This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 9 clinical features across 422 patients, 13 significant findings detected with P value < 0.05 and Q value < 0.25.
-
CNMF clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'HISTOLOGICAL.TYPE'.
-
Consensus hierarchical clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'HISTOLOGICAL.TYPE'.
-
4 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes correlate to 'HISTOLOGICAL.TYPE', 'PATHOLOGY.N', and 'TUMOR.STAGE'.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.
-
CNMF clustering analysis on RPPA data identified 4 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on RPPA data identified 4 subtypes that do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'GENDER', 'HISTOLOGICAL.TYPE', and 'TUMOR.STAGE'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'HISTOLOGICAL.TYPE'.
-
CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'AGE' and 'PATHOLOGICSPREAD(M)'.
-
Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'PATHOLOGICSPREAD(M)'.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 9 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 13 significant findings detected.
Clinical Features |
Time to Death |
AGE | GENDER |
HISTOLOGICAL TYPE |
PATHOLOGY T |
PATHOLOGY N |
PATHOLOGICSPREAD(M) |
TUMOR STAGE |
RADIATIONS RADIATION REGIMENINDICATION |
Statistical Tests | logrank test | ANOVA | Fisher's exact test | Fisher's exact test | Chi-square test | Chi-square test | Chi-square test | Chi-square test | Fisher's exact test |
mRNA CNMF subtypes |
0.31 (1.00) |
0.418 (1.00) |
0.0625 (1.00) |
3.12e-06 (0.000262) |
0.89 (1.00) |
0.0267 (1.00) |
0.0549 (1.00) |
0.0374 (1.00) |
|
mRNA cHierClus subtypes |
0.755 (1.00) |
0.146 (1.00) |
0.0978 (1.00) |
3.57e-09 (3.14e-07) |
0.561 (1.00) |
0.58 (1.00) |
0.848 (1.00) |
0.509 (1.00) |
|
CN CNMF |
0.755 (1.00) |
0.472 (1.00) |
0.487 (1.00) |
3.7e-08 (3.22e-06) |
0.944 (1.00) |
0.00113 (0.0895) |
0.00999 (0.729) |
3.6e-05 (0.00292) |
0.337 (1.00) |
METHLYATION CNMF |
0.928 (1.00) |
0.00205 (0.16) |
0.0531 (1.00) |
0.0769 (1.00) |
0.375 (1.00) |
0.904 (1.00) |
0.304 (1.00) |
0.036 (1.00) |
0.473 (1.00) |
RPPA CNMF subtypes |
0.429 (1.00) |
0.501 (1.00) |
0.306 (1.00) |
0.015 (1.00) |
0.23 (1.00) |
0.141 (1.00) |
0.186 (1.00) |
0.117 (1.00) |
0.302 (1.00) |
RPPA cHierClus subtypes |
0.302 (1.00) |
0.169 (1.00) |
0.348 (1.00) |
0.464 (1.00) |
0.28 (1.00) |
0.123 (1.00) |
0.0432 (1.00) |
0.0747 (1.00) |
0.339 (1.00) |
RNAseq CNMF subtypes |
0.871 (1.00) |
0.105 (1.00) |
0.00324 (0.246) |
2.4e-07 (2.04e-05) |
0.7 (1.00) |
0.0246 (1.00) |
0.022 (1.00) |
0.00265 (0.204) |
1 (1.00) |
RNAseq cHierClus subtypes |
0.311 (1.00) |
0.00338 (0.254) |
0.456 (1.00) |
8.97e-08 (7.71e-06) |
0.638 (1.00) |
0.238 (1.00) |
0.342 (1.00) |
0.631 (1.00) |
1 (1.00) |
MIRseq CNMF subtypes |
0.246 (1.00) |
0.000748 (0.0599) |
0.525 (1.00) |
0.0162 (1.00) |
0.264 (1.00) |
0.515 (1.00) |
1.25e-05 (0.00102) |
0.596 (1.00) |
0.544 (1.00) |
MIRseq cHierClus subtypes |
0.521 (1.00) |
0.00978 (0.724) |
0.514 (1.00) |
0.67 (1.00) |
0.498 (1.00) |
0.95 (1.00) |
7.64e-06 (0.000634) |
0.448 (1.00) |
1 (1.00) |
Table S1. Get Full Table Description of clustering approach #1: 'mRNA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 63 | 35 | 31 | 26 |
P value = 0.31 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 75 | 11 | 0.9 - 52.0 (5.0) |
subtype1 | 27 | 6 | 1.0 - 41.0 (14.4) |
subtype2 | 22 | 1 | 1.0 - 30.0 (1.0) |
subtype3 | 18 | 3 | 1.0 - 52.0 (8.0) |
subtype4 | 8 | 1 | 0.9 - 1.0 (1.0) |
Figure S1. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.418 (ANOVA), Q value = 1
Table S3. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 155 | 70.6 (11.7) |
subtype1 | 63 | 69.2 (11.9) |
