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Why use next-generation 
sequencing to analyze cancer 

genomes? 



Why sequence? Technology gets better and 
cheaper… 

 Moore’s law 
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Why sequence? Next-generation sequencing 
allows us to detect all classes of genome alterations  



Unique features of cancer 
genomes 



“Happy families are all alike; every 
unhappy family is unhappy in its own way”. 

Leo Tolstoy, Anna Karenina 

Normal genomes are all (mostly) alike; 
every cancer genome is abnormal in its 

own way. 

Normal and cancer genomes 



Somatic genome alterations in cancer 
Somatic alterations are the major cause of 

cancer 
Definition: genome alterations present in the cancer but not in 

the germ-line 

Somatic alterations provide target for therapy 
Because these alterations are present only in the tumor, there 

can be a large “therapeutic window” where toxicity to cancer 
vastly exceeds toxicity to normal cells 

 Example: a patient with lung adenocarcinoma, with a somatic EGFR 
deletion mutant in exon 19 ( thanks to Bruce Johnson, M.D., DFCI) 

Before 
treatment 

After 2 
months 
erlotinib 
treatment 



Cancer samples represent complex 
mixtures of cells with distinct genomes 

T = Tumor cells 
N = Normal cells 

Purity = fraction of  
             tumor cells 

N T 

T 

Aliquot of mixed 
tumor and normal 

DNA 

Ploidy = mass of DNA 
in units of normal haploid 
genome mass. Here ~2.7. 

70% 

Because next-generation sequencing is digital and not 
analog, it is possible to dissect the cancer specific signal 
from the normal signal by computational analysis of 
sequence counts at every base position 



germline 

somatic 
Individual Population 

Goals of cancer genome computational 
analysis: discovery of cancer genes!

(1) Which genome alterations are 
statistically significant in the 
population? 

(2)  In which genes and pathways do 
these alterations occur? 

What is the full set of genome 
alterations within the cancer (and 
germ-line)—mutations, copy 
number, translocations, etc? 



germline 

somatic 
Individual Population 

Goals of cancer genome computational 
analysis: diagnosis!

(1) Do these alterations predict the natural 
history of the cancer, inc. prognosis? 

(2) Do these alterations predict the 
response to specific therapies in 
clinical trials? 

What actionable genome 
alterations are carried in the 
germ-line or somatically altered 
in the tumor of a particular 
patient? 



Suppose you have a collection of 
next-generation sequencing data: 

what do you do? 





Steps of cancer genome analysis with 
next-generation sequencing 

Getting started 
Data quality control 
Alignment 
Variant calling 
Visualization 
Artifact removal 
Significance analysis 

Analysis of public data sets 



Getting started with next-generation 
sequencing analysis of cancer: some 

choices 
Hardware 

  Build a cluster 
  Use the cloud 
  Contract it out 

Software 
  Publically available tools 
  Commercial tools 

People 
  Collaborate 
  Build a team 
  Contract it out 



Getting started: CPU and storage costs for 
next-generation sequencing 

Data type Target Storage 
Per-sample 

Exome 32 Mb 30-50 Gb 

Genome 2.85 Gb 250 Gb 

Complete Project 

200 exome pairs 32 Mb 20 Tb 

50 genome pairs 2.85 Gb 25 Tb 

Storage requirements 

Kiran Garimella and Mark DePristo 

In general, need 
access to a 
cluster or a 
cloud to obtain 
enough CPU 
power 



Getting started: Publically available software tools 
for next-gen sequence analysis of cancer 

Category Method URL 

Alignment 
MAQ http://maq.sourceforge.net 
BWA http://bio-bwa.sourceforge.net 
ELAND http://www.illumina.com 
SSAHA2 http://www.sanger.ac.uk/resources/software/ssaha2 
Bowtie http://bowtie-bio.sourceforge.net/index.shtml 
SOAP2 http://soap.genomics.org.cn 
SHRiMP http://compbio.cs.toronto.edu/shrimp 
Corona Lite http://solidsoftwaretools.com/gf/project/corona 
BFAST http://bfast.sourceforge.net 

Mutation calling 
GATK http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit 
SNVMix http://www.bcgsc.ca/platform/bioinfo/software/SNVMix 
CASAVA http://www.illumina.com/software/genome_analyzer_slftware.ilmn 
Samtools http://samtools.sourceforge.net 
Unified 
genotyper http://www.broadinstitute.org/gsa/wiki/index.php/unified_genotyper 
VarScan http://varscan.sourceforge.net 

