1/23/11 9:54 PM

Comment: Is this significance calculated only using the mutations seen in COSMIC?

nk	gene	description	n	cos	n_cos	N_cos	р	q
	PTEN	phosphatase and tensin homolog (mutated in multiple advanced cancers 1)	44	736	44	124,384	0.00	0.00
	TP53	tumor protein p53	55	969	55	163,761	0.00	0.00
	IDH1	isocitrate dehydrogenase 1 (NADP+), soluble	9	3	9	507	2.53e-14	3.84e-11
	EGFR	epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)	50	235	31	39,715	1.71e-12	1.95e-09
	RB1	retinoblastoma 1 (including osteosarcoma)	11	271	7	45,799	9.26e-10	8.43e-07
	PTPN11	protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)	5	33	4	5,577	8.83e-09	6.46e-06
	PIK3R1	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)	8	34	4	5,746	9.94e-09	6.46e-06
	SCN11A	sodium channel, voltage-gated, type XI, alpha subunit	5	1	2	169	2.12e-07	0.00012
	SYNE1	spectrin repeat containing, nuclear envelope 1	19	22	2	3,718	0.00010	0.052
	NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog	2	29	2	4,901	0.00018	0.081
	BDKRB2	bradykinin receptor B2	1	1	1	169	0.00065	0.11
	Cioorf54	chromosome 10 open reading frame 54	2	1	1	169	0.00065	0.11
	C140rf145	chromosome 14 open reading frame 145	1	1	1	169	0.00065	0.11
	CFTR	cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub- family C, member 7)	4	1	1	169	0.00065	0.11
	COPS3	COP9 constitutive photomorphogenic homolog subunit 3 (Arabidopsis)	1	1	1	169	0.00065	0.11
	ELAVL2	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)	1	1	1	169	0.00065	0.11
	IMPG2	interphotoreceptor matrix proteoglycan 2	4	1	1	169	0.00065	0.11
	JAKMIP1	janus kinase and microtubule interacting protein 1	3	1	1	169	0.00065	0.11
	KRT222		2	1	1	169	0.00065	0.11
	MFAP5	microfibrillar associated protein 5	2	1	1	169	0.00065	0.11
	NCAPD2	non-SMC condensin I complex, subunit D2	1	1	1	169	0.00065	0.11
	OR5M9	olfactory receptor, family 5, subfamily M, member 9	3	1	1	169	0.00065	0.11
	P2RY10	purinergic receptor P2Y, G-protein coupled, 10	2	1	1	169	0.00065	0.11
	PLCL2	phospholipase C-like 2	2	1	1	169	0.00065	0.11
	S1PR3		2	1	1	169	0.00065	0.11
	ST6GAL1	ST6 beta-galactosamide alpha-2,6-sialyltranferase 1	1	1	1	169	0.00065	0.11
	NF1	neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, Watson disease)	17	289	3	48,841	0.00097	0.16
	PDGFRA	platelet-derived growth factor receptor, alpha polypeptide	9	70	2	11,830	0.0010	0.16
	CACNA2D3	calcium channel, voltage-dependent, alpha 2/delta subunit 3	1	2	1	338	0.0013	0.16

MUTATION BREAKDOWN BY TYPE NONSILENT MUTATIONS: CATEGORIES AND MUTATION RATES

> count 41 8

14796

5341 397 2

21622

					type
category	n	N	rate	relative_rate	De_r
CnG transition	2462	200 142 446	0.000017	4.28	Miss
opo_uunstuon	0400	209,142,440	0.00001/	4.20	Miss
other_C:G_transition	2314	1,888,294,650	1.23e-06	0.32	Nons
C:G transversion	4734	2.097.437.096	2.26e-06	0.58	Nonst
t m	1/01				Silen
A:T_mutation	4286	2,115,699,424	2.03e-06	0.52	Splice
indel+null	1484	4,213,136,520	3.520-07	0.091	Stop_C
T-+-1	-(-0-	1/0/-0-/0	0.0/- 0/		Transla
Total	10281	4,213,130,520	3.800-00	1.00	Total

Figure 2: gbm_mutsig

Copy number analysis: We used GISTIC2 [11] to perform copy number analysis to identify genomic regions showing amplification and deletion. The significantly amplified region and deleted region are shown in Figure 3.

Administrator 1/23/11 9:33 PM

Comment: The report of GISTIC2 is largely incomplete. Can someone give me a quick intuition of what is G-score and how is the cutoff chosen to define significant amplification/deletion?