subtype2 | 35 | 72.1 (11.7) |
subtype3 | 31 | 72.7 (10.9) |
subtype4 | 26 | 69.3 (12.1) |
Figure S2. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0625 (Fisher's exact test), Q value = 1
Table S4. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 76 | 79 |
subtype1 | 32 | 31 |
subtype2 | 23 | 12 |
subtype3 | 11 | 20 |
subtype4 | 10 | 16 |
Figure S3. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 3.12e-06 (Fisher's exact test), Q value = 0.00026
Table S5. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 128 | 24 |
subtype1 | 62 | 1 |
subtype2 | 22 | 12 |
subtype3 | 21 | 9 |
subtype4 | 23 | 2 |
Figure S4. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.89 (Chi-square test), Q value = 1
Table S6. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 4 | 31 | 105 | 13 |
subtype1 | 2 | 13 | 43 | 5 |
subtype2 | 1 | 7 | 23 | 2 |
subtype3 | 0 | 6 | 20 | 5 |
subtype4 | 1 | 5 | 19 | 1 |
Figure S5. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.0267 (Chi-square test), Q value = 1
Table S7. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 95 | 28 | 32 |
subtype1 | 29 | 15 | 19 |
subtype2 | 24 | 4 | 7 |
subtype3 | 24 | 6 | 1 |
subtype4 | 18 | 3 | 5 |
Figure S6. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.0549 (Chi-square test), Q value = 1
Table S8. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A |
---|---|---|---|
ALL | 129 | 22 | 1 |
subtype1 | 48 | 15 | 0 |
subtype2 | 30 | 4 | 0 |
subtype3 | 28 | 1 | 1 |
subtype4 | 23 | 2 | 0 |
Figure S7. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.0374 (Chi-square test), Q value = 1
Table S9. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 28 | 63 | 39 | 22 |
subtype1 | 12 | 15 | 21 | 15 |
subtype2 | 6 | 17 | 7 | 3 |
subtype3 | 5 | 18 | 5 | 2 |
subtype4 | 5 | 13 | 6 | 2 |
Figure S8. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S10. Get Full Table Description of clustering approach #2: 'mRNA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 47 | 48 | 14 | 46 |
P value = 0.755 (logrank test), Q value = 1
Table S11. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 75 | 11 | 0.9 - 52.0 (5.0) |
subtype1 | 28 | 2 | 1.0 - 30.0 (1.0) |
subtype2 | 27 | 5 | 1.0 - 41.0 (15.0) |
subtype3 | 7 | 2 | 0.9 - 52.0 (14.4) |
subtype4 | 13 | 2 | 0.9 - 34.0 (1.0) |
Figure S9. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.146 (ANOVA), Q value = 1
Table S12. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 155 | 70.6 (11.7) |
subtype1 | 47 | 73.1 (11.5) |
subtype2 | 48 | 70.7 (9.6) |
subtype3 | 14 | 71.6 (12.8) |
subtype4 | 46 | 67.5 (13.0) |
Figure S10. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0978 (Fisher's exact test), Q value = 1
Table S13. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 76 | 79 |
subtype1 | 27 | 20 |
subtype2 | 27 | 21 |
subtype3 | 6 | 8 |
subtype4 | 16 | 30 |
Figure S11. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 3.57e-09 (Fisher's exact test), Q value = 3.1e-07
Table S14. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 128 | 24 |
subtype1 | 25 | 20 |
subtype2 | 46 | 2 |
subtype3 | 12 | 2 |
subtype4 | 45 | 0 |
Figure S12. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.561 (Chi-square test), Q value = 1
Table S15. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 4 | 31 | 105 | 13 |
subtype1 | 1 | 10 | 28 | 6 |
subtype2 | 1 | 7 | 36 | 4 |
subtype3 | 1 | 1 | 11 | 1 |
subtype4 | 1 | 13 | 30 | 2 |
Figure S13. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.58 (Chi-square test), Q value = 1
Table S16. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 95 | 28 | 32 |
subtype1 | 31 | 7 | 9 |
subtype2 | 25 | 13 | 10 |
subtype3 | 10 | 1 | 3 |
subtype4 | 29 | 7 | 10 |
Figure S14. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.848 (Chi-square test), Q value = 1
