This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 8 clinical features across 502 patients, 35 significant findings detected with P value < 0.05 and Q value < 0.25.
-
CNMF clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes correlate to 'Time to Death', 'PATHOLOGY.T', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death', 'GENDER', 'PATHOLOGY.T', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'Time to Death', 'PATHOLOGY.T', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'Time to Death', 'PATHOLOGY.T', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death', 'GENDER', 'PATHOLOGY.T', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death', 'GENDER', 'PATHOLOGY.T', 'PATHOLOGY.N', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'Time to Death', 'GENDER', 'PATHOLOGY.T', 'PATHOLOGICSPREAD(M)', and 'TUMOR.STAGE'.
-
Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'Time to Death' and 'PATHOLOGY.T'.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 35 significant findings detected.
Clinical Features |
Time to Death |
AGE | GENDER |
KARNOFSKY PERFORMANCE SCORE |
PATHOLOGY T |
PATHOLOGY N |
PATHOLOGICSPREAD(M) |
TUMOR STAGE |
Statistical Tests | logrank test | ANOVA | Fisher's exact test | ANOVA | Chi-square test | Fisher's exact test | Fisher's exact test | Chi-square test |
mRNA CNMF subtypes |
0.231 (1.00) |
0.795 (1.00) |
0.634 (1.00) |
0.00911 (0.357) |
0.0704 (1.00) |
0.12 (1.00) |
0.0134 (0.482) |
|
mRNA cHierClus subtypes |
0.422 (1.00) |
0.607 (1.00) |
0.82 (1.00) |
0.00779 (0.327) |
0.124 (1.00) |
0.0988 (1.00) |
0.0102 (0.388) |
|
CN CNMF |
0.000165 (0.00922) |
0.0782 (1.00) |
0.177 (1.00) |
0.889 (1.00) |
0.00196 (0.0923) |
0.0272 (0.924) |
0.000486 (0.0253) |
0.00154 (0.074) |
METHLYATION CNMF |
6.32e-06 (0.000392) |
0.00858 (0.352) |
0.00326 (0.147) |
0.134 (1.00) |
2.64e-10 (2.01e-08) |
0.147 (1.00) |
6.41e-05 (0.00378) |
3.89e-09 (2.92e-07) |
RPPA CNMF subtypes |
4.15e-07 (2.9e-05) |
0.127 (1.00) |
0.22 (1.00) |
0.552 (1.00) |
4.3e-06 (0.000279) |
0.149 (1.00) |
5.29e-06 (0.000333) |
9.71e-08 (7.09e-06) |
RPPA cHierClus subtypes |
7.29e-07 (5.03e-05) |
0.0772 (1.00) |
0.336 (1.00) |
0.0291 (0.961) |
1.02e-07 (7.34e-06) |
0.252 (1.00) |
0.000361 (0.0191) |
1.59e-07 (1.13e-05) |
RNAseq CNMF subtypes |
1.63e-06 (0.000109) |
0.09 (1.00) |
0.000154 (0.00878) |
0.66 (1.00) |
4.85e-06 (0.00031) |
0.0117 (0.433) |
0.000645 (0.0326) |
1.27e-06 (8.64e-05) |
RNAseq cHierClus subtypes |
3.34e-08 (2.47e-06) |
0.358 (1.00) |
0.00326 (0.147) |
0.357 (1.00) |
7.56e-12 (5.82e-10) |
0.000966 (0.0474) |
2e-06 (0.000132) |
2.63e-12 (2.05e-10) |
MIRseq CNMF subtypes |
8.12e-06 (0.000495) |
0.0537 (1.00) |
0.00265 (0.122) |
0.149 (1.00) |
0.00028 (0.0154) |
0.00693 (0.298) |
0.000305 (0.0164) |
8.11e-05 (0.0047) |
MIRseq cHierClus subtypes |
2.74e-05 (0.00165) |
0.0521 (1.00) |
0.182 (1.00) |
0.849 (1.00) |
0.00064 (0.0326) |
0.00892 (0.357) |
0.282 (1.00) |
0.0143 (0.501) |
Table S1. Get Full Table Description of clustering approach #1: 'mRNA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 34 | 24 | 14 |
P value = 0.231 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 71 | 13 | 0.5 - 101.1 (32.6) |
subtype1 | 33 | 4 | 0.5 - 101.1 (31.0) |
subtype2 | 24 | 8 | 0.5 - 93.3 (36.7) |
subtype3 | 14 | 1 | 1.3 - 84.4 (25.0) |
Figure S1. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.795 (ANOVA), Q value = 1
Table S3. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 71 | 60.5 (12.4) |
subtype1 | 33 | 60.2 (13.8) |
subtype2 | 24 | 59.9 (11.1) |
subtype3 | 14 | 62.6 (11.3) |
Figure S2. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.634 (Fisher's exact test), Q value = 1
Table S4. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 29 | 43 |
subtype1 | 15 | 19 |
subtype2 | 10 | 14 |
subtype3 | 4 | 10 |
Figure S3. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.00911 (Chi-square test), Q value = 0.36
Table S5. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 |
---|---|---|---|
ALL | 41 | 14 | 17 |
subtype1 | 23 | 4 | 7 |
subtype2 | 10 | 4 | 10 |
subtype3 | 8 | 6 | 0 |
Figure S4. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.0704 (Fisher's exact test), Q value = 1
Table S6. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 35 | 3 |
subtype1 | 18 | 0 |
subtype2 | 10 | 3 |
subtype3 | 7 | 0 |
Figure S5. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.12 (Fisher's exact test), Q value = 1