Indel calling 
Pindel http://www.ebi.ac.uk/~kye/pindel 

Copy number analysis 
CBS http://www.bioconductor.org 
SegSeq http://www.broadinstitute.org/cgi-bin/cancer/ 

publications/pub_paper.cgi?mode=view&paper_id=182 

Pathogen detection 
http://www.broadinstitute.org/software/pathseq/ 

Visualization 
CIRCOS http://mkweb.bcgsc.ca/circos 
IGV http://www.broadinstitute.org/igv 

Meyerson, Gabriel, 
Getz, Nat Rev 
Genetics, 2010 



Getting started: people’s qualities needed to 
analyze next-gen cancer genome sequence data 

Necessary knowledge and attitudes may be achieved by one 
person or by communication within a team 

Understanding the features of the cancer genome 
 Heterogeneity, purity, altered ploidy, somatic nature of mutations 

Understanding and applying statistical principles 
 Significance analysis, outliers, error models 

Enjoying diving into the data 
 Visualizing, browsing, annotating, exploring… 

Ability to store, retrieve and manipulate data 
 Databases, file systems, input/output, nomenclature 

Ability to automate analytical processes 
 Even when using off-the-shelf software, ability to write simple scripts is 
needed 



Steps of cancer genome analysis with 
next-generation sequencing 

Getting started 
Data quality control 
Alignment 
Variant calling 
Visualization 
Artifact removal 
Significance analysis 

Analysis of public data sets 



Data quality control: how do you know if your 
sequence data is worth analyzing? 

Is it the right sample? 
 Species matching? 
 Tumor/normal genotype matching? 
 Gender and other fingerprint matching? 
 Similarity to other known tumor genomes? 

Is the raw sequence quality sufficient? 
 Quality scores from instrument run 
 Internal positive controls (e.g. PhiX174 control for Illumina) 

Does the sequence align to the proper reference? 
 Degree of alignment to genome, transcriptome, or exome 
reference 

Is coverage of the desired targets sufficient? 
 On-target percentage for hybrid capture 
 Library complexity (# of unique input DNA molecules) 



Steps of cancer genome analysis with 
next-generation sequencing 
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Alignment 
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BAM files are a standard format for 
sequencer-agnostic analyses 

SLX1:1:127:63:4 … 1 10052169 … 23M6N10M … GAAGATACTGGTTTTTTTCTTATGAGACGGAGT 768832'48::::::;;:/78$88818099897  SM:Z:JPTGBMN01 …!

BAM file!
Read name!

Locus!

Alignment gap information!

Read sequence!

Quality scores (fastq format)!

Meta data!

Data 
processing 

and 
analysis!

BAM file allows us to 
represent the data of any 
sequencer.  Analyses can then 
be conducted largely agnostic 
to the particular sequencer 
used.!

Bases, quality scores, (optionally) 
alignments, and meta data!

Kiran Garimella 



Accurate alignment and mapping is key 

Region 1 

Enormous 
pile of short 
reads from 

NGS 

Detects correct read 
origin and flags them 

with high certainty 

Detects ambiguity in 
the origin of reads and 

flags them as 
uncertain 

Reference 
genome 

Region 2 Region 3 

For more information 
see: 

Li and Homer (2010). A 
survey of sequence 
alignment algorithms for 
next-generation 
sequencing.  Briefings 
in Bioinformatics. 

Mapping and 
alignment 
algorithms 
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Variant calling: mutation 
detection 

Kristian Cibulskis 
Gad Getz 



MuTector: Approach 

 Pre-processing 

•  Remove duplicate reads 
•  Calibrate quality scores 
•  Remove noisy reads 
•  Local realign 

Statistical analysis Post-processing 

Artifact filtering: 
•  Misaligned reads 
•  Events observed  
only in one direction 

Bayesian classifier 

Tumor 
Prob ( Tumor is mutated | Data ) 
Prob ( Tumor is reference| Data ) 

Normal 
Prob ( Normal is reference | Data ) 
Prob ( Normal is non-reference | Data ) 
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MuTector: Control low rate of two types of false 
positives 

Signal: ~1 somatic mutation per Mb.	


Need error rate  << signal rate (<< 10-6 errors/base)!  