Table S17. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A |
---|---|---|---|
ALL | 129 | 22 | 1 |
subtype1 | 40 | 6 | 0 |
subtype2 | 38 | 8 | 1 |
subtype3 | 12 | 2 | 0 |
subtype4 | 39 | 6 | 0 |
Figure S15. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.509 (Chi-square test), Q value = 1
Table S18. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 28 | 63 | 39 | 22 |
subtype1 | 9 | 21 | 10 | 5 |
subtype2 | 5 | 17 | 16 | 9 |
subtype3 | 2 | 8 | 2 | 2 |
subtype4 | 12 | 17 | 11 | 6 |
Figure S16. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S19. Get Full Table Description of clustering approach #3: 'CN CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 170 | 187 | 32 | 24 |
P value = 0.755 (logrank test), Q value = 1
Table S20. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 319 | 49 | 0.1 - 135.5 (7.7) |
subtype1 | 127 | 23 | 0.1 - 129.1 (10.0) |
subtype2 | 149 | 19 | 0.1 - 129.1 (6.1) |
subtype3 | 23 | 4 | 0.3 - 135.5 (7.0) |
subtype4 | 20 | 3 | 0.2 - 112.7 (6.0) |
Figure S17. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.472 (ANOVA), Q value = 1
Table S21. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 412 | 67.3 (13.0) |
subtype1 | 170 | 66.4 (12.4) |
subtype2 | 186 | 68.3 (13.7) |
subtype3 | 32 | 66.0 (13.0) |
subtype4 | 24 | 68.2 (12.0) |
Figure S18. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.487 (Fisher's exact test), Q value = 1
Table S22. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 193 | 220 |
subtype1 | 77 | 93 |
subtype2 | 92 | 95 |
subtype3 | 16 | 16 |
subtype4 | 8 | 16 |
Figure S19. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

P value = 3.7e-08 (Fisher's exact test), Q value = 3.2e-06
Table S23. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 356 | 54 |
subtype1 | 162 | 7 |
subtype2 | 140 | 45 |
subtype3 | 31 | 1 |
subtype4 | 23 | 1 |
Figure S20. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.944 (Chi-square test), Q value = 1
Table S24. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 11 | 72 | 283 | 45 |
subtype1 | 5 | 27 | 120 | 18 |
subtype2 | 6 | 33 | 124 | 22 |
subtype3 | 0 | 6 | 23 | 3 |
subtype4 | 0 | 6 | 16 | 2 |
Figure S21. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.00113 (Chi-square test), Q value = 0.089
Table S25. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 245 | 95 | 71 |
subtype1 | 78 | 54 | 36 |
subtype2 | 131 | 29 | 27 |
subtype3 | 20 | 7 | 5 |
subtype4 | 16 | 5 | 3 |
Figure S22. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.00999 (Chi-square test), Q value = 0.73
Table S26. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A | M1B | MX |
---|---|---|---|---|---|
ALL | 312 | 49 | 7 | 1 | 36 |
subtype1 | 119 | 32 | 3 | 0 | 14 |
subtype2 | 153 | 10 | 1 | 1 | 18 |
subtype3 | 21 | 6 | 2 | 0 | 2 |
subtype4 | 19 | 1 | 1 | 0 | 2 |
Figure S23. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 3.6e-05 (Chi-square test), Q value = 0.0029
Table S27. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 67 | 157 | 116 | 56 |
subtype1 | 23 | 46 | 60 | 35 |
subtype2 | 35 | 89 | 44 | 11 |
subtype3 | 4 | 13 | 5 | 8 |
subtype4 | 5 | 9 | 7 | 2 |
Figure S24. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 0.337 (Fisher's exact test), Q value = 1
Table S28. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 3 | 410 |
subtype1 | 3 | 167 |
subtype2 | 0 | 187 |
subtype3 | 0 | 32 |
subtype4 | 0 | 24 |
Figure S25. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S29. Get Full Table Description of clustering approach #4: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 106 | 86 | 63 |
P value = 0.928 (logrank test), Q value = 1
Table S30. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 237 | 36 | 0.1 - 135.5 (7.6) |
