This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 4 clinical features across 866 patients, 7 significant findings detected with P value < 0.05 and Q value < 0.25.
-
CNMF clustering analysis on array-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.
-
Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.
-
5 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes correlate to 'GENDER'.
-
6 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.
-
CNMF clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'AGE'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.
-
CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'Time to Death'.
-
Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 4 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 7 significant findings detected.
Clinical Features |
Time to Death |
AGE | GENDER |
RADIATIONS RADIATION REGIMENINDICATION |
Statistical Tests | logrank test | ANOVA | Fisher's exact test | Fisher's exact test |
mRNA CNMF subtypes |
0.23 (1.00) |
0.000889 (0.0329) |
0.33 (1.00) |
0.635 (1.00) |
mRNA cHierClus subtypes |
0.65 (1.00) |
0.000537 (0.0204) |
0.323 (1.00) |
0.16 (1.00) |
CN CNMF |
0.254 (1.00) |
0.0503 (1.00) |
0.000119 (0.00476) |
0.233 (1.00) |
METHLYATION CNMF |
0.235 (1.00) |
0.00191 (0.0667) |
0.0441 (1.00) |
0.204 (1.00) |
RPPA CNMF subtypes |
0.0438 (1.00) |
0.0191 (0.591) |
0.058 (1.00) |
0.944 (1.00) |
RPPA cHierClus subtypes |
0.238 (1.00) |
0.000121 (0.00476) |
0.187 (1.00) |
0.726 (1.00) |
RNAseq CNMF subtypes |
0.258 (1.00) |
0.012 (0.385) |
0.0682 (1.00) |
0.458 (1.00) |
RNAseq cHierClus subtypes |
0.234 (1.00) |
0.00176 (0.0633) |
0.0578 (1.00) |
0.169 (1.00) |
MIRseq CNMF subtypes |
0.00629 (0.214) |
0.0286 (0.858) |
0.683 (1.00) |
0.424 (1.00) |
MIRseq cHierClus subtypes |
0.186 (1.00) |
0.00927 (0.306) |
0.359 (1.00) |
0.687 (1.00) |
Table S1. Get Full Table Description of clustering approach #1: 'mRNA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 268 | 93 | 166 |
P value = 0.23 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 495 | 65 | 0.1 - 223.4 (24.2) |
subtype1 | 257 | 30 | 0.1 - 223.4 (20.4) |
subtype2 | 88 | 10 | 0.3 - 140.5 (35.6) |
subtype3 | 150 | 25 | 0.1 - 211.5 (22.3) |
Figure S1. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000889 (ANOVA), Q value = 0.033
Table S3. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 527 | 57.9 (13.3) |
subtype1 | 268 | 59.9 (13.1) |
subtype2 | 93 | 54.7 (13.6) |
subtype3 | 166 | 56.4 (12.9) |
Figure S2. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.33 (Fisher's exact test), Q value = 1
Table S4. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 521 | 6 |
subtype1 | 263 | 5 |
subtype2 | 93 | 0 |
subtype3 | 165 | 1 |
Figure S3. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.635 (Fisher's exact test), Q value = 1
Table S5. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 147 | 380 |
subtype1 | 70 | 198 |
subtype2 | 27 | 66 |
subtype3 | 50 | 116 |
Figure S4. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S6. Get Full Table Description of clustering approach #2: 'mRNA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 127 | 264 | 136 |
P value = 0.65 (logrank test), Q value = 1
Table S7. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 495 | 65 | 0.1 - 223.4 (24.2) |
subtype1 | 116 | 15 | 0.1 - 211.5 (21.9) |
subtype2 | 245 | 36 | 0.1 - 223.4 (23.1) |
subtype3 | 134 | 14 | 0.1 - 157.4 (26.5) |
Figure S5. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000537 (ANOVA), Q value = 0.02
Table S8. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 527 | 57.9 (13.3) |
subtype1 | 127 | 55.0 (12.7) |
subtype2 | 264 | 60.0 (13.2) |
subtype3 | 136 | 56.4 (13.4) |