Figure 3: gbm_gistic2

Molecular subtype clustering

mRNA subtypes: We applied consensus non-negative matrix factorization method to identify molecular subtypes based on mRNA expression [14]. We select 1500 most variable genes and applied Consensus NMF clustering method to classify 440 samples. Our analysis identified 3 subtypes. "Core samples" representative of each cluster were identified based on positive silhouette width [14]. Core samples indicate higher similarity to their own class than to any other classes. We used core samples to select differentially expressed marker genes (p<=0.05) for each subtype by comparing the subclass versus the other subclasses based on student's t-test. In addition, we also applied an alternative consensus hierarchical clustering methods [15] using 440 samples and 1500 genes to identify 4 molecular subtypes (Figure 4).

miRNA subtypes: We used similar approach to identify molecular subtypes based on miRNA expression. We select 150 most variable miRNAs. We applied CNMF consensus clustering to 415 samples and identified 3 subtypes. We also applied consensus hierarchical clustering to 415 samples to identify 3 subtypes using the 150 most variable miRNAs (Figure 4).

dministrator 1/23/11 10:00 PM

Comment: This is reasonable! An alternative and arguably more powerful approach is to use PAM analysis developed by Tibshironi et al which is based on a modified t-test by adding a Bayesion factor to the denominator.

Administrator 1/24/11 11:29 AM

Comment: We might need to compare the result from two clustering approaches. Maybe need to compare with public reference GBM gene sets.

Figure 4: gbm_subtypes

Correlation across data types

Mutation vs. clinical: We examined the association between the status of the 98 significantly mutated genes and clinical *VITALSTATUS* of 167 samples. We used the chi-square test to calculate the significance of association. No single mutated gene is found to be significantly associated with *VITALSTATUS*.

Molecular subtypes vs. clinical: We found significant association between the four subtype clusters identified by *CONSENSUS_MRNA_CLUSTERING* and clinical feature '*VITALSTATUS*' (chi-square test p-value < 0.00167). However, we didn't found significant association between the 3 subtypes identified by *CNMFCLUSTERING_MRNA* and clinical feature *VITALSTATUS*. The P value by *Chi*-

Administrator 1/24/11 11:00 AM

Comment: Howis the 98 genes chosen? Besides single mutation, it will also be interesting to test co-mutation and combination of mutations for clinical association as well. I will work to include this feature into NetSig! Administrator 1/23/11 10:22 PM

Comment: When any expected value in contingency table is smaller than 5, probably should use Fisher's exact test to estimate p-value.

square test is 0.426. The significant association is mostly driven by the smallest mRNA cluster by *CONSENSUS_MRNA_CLUSTERING* (Figure 5).

We didn't find significant association between *CNMFCLUSTERING_MIRNA* and clinical feature *VITALSTATUS* (*Chi-square pval=*0.868); also no association found between *CONSENSUS_MIRNA_CLUSTERING* and clinical feature *VITALSTATUS* (chi-square p-value=0.358) [1].

Administrator 1/23/11 9:46 PM

Comment: Again, we need to compare the two clustering result to confirm if this real.

Figure 5: correlate subtypes with clinical variable VITALSTATUS.

miRNA/mRNA vs. clinical: we performed association analysis between 556 miRNAs and 6 clinical features of 415 samples. The 6 clinical features are as following: *PATIENTTUMORRECURRENCESTATUS, KARNOFSKYPERFORMANCESCORE, HISTOLOGICALTYPE, VITALSTATUS, NEOADJUVANTTHERAPY, GENDER*, 556 genes are used based on a statistical selection criteria at P value <= 0.01. The numbers

Administrator 1/24/11 11:15 AM

Comment: Ask Gordon for more clinical parameters (tier1). For high mutation samples, neeed to check if treated or mismatch (dbGAP).

Comment: Which statistical criteria?

of genes that are significantly associated with each clinical feature are linked in reference [4].

We also performed association analysis between 18699 mRNAs and the same 6 clinical features of 435 samples. The numbers of genes that are significantly associated with each clinical feature are linked in reference [1].

mRNA/miRNA expr vs. copy number: we calculated the pearson correlation between expression intensity and log2 copy number (the gene-by-sample copy number data is obtained using CNTools package of bioconductor). The correlation distribution and significantly correlated mRNA genes are shown in Figure 6. The correlation distribution and significantly correlated miRNA genes are shown in Figure 7.

Administrator 1/23/11 10:22 PN

Comment: From the correlation distribution, it looks about 50% expression variation are explained by copy number (if we assume cor>0.35 is significant). Perhaps we can do a regression analysis to get a more accurate estimate about this.