Noise: Two types of false positives	



	

 	

 	

 	

	



At risk:   Every base	


Source:  Misread bases���
              Sequencing artifacts	


              Misaligned reads	
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At risk: ~1000 germline variants / Mb (dbSNP)	


            ~50 rare germline variants / Mb (not in dbSNP)	


Source: Low coverage in normal (sampling noise)	


              Misaligned or unaligned reads (indels)	
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NO EVENT GERMLINE EVENT (in T
+N)	





Variant detection: non-human 
sequences 

Alex Kostic 
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Sequence-based computational subtraction 
for pathogen discovery 

 Principle 
 The human genome sequence is nearly complete 

 Infected tissues contain human and microbial RNA and DNA 

Remainder is of non-human origin: 
disease-specific sequences can be 
validated experimentally 

Normal human sequences can be 
subtracted computationally 

Computational 
subtraction 

Generate & sequence 
libraries from human  

tissue 

31 



PathSeq: Computational Subtraction Workflow 



Local system  
( Laptop / 
Desktop) 

Slave 
node 3 

Slave 
node 2 

Slave 
node N 

Master 
node 

Slave 
node 5 

Slave 
node 4 

Slave 
node 1 

Remote system 
(Cluster) 

PathSeq implemented on cloud computing 



PathSeq: Subtraction efficiency > 1 / 15 million 

PathSeq analysis of 
ovarian cancer 
genome data 

778 



Variant detection: absolute 
allele-level copy number 

calling 
Scott Carter 
Gad Getz 



Allelic copy-ratio histograms are the basis for 
purity / ploidy determination 

•  Haplotype-specific copy histograms must be inferred 
from allele-specific SNP measurements 

Fit with SNP-
array error-model 

Colored SNPs are 
germline-heterozygous 

Collapse to segment-means 
for each haplotype 



Total copy 

Haplotype-specific copy 

Lower-copy 
haplotype 

Higher-copy 
haplotype 

Region at allelic-
balance 
(unphased) 

Total 
copy 

Allelic copy-ratio histograms are the basis for 
purity / ploidy determination 



Visualizing absolute allelic copy-number data: 

Glioblastoma multiforme (GBM) 

216 samples 

Genome order – 
Low-copy haplotypes 

Genome order – 
High-copy haplotypes 

Chr 9p 

Chr 10 

Chr 7 

Chr 19/20 

1 copy (“neutral”) 
0 copies 

2 copies 
3 copies 
4 copies 



Visualizing absolute allelic copy-number data: 

Glioblastoma multiforme (GBM) 

216 samples 

Chr 9p 

Chr 10 

Chr 7 

Chr 19/20 

Frequent homozygous deletion 
of CDKN2A/B on chr 9p 
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Visualizing next-generation sequencing 
data: the Integrated Genome Viewer 

(IGV) 
Depth of coverage 

Individual reads 
aligned to the genome 

Clean C/T 
heterozygote 

Details about 
specific read 

First and second read 
from the same fragment 

Reference genome 

Non-reference bases are colored; 
reference bases are grey 

IGV screenshot 
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Artifact removal: “If it’s interesting, it’s probably an 
artifact!” 

Alignment problems 
 Genes with close homologs and pseudogenes 
 Alignment of insertions and deletions 

Whole genome amplification 
Stochastic errors 

Read quality problems 
Read duplication from excess PCR 

How to find them: look for an interesting result and then 
try to understand why it happened 
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The Fundamental Challenge of Cancer Genome Analysis: 
Distinguishing “driver” from “passenger” alterations 

Nearly every region is altered 
in at least one tumor 

Beroukhim, Getz et al, PNAS, 104(50) 2007-12, 2007. 

Time 

“Driver 

“Passenger” 

Can be distinguished by studying many samples and  
identifying aberrations that occur more frequently  
than expected by chance 

Only some of aberrations present in a tumor clone 
are related to cancer growth (“drivers”) 

141 glioblastoma samples 

For SCNAs, an additional challenge is identifying which of 
the many affected genes are actually being targeted 



Tools for detecting cancer genes / regions / pathways 
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GISTIC 1.0  
Beroukhim et al. PNAS 
(2007) 
GISTIC 2.0 
Mermel et al. submitted 

MutSig 
Getz et al. Science (2007) 
Lawrence et al. in 
development  

Uses: Frequency 
and  
amplitude of 
events 
Separates broad  
and focal 
gains and losses 

Uses: Number and  
types of mutations:  
CpG, C or G, A or T,  
indel, null 
Works on genes, genesets 
and conserved regions 
(intervals on the genome) 

NetSig (in 
development) 
Zou et al., in development 
Uses: all types of 
alterations to identify 
clusters of mutated 
genes in protein-
protein networks 

Craig Mermel, Rameen Beroukhim, 
Steve Schumacher, Mike Lawrence, 
Lihua Zou, Alex Ramos, Gregory 
Kryukov, Petar Stojanov  
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Steps of cancer genome analysis with 
next-generation sequencing 

Getting started 
Data quality control 
Alignment 
Variant calling 
Visualization 
Artifact removal 
Significance analysis 

Analysis of public data sets: see The Cancer 
Genome Atlas and the International Cancer 
Genome Consortium 



Summary: next-generation analysis of 
cancer is powerful and do-able 
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