Figure S6. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.323 (Fisher's exact test), Q value = 1
Table S9. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 521 | 6 |
subtype1 | 127 | 0 |
subtype2 | 259 | 5 |
subtype3 | 135 | 1 |
Figure S7. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.16 (Fisher's exact test), Q value = 1
Table S10. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 147 | 380 |
subtype1 | 43 | 84 |
subtype2 | 65 | 199 |
subtype3 | 39 | 97 |
Figure S8. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S11. Get Full Table Description of clustering approach #3: 'CN CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 316 | 72 | 196 | 204 | 55 |
P value = 0.254 (logrank test), Q value = 1
Table S12. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 785 | 94 | 0.0 - 223.4 (18.4) |
subtype1 | 295 | 31 | 0.0 - 223.4 (20.2) |
subtype2 | 71 | 6 | 0.0 - 189.0 (19.0) |
subtype3 | 179 | 21 | 0.1 - 162.0 (16.5) |
subtype4 | 189 | 25 | 0.0 - 211.5 (17.7) |
subtype5 | 51 | 11 | 0.7 - 220.9 (21.5) |
Figure S9. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.0503 (ANOVA), Q value = 1
Table S13. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 842 | 58.5 (13.2) |
subtype1 | 315 | 58.1 (12.9) |
subtype2 | 72 | 61.1 (11.3) |
subtype3 | 196 | 59.0 (14.6) |
subtype4 | 204 | 57.0 (13.0) |
subtype5 | 55 | 61.7 (12.3) |
Figure S10. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.000119 (Chi-square test), Q value = 0.0048
Table S14. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 834 | 9 |
subtype1 | 316 | 0 |
subtype2 | 71 | 1 |
subtype3 | 188 | 8 |
subtype4 | 204 | 0 |
subtype5 | 55 | 0 |
Figure S11. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.233 (Chi-square test), Q value = 1
Table S15. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 197 | 646 |
subtype1 | 63 | 253 |
subtype2 | 19 | 53 |
subtype3 | 43 | 153 |
subtype4 | 56 | 148 |
subtype5 | 16 | 39 |
Figure S12. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S16. Get Full Table Description of clustering approach #4: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 96 | 138 | 78 | 125 | 33 | 82 |
P value = 0.235 (logrank test), Q value = 1
Table S17. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 523 | 61 | 0.0 - 223.4 (17.9) |
subtype1 | 91 | 14 | 0.2 - 211.5 (19.2) |
subtype2 | 130 | 13 | 0.3 - 223.4 (13.7) |
subtype3 | 76 | 12 | 0.0 - 109.9 (17.7) |
subtype4 | 118 | 12 | 0.1 - 194.3 (19.0) |
subtype5 | 32 | 3 | 0.1 - 157.4 (20.4) |
subtype6 | 76 | 7 | 0.0 - 130.2 (25.6) |
Figure S13. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.00191 (ANOVA), Q value = 0.067
Table S18. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 551 | 57.8 (13.1) |
subtype1 | 96 | 56.3 (13.1) |
subtype2 | 138 | 59.6 (12.6) |
subtype3 | 78 | 62.3 (11.7) |
subtype4 | 125 | 55.4 (14.4) |
subtype5 | 33 | 55.7 (13.7) |
subtype6 | 81 | 56.5 (11.7) |
Figure S14. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.0441 (Chi-square test), Q value = 1
Table S19. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 546 | 6 |
subtype1 | 96 | 0 |
subtype2 | 137 | 1 |
subtype3 | 76 | 2 |
subtype4 | 124 | 1 |
subtype5 | 31 | 2 |
subtype6 | 82 | 0 |
Figure S15. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.204 (Chi-square test), Q value = 1
Table S20. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 136 | 416 |
subtype1 | 29 | 67 |
subtype2 | 32 | 106 |
subtype3 | 16 | 62 |
subtype4 | 37 | 88 |
subtype5 | 4 | 29 |
subtype6 | 18 | 64 |
Figure S16. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S21. Get Full Table Description of clustering approach #5: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 151 | 134 | 123 |
P value = 0.0438 (logrank test), Q value = 1