subtype1 | 95 | 15 | 0.1 - 135.5 (8.0) |
subtype2 | 81 | 13 | 0.1 - 129.1 (8.0) |
subtype3 | 61 | 8 | 0.1 - 102.4 (5.8) |
Figure S26. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.00205 (ANOVA), Q value = 0.16
Table S31. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 254 | 65.4 (13.3) |
subtype1 | 106 | 66.3 (13.1) |
subtype2 | 86 | 68.0 (13.1) |
subtype3 | 62 | 60.5 (12.6) |
Figure S27. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.0531 (Fisher's exact test), Q value = 1
Table S32. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 115 | 140 |
subtype1 | 42 | 64 |
subtype2 | 48 | 38 |
subtype3 | 25 | 38 |
Figure S28. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.0769 (Fisher's exact test), Q value = 1
Table S33. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 225 | 30 |
subtype1 | 99 | 7 |
subtype2 | 73 | 13 |
subtype3 | 53 | 10 |
Figure S29. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.375 (Chi-square test), Q value = 1
Table S34. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 7 | 38 | 178 | 31 |
subtype1 | 3 | 18 | 72 | 13 |
subtype2 | 3 | 16 | 58 | 8 |
subtype3 | 1 | 4 | 48 | 10 |
Figure S30. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.904 (Chi-square test), Q value = 1
Table S35. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 152 | 64 | 37 |
subtype1 | 59 | 29 | 16 |
subtype2 | 53 | 20 | 13 |
subtype3 | 40 | 15 | 8 |
Figure S31. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.304 (Chi-square test), Q value = 1
Table S36. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A | M1B | MX |
---|---|---|---|---|---|
ALL | 180 | 27 | 6 | 1 | 36 |
subtype1 | 69 | 16 | 4 | 0 | 16 |
subtype2 | 61 | 6 | 1 | 1 | 14 |
subtype3 | 50 | 5 | 1 | 0 | 6 |
Figure S32. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.036 (Chi-square test), Q value = 1
Table S37. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 37 | 98 | 72 | 34 |
subtype1 | 15 | 34 | 31 | 20 |
subtype2 | 18 | 32 | 23 | 9 |
subtype3 | 4 | 32 | 18 | 5 |
Figure S33. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 0.473 (Fisher's exact test), Q value = 1
Table S38. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 3 | 252 |
subtype1 | 2 | 104 |
subtype2 | 0 | 86 |
subtype3 | 1 | 62 |
Figure S34. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S39. Get Full Table Description of clustering approach #5: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 65 | 119 | 7 | 78 |
P value = 0.429 (logrank test), Q value = 1
Table S40. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 206 | 19 | 0.1 - 105.3 (6.0) |
subtype1 | 56 | 2 | 0.1 - 87.8 (5.2) |
subtype2 | 82 | 7 | 0.1 - 75.2 (6.5) |
subtype3 | 2 | 0 | 0.6 - 18.1 (9.4) |
subtype4 | 66 | 10 | 0.1 - 105.3 (6.0) |
Figure S35. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.501 (ANOVA), Q value = 1
Table S41. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 268 | 66.6 (13.3) |
subtype1 | 65 | 66.7 (12.0) |
subtype2 | 118 | 66.2 (13.4) |
subtype3 | 7 | 74.1 (9.4) |
subtype4 | 78 | 66.3 (14.6) |
Figure S36. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.306 (Fisher's exact test), Q value = 1
Table S42. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 127 | 142 |
subtype1 | 34 | 31 |
subtype2 | 55 | 64 |
subtype3 | 1 | 6 |
subtype4 | 37 | 41 |
Figure S37. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.015 (Fisher's exact test), Q value = 1
Table S43. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 238 | 30 |
subtype1 | 51 | 14 |
subtype2 | 112 | 7 |
subtype3 | 6 | 1 |
subtype4 | 69 | 8 |
Figure S38. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.23 (Chi-square test), Q value = 1
Table S44. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 5 | 45 | 185 | 31 |