Table S7. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 67 | 5 |
subtype1 | 33 | 1 |
subtype2 | 20 | 4 |
subtype3 | 14 | 0 |
Figure S6. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.0134 (Chi-square test), Q value = 0.48
Table S8. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 40 | 15 | 12 | 5 |
subtype1 | 23 | 5 | 5 | 1 |
subtype2 | 9 | 4 | 7 | 4 |
subtype3 | 8 | 6 | 0 | 0 |
Figure S7. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S9. Get Full Table Description of clustering approach #2: 'mRNA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 15 | 23 | 34 |
P value = 0.422 (logrank test), Q value = 1
Table S10. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 71 | 13 | 0.5 - 101.1 (32.6) |
subtype1 | 15 | 2 | 1.3 - 84.4 (24.2) |
subtype2 | 23 | 7 | 0.5 - 93.3 (36.8) |
subtype3 | 33 | 4 | 0.5 - 101.1 (31.0) |
Figure S8. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.607 (ANOVA), Q value = 1
Table S11. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 71 | 60.5 (12.4) |
subtype1 | 15 | 63.2 (11.2) |
subtype2 | 23 | 59.1 (10.7) |
subtype3 | 33 | 60.4 (14.0) |
Figure S9. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.82 (Fisher's exact test), Q value = 1
Table S12. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 29 | 43 |
subtype1 | 5 | 10 |
subtype2 | 9 | 14 |
subtype3 | 15 | 19 |
Figure S10. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.00779 (Chi-square test), Q value = 0.33
Table S13. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 |
---|---|---|---|
ALL | 41 | 14 | 17 |
subtype1 | 9 | 6 | 0 |
subtype2 | 9 | 4 | 10 |
subtype3 | 23 | 4 | 7 |
Figure S11. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.124 (Fisher's exact test), Q value = 1
Table S14. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 35 | 3 |
subtype1 | 7 | 0 |
subtype2 | 11 | 3 |
subtype3 | 17 | 0 |
Figure S12. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.0988 (Fisher's exact test), Q value = 1
Table S15. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 67 | 5 |
subtype1 | 15 | 0 |
subtype2 | 19 | 4 |
subtype3 | 33 | 1 |
Figure S13. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.0102 (Chi-square test), Q value = 0.39
Table S16. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 40 | 15 | 12 | 5 |
subtype1 | 9 | 6 | 0 | 0 |
subtype2 | 8 | 4 | 7 | 4 |
subtype3 | 23 | 5 | 5 | 1 |
Figure S14. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S17. Get Full Table Description of clustering approach #3: 'CN CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 132 | 197 | 164 |
P value = 0.000165 (logrank test), Q value = 0.0092
Table S18. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 490 | 158 | 0.1 - 111.0 (35.2) |
subtype1 | 132 | 50 | 0.2 - 97.5 (36.6) |
subtype2 | 195 | 43 | 0.1 - 111.0 (37.5) |
subtype3 | 163 | 65 | 0.1 - 109.9 (28.5) |
Figure S15. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.0782 (ANOVA), Q value = 1
Table S19. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 492 | 60.6 (12.2) |
subtype1 | 131 | 62.5 (11.8) |
subtype2 | 197 | 59.5 (12.7) |
subtype3 | 164 | 60.3 (11.7) |
Figure S16. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.177 (Fisher's exact test), Q value = 1
Table S20. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 171 | 322 |
subtype1 | 42 | 90 |
subtype2 | 78 | 119 |
subtype3 | 51 | 113 |
Figure S17. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.889 (ANOVA), Q value = 1
Table S21. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 36 | 88.3 (23.0) |
subtype1 | 14 | 88.6 (26.0) |
subtype2 | 9 | 91.1 (10.5) |
subtype3 | 13 | 86.2 (26.9) |
Figure S18. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.00196 (Chi-square test), Q value = 0.092
Table S22. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 242 | 64 | 176 | 11 |
subtype1 | 54 | 19 | 57 | 2 |
subtype2 | 116 | 25 | 55 | 1 |
subtype3 | 72 | 20 | 64 | 8 |
Figure S19. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.0272 (Fisher's exact test), Q value = 0.92
Table S23. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 228 | 18 |
subtype1 | 55 | 5 |
subtype2 | 91 | 2 |
subtype3 | 82 | 11 |
Figure S20. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.000486 (Fisher's exact test), Q value = 0.025
Table S24. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 417 | 76 |
subtype1 | 102 | 30 |
subtype2 | 181 | 16 |
subtype3 | 134 | 30 |
Figure S21. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.00154 (Chi-square test), Q value = 0.074