Table S22. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 380 | 44 | 0.1 - 189.0 (24.5) |
subtype1 | 135 | 22 | 0.1 - 186.4 (24.3) |
subtype2 | 130 | 11 | 0.2 - 146.5 (17.4) |
subtype3 | 115 | 11 | 0.3 - 189.0 (28.5) |
Figure S17. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0191 (ANOVA), Q value = 0.59
Table S23. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 408 | 57.9 (13.1) |
subtype1 | 151 | 56.3 (13.1) |
subtype2 | 134 | 60.4 (13.8) |
subtype3 | 123 | 57.0 (11.9) |
Figure S18. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.058 (Fisher's exact test), Q value = 1
Table S24. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 403 | 5 |
subtype1 | 151 | 0 |
subtype2 | 130 | 4 |
subtype3 | 122 | 1 |
Figure S19. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.944 (Fisher's exact test), Q value = 1
Table S25. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 124 | 284 |
subtype1 | 46 | 105 |
subtype2 | 42 | 92 |
subtype3 | 36 | 87 |
Figure S20. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S26. Get Full Table Description of clustering approach #6: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 135 | 162 | 111 |
P value = 0.238 (logrank test), Q value = 1
Table S27. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 380 | 44 | 0.1 - 189.0 (24.5) |
subtype1 | 120 | 18 | 0.1 - 189.0 (23.5) |
subtype2 | 151 | 17 | 0.2 - 129.7 (19.9) |
subtype3 | 109 | 9 | 0.2 - 173.0 (25.3) |
Figure S21. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000121 (ANOVA), Q value = 0.0048
Table S28. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 408 | 57.9 (13.1) |
subtype1 | 135 | 54.3 (13.0) |
subtype2 | 162 | 60.7 (13.4) |
subtype3 | 111 | 58.0 (11.7) |
Figure S22. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.187 (Fisher's exact test), Q value = 1
Table S29. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 403 | 5 |
subtype1 | 135 | 0 |
subtype2 | 158 | 4 |
subtype3 | 110 | 1 |
Figure S23. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.726 (Fisher's exact test), Q value = 1
Table S30. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 124 | 284 |
subtype1 | 40 | 95 |
subtype2 | 47 | 115 |
subtype3 | 37 | 74 |
Figure S24. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S31. Get Full Table Description of clustering approach #7: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 239 | 155 | 440 |
P value = 0.258 (logrank test), Q value = 1
Table S32. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 777 | 94 | 0.0 - 223.4 (18.9) |
subtype1 | 221 | 33 | 0.0 - 211.5 (19.3) |
subtype2 | 149 | 12 | 0.3 - 194.3 (25.4) |
subtype3 | 407 | 49 | 0.0 - 223.4 (17.0) |
Figure S25. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.012 (ANOVA), Q value = 0.38
Table S33. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 833 | 58.2 (13.2) |
subtype1 | 239 | 57.2 (12.8) |
subtype2 | 154 | 56.2 (12.4) |
subtype3 | 440 | 59.4 (13.5) |
Figure S26. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0682 (Fisher's exact test), Q value = 1
Table S34. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 825 | 9 |
subtype1 | 239 | 0 |
subtype2 | 154 | 1 |
subtype3 | 432 | 8 |
Figure S27. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.458 (Fisher's exact test), Q value = 1
Table S35. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 197 | 637 |
subtype1 | 57 | 182 |
subtype2 | 42 | 113 |
subtype3 | 98 | 342 |
Figure S28. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S36. Get Full Table Description of clustering approach #8: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 417 | 218 | 199 |
P value = 0.234 (logrank test), Q value = 1
Table S37. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 777 | 94 | 0.0 - 223.4 (18.9) |