subtype1 | 0 | 9 | 46 | 10 |
subtype2 | 1 | 22 | 82 | 11 |
subtype3 | 0 | 0 | 7 | 0 |
subtype4 | 4 | 14 | 50 | 10 |
Figure S39. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.141 (Chi-square test), Q value = 1
Table S45. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 160 | 66 | 42 |
subtype1 | 33 | 19 | 12 |
subtype2 | 66 | 31 | 22 |
subtype3 | 6 | 0 | 1 |
subtype4 | 55 | 16 | 7 |
Figure S40. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.186 (Chi-square test), Q value = 1
Table S46. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A | M1B | MX |
---|---|---|---|---|---|
ALL | 202 | 31 | 6 | 1 | 26 |
subtype1 | 50 | 7 | 3 | 0 | 4 |
subtype2 | 84 | 20 | 0 | 1 | 13 |
subtype3 | 7 | 0 | 0 | 0 | 0 |
subtype4 | 61 | 4 | 3 | 0 | 9 |
Figure S41. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.117 (Chi-square test), Q value = 1
Table S47. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 40 | 107 | 77 | 38 |
subtype1 | 7 | 24 | 22 | 10 |
subtype2 | 19 | 39 | 35 | 21 |
subtype3 | 0 | 6 | 1 | 0 |
subtype4 | 14 | 38 | 19 | 7 |
Figure S42. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 0.302 (Fisher's exact test), Q value = 1
Table S48. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 3 | 266 |
subtype1 | 2 | 63 |
subtype2 | 1 | 118 |
subtype3 | 0 | 7 |
subtype4 | 0 | 78 |
Figure S43. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S49. Get Full Table Description of clustering approach #6: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 143 | 25 | 49 | 52 |
P value = 0.302 (logrank test), Q value = 1
Table S50. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 206 | 19 | 0.1 - 105.3 (6.0) |
subtype1 | 100 | 11 | 0.1 - 103.0 (6.6) |
subtype2 | 15 | 1 | 0.1 - 105.3 (8.0) |
subtype3 | 44 | 6 | 0.1 - 100.0 (5.1) |
subtype4 | 47 | 1 | 0.1 - 87.8 (5.4) |
Figure S44. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.169 (ANOVA), Q value = 1
Table S51. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 268 | 66.6 (13.3) |
subtype1 | 142 | 68.0 (13.6) |
subtype2 | 25 | 67.9 (12.0) |
subtype3 | 49 | 63.9 (13.8) |
subtype4 | 52 | 64.6 (12.6) |
Figure S45. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.348 (Fisher's exact test), Q value = 1
Table S52. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 127 | 142 |
subtype1 | 71 | 72 |
subtype2 | 14 | 11 |
subtype3 | 18 | 31 |
subtype4 | 24 | 28 |
Figure S46. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.464 (Fisher's exact test), Q value = 1
Table S53. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 238 | 30 |
subtype1 | 129 | 13 |
subtype2 | 23 | 2 |
subtype3 | 41 | 8 |
subtype4 | 45 | 7 |
Figure S47. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.28 (Chi-square test), Q value = 1
Table S54. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 5 | 45 | 185 | 31 |
subtype1 | 1 | 23 | 99 | 17 |
subtype2 | 0 | 3 | 20 | 2 |
subtype3 | 3 | 12 | 30 | 4 |
subtype4 | 1 | 7 | 36 | 8 |
Figure S48. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.123 (Chi-square test), Q value = 1
Table S55. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 160 | 66 | 42 |
subtype1 | 78 | 39 | 26 |
subtype2 | 19 | 5 | 1 |
subtype3 | 36 | 8 | 5 |
subtype4 | 27 | 14 | 10 |
Figure S49. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.0432 (Chi-square test), Q value = 1
Table S56. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A | M1B | MX |
---|---|---|---|---|---|
ALL | 202 | 31 | 6 | 1 | 26 |
subtype1 | 103 | 22 | 0 | 1 | 17 |
subtype2 | 22 | 0 | 0 | 0 | 1 |
subtype3 | 39 | 2 | 3 | 0 | 5 |
subtype4 | 38 | 7 | 3 | 0 | 3 |
Figure S50. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.0747 (Chi-square test), Q value = 1