Table S25. Clustering Approach #3: 'CN CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 238 | 52 | 123 | 80 |
subtype1 | 52 | 16 | 33 | 31 |
subtype2 | 116 | 19 | 45 | 17 |
subtype3 | 70 | 17 | 45 | 32 |
Figure S22. Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S26. Get Full Table Description of clustering approach #4: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 97 | 120 | 66 |
P value = 6.32e-06 (logrank test), Q value = 0.00039
Table S27. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 281 | 95 | 0.1 - 109.9 (28.5) |
subtype1 | 96 | 49 | 0.2 - 84.7 (28.6) |
subtype2 | 119 | 21 | 0.1 - 109.6 (31.5) |
subtype3 | 66 | 25 | 0.1 - 109.9 (21.3) |
Figure S23. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.00858 (ANOVA), Q value = 0.35
Table S28. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 283 | 61.5 (12.0) |
subtype1 | 97 | 63.6 (10.2) |
subtype2 | 120 | 59.0 (12.9) |
subtype3 | 66 | 63.0 (11.9) |
Figure S24. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.00326 (Fisher's exact test), Q value = 0.15
Table S29. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 96 | 187 |
subtype1 | 21 | 76 |
subtype2 | 52 | 68 |
subtype3 | 23 | 43 |
Figure S25. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.134 (ANOVA), Q value = 1
Table S30. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 28 | 92.5 (8.0) |
subtype1 | 6 | 88.3 (7.5) |
subtype2 | 17 | 92.4 (8.3) |
subtype3 | 5 | 98.0 (4.5) |
Figure S26. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 2.64e-10 (Chi-square test), Q value = 2e-08
Table S31. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 132 | 36 | 107 | 8 |
subtype1 | 20 | 14 | 59 | 4 |
subtype2 | 78 | 18 | 24 | 0 |
subtype3 | 34 | 4 | 24 | 4 |
Figure S27. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.147 (Fisher's exact test), Q value = 1
Table S32. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 127 | 9 |
subtype1 | 43 | 5 |
subtype2 | 54 | 1 |
subtype3 | 30 | 3 |
Figure S28. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 6.41e-05 (Fisher's exact test), Q value = 0.0038
Table S33. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 232 | 51 |
subtype1 | 66 | 31 |
subtype2 | 109 | 11 |
subtype3 | 57 | 9 |
Figure S29. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 3.89e-09 (Chi-square test), Q value = 2.9e-07
Table S34. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 130 | 24 | 73 | 56 |
subtype1 | 20 | 9 | 35 | 33 |
subtype2 | 78 | 12 | 19 | 11 |
subtype3 | 32 | 3 | 19 | 12 |
Figure S30. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S35. Get Full Table Description of clustering approach #5: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 160 | 150 | 144 |
P value = 4.15e-07 (logrank test), Q value = 2.9e-05
Table S36. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 452 | 151 | 0.1 - 111.0 (34.3) |
subtype1 | 158 | 75 | 0.2 - 97.5 (30.6) |
subtype2 | 150 | 29 | 0.3 - 111.0 (38.3) |
subtype3 | 144 | 47 | 0.1 - 96.8 (30.2) |
Figure S31. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.127 (ANOVA), Q value = 1
Table S37. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 453 | 60.4 (12.3) |
subtype1 | 160 | 61.9 (12.1) |
subtype2 | 149 | 60.2 (12.7) |
subtype3 | 144 | 59.0 (12.0) |
Figure S32. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.22 (Fisher's exact test), Q value = 1
Table S38. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 151 | 303 |
subtype1 | 45 | 115 |
subtype2 | 55 | 95 |
subtype3 | 51 | 93 |
Figure S33. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.552 (ANOVA), Q value = 1
Table S39. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 34 | 93.5 (7.7) |
subtype1 | 9 | 91.1 (7.8) |
subtype2 | 15 | 94.7 (8.3) |
subtype3 | 10 | 94.0 (7.0) |
Figure S34. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 4.3e-06 (Chi-square test), Q value = 0.00028
Table S40. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 224 | 54 | 165 | 11 |
subtype1 | 51 | 24 | 77 | 8 |
subtype2 | 93 | 13 | 43 | 1 |
subtype3 | 80 | 17 | 45 | 2 |
Figure S35. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.149 (Fisher's exact test), Q value = 1
Table S41. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 208 | 16 |
subtype1 | 77 | 10 |
subtype2 | 60 | 2 |
subtype3 | 71 | 4 |
Figure S36. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 5.29e-06 (Fisher's exact test), Q value = 0.00033