Figure 6: correlate mRNA expression and copy number

 Table 1. Counts of microRNAs and number of samples in copy number and expression data sets and common to both

 Description
 CN data
 EXP
 Shared

ne	20200	557	957					
CHC	29390	00/	30/					
TABLE 2. TOP 2	10 FEATURES RANKE	D BY CORRELATION CO	EFFICIENTS					
MICRORNA	CORRELATION	P VALUE		QVALUE	CHROMOSOME	Start	END	ID
339	0.4684	0		0	7	1029095	1029188	MI0000815
нал-міR- 491	0.4678	0		0	9	20706104	20706187	MI0003126
HSA-MIR- 125a	0.4414	0		0	19	56888319	56888404	MI0000469
нза-мі R- 148в	0.433	0		0	12	53017267	53017365	MI0000811
нял-мі R- 99в	0.4294	0		0	19	56887677	56887746	MI0000746
HSA-LET-7B	0.3964	3.9968028886 15	5056E-	1.32975150012667E- 13	22	44888230	44888312	MI0000063
нял-мі R- 148а	0.3954	4.88498130835 15	5069E-	1.3930730001327E-13	7	25956064	25956131	MI0000253
нза-мг R-15 1	0.381	5.48450174164 14	827e-	1.36853591888037e- 12	8	141811845	141811934	MI0000809
HSA-LET-7E	0.3653	6.72573108317	92E-13	1.49178418291988e- 11	19	56887851	56887929	MI0000066
нял-мі R- 377	0.362	1.10622622173	651E-12	2.2082739912103бЕ- 11	14	100598140	100598208	MI0000785
HSA-MIR-15A	0.3606	1.37267974764	б54е -12	2.4910678102373E-11	13	49521256	49521338	MI0000069
няа-міR- 100	0.3591	1.727951115526	59E-12	2.87447949277382E- 11	11	121528147	121528226	MI0000102
нsa-мі R- 130в	0.3542	3.62043728330 12	1264E-	5.55938415629882E- 11	22	20337593	20337674	MI0000748
няа-мі R- 135в	0.3511	5.68611824292	02E-12	8.10768486077233E- 11	1	203684053	203684149	MI0000810
нsa-мі R- 590	0.3482	8.67195204534	71E-12	1.15407655194327E- 10	7	73243464	73243560	MI0003602
нรа-мі R- 23в	0.3471	1.02065023099	84E-11	1.2734032803088E- 10	9	96887311	96887407	MI0000439
HSA-MI R- 127	0.342	2.14726014746	702E-11	2.52141743271078e- 10	14	100419069	100419165	MI0000472
нза-мі R- 186	0.3349	5.80777648195 11	8638-	6.44089764114133E- 10	1	71305902	71305987	MI0000483
нза-мі R- 368	0.3218	3.44586803535 10	;663E-	3.62037910134751E- 09	14	100575780	100575845	MI0000776
HSA-MIR- 345	0.314	9.46679845625 10	908e-	9.4489193983176E-09	14	99843949	99844046	MI0000825

Figure 7: correlate miRNA expression with copy number

mRNA vs. methylation: we calculated the spearman correlation between mRNA and methylation. The result is shown in Figure 8.

Administrator 1/24/11 11:34 AM Comment: Need to address Clinical assay vs. research asasy.