Table S57. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 40 | 107 | 77 | 38 |
subtype1 | 20 | 51 | 45 | 23 |
subtype2 | 2 | 16 | 6 | 0 |
subtype3 | 11 | 23 | 10 | 5 |
subtype4 | 7 | 17 | 16 | 10 |
Figure S51. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 0.339 (Fisher's exact test), Q value = 1
Table S58. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 3 | 266 |
subtype1 | 1 | 142 |
subtype2 | 0 | 25 |
subtype3 | 0 | 49 |
subtype4 | 2 | 50 |
Figure S52. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S59. Get Full Table Description of clustering approach #7: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 68 | 61 | 40 | 23 |
P value = 0.871 (logrank test), Q value = 1
Table S60. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 108 | 16 | 0.9 - 71.7 (12.4) |
subtype1 | 36 | 6 | 0.9 - 71.7 (15.9) |
subtype2 | 41 | 5 | 1.0 - 49.0 (8.1) |
subtype3 | 25 | 5 | 0.9 - 52.0 (12.0) |
subtype4 | 6 | 0 | 1.0 - 4.0 (1.0) |
Figure S53. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.105 (ANOVA), Q value = 1
Table S61. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 192 | 69.7 (12.4) |
subtype1 | 68 | 66.8 (13.0) |
subtype2 | 61 | 72.0 (12.2) |
subtype3 | 40 | 70.6 (10.9) |
subtype4 | 23 | 70.1 (12.9) |
Figure S54. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.00324 (Fisher's exact test), Q value = 0.25
Table S62. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 99 | 93 |
subtype1 | 38 | 30 |
subtype2 | 40 | 21 |
subtype3 | 13 | 27 |
subtype4 | 8 | 15 |
Figure S55. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 2.4e-07 (Fisher's exact test), Q value = 2e-05
Table S63. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 162 | 27 |
subtype1 | 67 | 0 |
subtype2 | 41 | 19 |
subtype3 | 32 | 7 |
subtype4 | 22 | 1 |
Figure S56. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.7 (Chi-square test), Q value = 1
Table S64. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 6 | 38 | 128 | 18 |
subtype1 | 2 | 15 | 44 | 7 |
subtype2 | 2 | 8 | 41 | 8 |
subtype3 | 1 | 8 | 28 | 3 |
subtype4 | 1 | 7 | 15 | 0 |
Figure S57. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.0246 (Chi-square test), Q value = 1
Table S65. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 114 | 41 | 36 |
subtype1 | 31 | 20 | 16 |
subtype2 | 34 | 15 | 12 |
subtype3 | 31 | 4 | 5 |
subtype4 | 18 | 2 | 3 |
Figure S58. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.022 (Chi-square test), Q value = 1
Table S66. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A |
---|---|---|---|
ALL | 159 | 28 | 2 |
subtype1 | 47 | 18 | 1 |
subtype2 | 53 | 7 | 1 |
subtype3 | 37 | 2 | 0 |
subtype4 | 22 | 1 | 0 |
Figure S59. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.00265 (Chi-square test), Q value = 0.2
Table S67. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 35 | 73 | 50 | 27 |
subtype1 | 11 | 16 | 21 | 17 |
subtype2 | 8 | 25 | 19 | 7 |
subtype3 | 8 | 22 | 6 | 2 |
subtype4 | 8 | 10 | 4 | 1 |
Figure S60. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S68. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 1 | 191 |
subtype1 | 1 | 67 |
subtype2 | 0 | 61 |
subtype3 | 0 | 40 |
subtype4 | 0 | 23 |
Figure S61. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S69. Get Full Table Description of clustering approach #8: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 67 | 19 | 106 |
P value = 0.311 (logrank test), Q value = 1
Table S70. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 108 | 16 | 0.9 - 71.7 (12.4) |
subtype1 | 44 | 8 | 1.0 - 52.0 (8.0) |
subtype2 | 11 | 0 | 7.0 - 34.0 (15.2) |
subtype3 | 53 | 8 | 0.9 - 71.7 (10.9) |
Figure S62. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00338 (ANOVA), Q value = 0.25
Table S71. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 192 | 69.7 (12.4) |