subtype1 | 384 | 47 | 0.0 - 223.4 (16.3) |
subtype2 | 210 | 19 | 0.1 - 194.3 (25.5) |
subtype3 | 183 | 28 | 0.0 - 211.5 (20.0) |
Figure S29. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00176 (ANOVA), Q value = 0.063
Table S38. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 833 | 58.2 (13.2) |
subtype1 | 417 | 59.8 (13.3) |
subtype2 | 217 | 56.4 (13.0) |
subtype3 | 199 | 56.7 (12.8) |
Figure S30. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0578 (Fisher's exact test), Q value = 1
Table S39. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 825 | 9 |
subtype1 | 409 | 8 |
subtype2 | 217 | 1 |
subtype3 | 199 | 0 |
Figure S31. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.169 (Fisher's exact test), Q value = 1
Table S40. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 197 | 637 |
subtype1 | 87 | 330 |
subtype2 | 58 | 160 |
subtype3 | 52 | 147 |
Figure S32. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S41. Get Full Table Description of clustering approach #9: 'MIRseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 185 | 411 | 242 |
P value = 0.00629 (logrank test), Q value = 0.21
Table S42. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 779 | 95 | 0.0 - 223.4 (18.9) |
subtype1 | 178 | 19 | 0.4 - 159.1 (21.0) |
subtype2 | 381 | 37 | 0.0 - 223.4 (17.9) |
subtype3 | 220 | 39 | 0.0 - 211.5 (19.2) |
Figure S33. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0286 (ANOVA), Q value = 0.86
Table S43. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 837 | 58.4 (13.3) |
subtype1 | 184 | 57.3 (12.7) |
subtype2 | 411 | 59.7 (13.7) |
subtype3 | 242 | 57.1 (12.8) |
Figure S34. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.683 (Fisher's exact test), Q value = 1
Table S44. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 829 | 9 |
subtype1 | 184 | 1 |
subtype2 | 405 | 6 |
subtype3 | 240 | 2 |
Figure S35. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.424 (Fisher's exact test), Q value = 1
Table S45. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 193 | 645 |
subtype1 | 37 | 148 |
subtype2 | 102 | 309 |
subtype3 | 54 | 188 |
Figure S36. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S46. Get Full Table Description of clustering approach #10: 'MIRseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 205 | 268 | 365 |
P value = 0.186 (logrank test), Q value = 1
Table S47. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 779 | 95 | 0.0 - 223.4 (18.9) |
subtype1 | 192 | 30 | 0.0 - 211.5 (19.7) |
subtype2 | 237 | 31 | 0.1 - 223.4 (17.8) |
subtype3 | 350 | 34 | 0.0 - 177.4 (18.6) |
Figure S37. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00927 (ANOVA), Q value = 0.31
Table S48. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 837 | 58.4 (13.3) |
subtype1 | 205 | 56.9 (12.7) |
subtype2 | 268 | 60.4 (14.3) |
subtype3 | 364 | 57.8 (12.7) |
Figure S38. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.359 (Fisher's exact test), Q value = 1
Table S49. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 829 | 9 |
subtype1 | 204 | 1 |
subtype2 | 263 | 5 |
subtype3 | 362 | 3 |
Figure S39. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.687 (Fisher's exact test), Q value = 1
Table S50. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 193 | 645 |
subtype1 | 49 | 156 |
subtype2 | 65 | 203 |
subtype3 | 79 | 286 |
Figure S40. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

-
Cluster data file = BRCA-TP.mergedcluster.txt
-
Clinical data file = BRCA-TP.clin.merged.picked.txt
-
Number of patients = 866
-
Number of clustering approaches = 10
-
Number of selected clinical features = 4
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.