TO BUILD FOR THOMATION CONDITION								
Meth_Probe	Gene	Corr_Coefficient	Expr_Median	Expr_Variance	Meth_Median	Meth_Variance		
cg01305625	PDLIM4	-0.808968089139325	5.81364585992966	0.772522030286276	0.662181008	0.0380265431340811		
cg19257200	SOX10	-0.790508228661965	6.01454864093512	1.80043976728158	0.775024527	0.036038048764641		
cg06614002	SOX10	-0.751530555055271	6.01454864093512	1.80043976728158	0.8457872075	0.0455238714376387		
cg19904463	FABP5	-0.743039296316214	10.3777663842634	3.36469299630581	0.494811914347412	0.0353148075590276		
cg01063813	STAT6	-0.726137384082731	5.27973737305194	0.201823323167309	0.5889213355	0.0246542012659303		
cg07693270	RPL39L	-0.698242931612747	5.64823774620399	1.14470421632916	0.715968169	0.0556912909527726		
cg23539753	SP100	-0.69632855705277	5.88277517535349	0.307201611639563	0.4674011395	0.0370146359827955		
cg13759778	OMG	-0.695598072023305	8.79749525724457	2.70058516033403	0.542524426	0.0423095219161678		
cg23566503	NNAT	-0.691229015872936	6.12687758867242	3.76858010337196	0.7193873325	0.0275834738226216		
cg07952391	THNSL2	-0.68365086342071	4.91213114795008	0.771100653913618	0.2926796065	0.0721540473425855		
cg17272843	KCTD14	-0.67695559028858	4.58954999884148	0.605222862037494	0.335927287566938	0.0571884100591949		
cg04956511	PTPN6	-0.676470699363848	6.500426941715	0.558325821182731	0.804973611	0.0126250322275714		
cg16363586	BST2	-0.668478185575943	7.51679450346592	1.44753759993756	0.696552661102871	0.0442939539805565		
cg03625911	CHI3L1	-0.667810673393846	12.2415690761697	4.67684719382023	0.612162965	0.015685450888937		
cg24211388	AIF1	-0.667057518139329	7.6414808718409	0.809647610716935	0.7669789865	0.0108573728681808		
cg06456031	TMEM140	-0.666398822155863	6.62901023451025	1.07030986997121	0.427004094	0.0655377161475264		
cg13099330	RBP1	-0.666284211573654	9.4378043683451	2.5899416898494	0.685018603	0.080451368641327		
cg24264506	TTC12	-0.662417678745279	4.91162375705816	0.350055390371185	0.135574850985909	0.107411813053964		
cg23265096	CTSZ	-0.66053730952288	6.25485770843633	0.271917313474744	0.660336743677076	0.0132719851372231		
cg07816074	SH3TC1	-0.659406317184156	5.18424345365148	0.491639385091428	0.801336987	0.00887144890449496		
cg18555555	FABP7	-0.65826273027596	10.7658815269123	2.82071180280841	0.739157554	0.0655722912737952		
cg18788940	HTATIP2	-0.650315556938159	6.1728704405139	0.703296742528039	0.625405954	0.0287766607448581		
cg18433380	NNAT	-0.650135454594688	6.12687758867242	3.76858010337196	0.7859748365	0.0302639303479573		
cg15576195	HTATIP2	-0.646601418400414	6.1728704405139	0.703296742528039	0.261562062040959	0.0552860414578155		
cg07753583	LRRC61	-0.642770150366565	4.79391918169658	0.21534249067937	0.5006783605	0.0503159195412253		

Figure 8: correlate expression and methylation

Method

Data description: We included for the analysis high-throughput sequencing data of 169 individuals; mRNA expression data of 440 individuals; miRNA expression data of 415 individuals.

Mutsig: There are 45684 total number of mutations in the 169 input MAF generated at Broad Institute. There are 21836 noncoding mutations after

removing 23848 noncoding mutations. There are 21828 mutations after collapsing adjacent/redundant mutations. We removed 178 mutations outside of gene sets; 28 "impossible" mutations in gene-patient-category bins of zero coverage.

GISTIC2: (unpublished)

Consensus clustering using mRNA/miRNA: We performed clustering using the median based integrated expression data generated from Affymetrix HT-HG-U133A genechips, Affymetrix Human Exon 1.0 ST GeneChips, and custom designed Agilent 244k feature Gene Expression Microarrays. If a gene was only assayed on one platform, this measurement was used. If the gene was assayed on two platforms, the average of the two measurements was used; if the gene was assayed on all platforms the median measurement was used. We used the average silhouette width calculation for selecting the robust clusters.

For clustering analysis of miRNA DATA, we used the mean row subtraction of expression data, we filtered the data to 150 most variable miRNAs. Consensus NMF clustering of 415 samples and 150 miRNAs identified 3 subtypes, with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Reference:

- [1] gbm_correlate_expr_clinical_report.pdf
- [2] gbm_correlate_expr_cnv_report.pdf
- [3] gbm_correlate_expr_methylation_report.pdf
- [4] gbm_correlate_miRNA_clinical_report.pdf
- [5] gbm_correlate_miRNAcnmfconsensusclustering_clinical_report.pdf
- [6] gbm_correlate_miRNAconsensusclustering_clinical_report.pdf
- [7] gbm_correlate_miRNAexpr_miRNAcnv_report.pdf
- [8] gbm_correlate_mRNAcnmfconsensusclustering_clinical_report.pdf
- [9] gbm_correlate_mRNAconsensusclustering_clinical_report.pdf
- [10] gbm_correlate_mutation_clinical_report.pdf
- [11] gbm_gistic2_report.pdf
- [12] gbm_miRNAcnmfconsensusclustering_report.pdf
- [13] gbm_miRNAconsensusclustering_report.pdf
- [14] gbm_mRNAcnmfconsensusclustering_report.pdf
- [15] gbm_mRNAconsensusclustering_report.pdf
- [16] gbm_mutsig_report.pdf
- [17] gbm_targetmir_report.pdf
- [18] gbm_pathwayenrich_report.pdf

Administrator 1/23/11 9:59 PM

Comment: What would happen if clustering on each platform separately and then combine later?