subtype1 | 67 | 73.4 (11.6) |
subtype2 | 19 | 71.1 (12.6) |
subtype3 | 106 | 67.0 (12.4) |
Figure S63. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.456 (Fisher's exact test), Q value = 1
Table S72. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 99 | 93 |
subtype1 | 36 | 31 |
subtype2 | 12 | 7 |
subtype3 | 51 | 55 |
Figure S64. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 8.97e-08 (Fisher's exact test), Q value = 7.7e-06
Table S73. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 162 | 27 |
subtype1 | 43 | 22 |
subtype2 | 17 | 2 |
subtype3 | 102 | 3 |
Figure S65. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.638 (Chi-square test), Q value = 1
Table S74. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 6 | 38 | 128 | 18 |
subtype1 | 2 | 14 | 41 | 8 |
subtype2 | 0 | 2 | 14 | 3 |
subtype3 | 4 | 22 | 73 | 7 |
Figure S66. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.238 (Chi-square test), Q value = 1
Table S75. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 114 | 41 | 36 |
subtype1 | 44 | 15 | 8 |
subtype2 | 10 | 2 | 6 |
subtype3 | 60 | 24 | 22 |
Figure S67. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.342 (Chi-square test), Q value = 1
Table S76. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A |
---|---|---|---|
ALL | 159 | 28 | 2 |
subtype1 | 59 | 6 | 1 |
subtype2 | 13 | 5 | 0 |
subtype3 | 87 | 17 | 1 |
Figure S68. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.631 (Chi-square test), Q value = 1
Table S77. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 35 | 73 | 50 | 27 |
subtype1 | 14 | 29 | 16 | 6 |
subtype2 | 2 | 7 | 4 | 4 |
subtype3 | 19 | 37 | 30 | 17 |
Figure S69. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S78. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 1 | 191 |
subtype1 | 0 | 67 |
subtype2 | 0 | 19 |
subtype3 | 1 | 105 |
Figure S70. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S79. Get Full Table Description of clustering approach #9: 'MIRseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 182 | 163 | 62 |
P value = 0.246 (logrank test), Q value = 1
Table S80. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 309 | 49 | 0.1 - 135.5 (7.5) |
subtype1 | 98 | 17 | 0.9 - 71.7 (7.3) |
subtype2 | 153 | 26 | 0.1 - 135.5 (9.4) |
subtype3 | 58 | 6 | 0.1 - 100.0 (4.3) |
Figure S71. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000748 (ANOVA), Q value = 0.06
Table S81. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 406 | 67.3 (13.1) |
subtype1 | 182 | 69.8 (12.5) |
subtype2 | 162 | 66.0 (12.6) |
subtype3 | 62 | 63.3 (14.8) |
Figure S72. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.525 (Fisher's exact test), Q value = 1
Table S82. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 192 | 215 |
subtype1 | 91 | 91 |
subtype2 | 75 | 88 |
subtype3 | 26 | 36 |
Figure S73. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.0162 (Fisher's exact test), Q value = 1
Table S83. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 349 | 55 |
subtype1 | 154 | 25 |
subtype2 | 148 | 15 |
subtype3 | 47 | 15 |
Figure S74. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.264 (Chi-square test), Q value = 1
Table S84. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 11 | 69 | 279 | 45 |
subtype1 | 6 | 37 | 120 | 17 |
subtype2 | 5 | 23 | 117 | 17 |
subtype3 | 0 | 9 | 42 | 11 |
Figure S75. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.515 (Chi-square test), Q value = 1
Table S85. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 241 | 94 | 70 |
subtype1 | 111 | 36 | 34 |
subtype2 | 98 | 40 | 25 |
subtype3 | 32 | 18 | 11 |
Figure S76. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 1.25e-05 (Chi-square test), Q value = 0.001
Table S86. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A | M1B | MX |
---|---|---|---|---|---|
ALL | 305 | 50 | 7 | 1 | 36 |
subtype1 | 148 | 28 | 1 | 0 | 1 |
subtype2 | 111 | 15 | 5 | 1 | 28 |
subtype3 | 46 | 7 | 1 | 0 | 7 |
Figure S77. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.596 (Chi-square test), Q value = 1
Table S87. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 65 | 155 | 113 | 57 |
subtype1 | 34 | 69 | 45 | 27 |
subtype2 | 26 | 63 | 48 | 22 |
subtype3 | 5 | 23 | 20 | 8 |
Figure S78. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 0.544 (Fisher's exact test), Q value = 1
Table S88. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 3 | 404 |
subtype1 | 1 | 181 |
subtype2 | 1 | 162 |
subtype3 | 1 | 61 |
Figure S79. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Table S89. Get Full Table Description of clustering approach #10: 'MIRseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 180 | 45 | 182 |
P value = 0.521 (logrank test), Q value = 1
Table S90. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 309 | 49 | 0.1 - 135.5 (7.5) |
subtype1 | 97 | 16 | 0.9 - 71.7 (9.1) |
subtype2 | 42 | 8 | 0.1 - 129.1 (6.7) |
subtype3 | 170 | 25 | 0.1 - 135.5 (7.0) |
Figure S80. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00978 (ANOVA), Q value = 0.72
Table S91. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 406 | 67.3 (13.1) |
subtype1 | 180 | 69.5 (12.6) |
subtype2 | 45 | 66.4 (11.8) |
subtype3 | 181 | 65.3 (13.6) |
Figure S81. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.514 (Fisher's exact test), Q value = 1
Table S92. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 192 | 215 |
subtype1 | 90 | 90 |
subtype2 | 22 | 23 |
subtype3 | 80 | 102 |
Figure S82. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.67 (Fisher's exact test), Q value = 1
Table S93. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA |
---|---|---|
ALL | 349 | 55 |
subtype1 | 151 | 26 |
subtype2 | 41 | 4 |
subtype3 | 157 | 25 |
Figure S83. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 0.498 (Chi-square test), Q value = 1
Table S94. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 11 | 69 | 279 | 45 |
subtype1 | 6 | 36 | 119 | 17 |
subtype2 | 2 | 5 | 30 | 7 |
subtype3 | 3 | 28 | 130 | 21 |
Figure S84. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.95 (Chi-square test), Q value = 1
Table S95. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 241 | 94 | 70 |
subtype1 | 107 | 39 | 33 |
subtype2 | 27 | 10 | 8 |
subtype3 | 107 | 45 | 29 |
Figure S85. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 7.64e-06 (Chi-square test), Q value = 0.00063
Table S96. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 | M1A | M1B | MX |
---|---|---|---|---|---|
ALL | 305 | 50 | 7 | 1 | 36 |
subtype1 | 145 | 29 | 2 | 0 | 0 |
subtype2 | 30 | 5 | 2 | 0 | 6 |
subtype3 | 130 | 16 | 3 | 1 | 30 |
Figure S86. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.448 (Chi-square test), Q value = 1
Table S97. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 65 | 155 | 113 | 57 |
subtype1 | 34 | 64 | 45 | 28 |
subtype2 | 8 | 18 | 10 | 7 |
subtype3 | 23 | 73 | 58 | 22 |
Figure S87. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S98. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 3 | 404 |
subtype1 | 1 | 179 |
subtype2 | 0 | 45 |
subtype3 | 2 | 180 |
Figure S88. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #9: 'RADIATIONS.RADIATION.REGIMENINDICATION'

-
Cluster data file = COAD-TP.mergedcluster.txt
-
Clinical data file = COAD-TP.clin.merged.picked.txt
-
Number of patients = 422
-
Number of clustering approaches = 10
-
Number of selected clinical features = 9
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.