Table S42. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 380 | 74 |
subtype1 | 116 | 44 |
subtype2 | 139 | 11 |
subtype3 | 125 | 19 |
Figure S37. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 9.71e-08 (Chi-square test), Q value = 7.1e-06
Table S43. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 219 | 43 | 114 | 78 |
subtype1 | 49 | 18 | 46 | 47 |
subtype2 | 92 | 10 | 37 | 11 |
subtype3 | 78 | 15 | 31 | 20 |
Figure S38. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S44. Get Full Table Description of clustering approach #6: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 132 | 215 | 107 |
P value = 7.29e-07 (logrank test), Q value = 5e-05
Table S45. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 452 | 151 | 0.1 - 111.0 (34.3) |
subtype1 | 132 | 43 | 0.2 - 111.0 (36.6) |
subtype2 | 215 | 53 | 0.1 - 96.8 (37.0) |
subtype3 | 105 | 55 | 0.1 - 91.4 (21.2) |
Figure S39. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0772 (ANOVA), Q value = 1
Table S46. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 453 | 60.4 (12.3) |
subtype1 | 131 | 61.9 (12.0) |
subtype2 | 215 | 59.1 (12.9) |
subtype3 | 107 | 61.4 (11.3) |
Figure S40. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.336 (Fisher's exact test), Q value = 1
Table S47. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 151 | 303 |
subtype1 | 39 | 93 |
subtype2 | 79 | 136 |
subtype3 | 33 | 74 |
Figure S41. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.0291 (ANOVA), Q value = 0.96
Table S48. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 34 | 93.5 (7.7) |
subtype1 | 10 | 89.0 (8.8) |
subtype2 | 18 | 96.7 (4.9) |
subtype3 | 6 | 91.7 (9.8) |
Figure S42. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 1.02e-07 (Chi-square test), Q value = 7.3e-06
Table S49. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 224 | 54 | 165 | 11 |
subtype1 | 55 | 19 | 57 | 1 |
subtype2 | 135 | 20 | 58 | 2 |
subtype3 | 34 | 15 | 50 | 8 |
Figure S43. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.252 (Fisher's exact test), Q value = 1
Table S50. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 208 | 16 |
subtype1 | 66 | 4 |
subtype2 | 82 | 4 |
subtype3 | 60 | 8 |
Figure S44. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.000361 (Fisher's exact test), Q value = 0.019
Table S51. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 380 | 74 |
subtype1 | 113 | 19 |
subtype2 | 191 | 24 |
subtype3 | 76 | 31 |
Figure S45. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 1.59e-07 (Chi-square test), Q value = 1.1e-05
Table S52. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 219 | 43 | 114 | 78 |
subtype1 | 53 | 15 | 43 | 21 |
subtype2 | 133 | 17 | 42 | 23 |
subtype3 | 33 | 11 | 29 | 34 |
Figure S46. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S53. Get Full Table Description of clustering approach #7: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 199 | 180 | 101 |
P value = 1.63e-06 (logrank test), Q value = 0.00011
Table S54. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 478 | 155 | 0.1 - 111.0 (34.3) |
subtype1 | 199 | 44 | 0.1 - 111.0 (37.0) |
subtype2 | 179 | 83 | 0.1 - 90.3 (30.6) |
subtype3 | 100 | 28 | 0.1 - 93.3 (35.2) |
Figure S47. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.09 (ANOVA), Q value = 1
Table S55. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 479 | 60.6 (12.2) |
subtype1 | 198 | 61.7 (12.2) |
subtype2 | 180 | 60.6 (11.8) |
subtype3 | 101 | 58.4 (12.7) |
Figure S48. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.000154 (Fisher's exact test), Q value = 0.0088
Table S56. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 167 | 313 |
subtype1 | 90 | 109 |
subtype2 | 45 | 135 |
subtype3 | 32 | 69 |
Figure S49. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.66 (ANOVA), Q value = 1
Table S57. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 34 | 90.9 (17.8) |
subtype1 | 14 | 91.4 (8.6) |
subtype2 | 12 | 87.5 (28.3) |
subtype3 | 8 | 95.0 (7.6) |
Figure S50. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 4.85e-06 (Chi-square test), Q value = 0.00031
Table S58. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 238 | 60 | 171 | 11 |
subtype1 | 118 | 22 | 57 | 2 |
subtype2 | 59 | 27 | 88 | 6 |
subtype3 | 61 | 11 | 26 | 3 |
Figure S51. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.0117 (Fisher's exact test), Q value = 0.43
Table S59. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 228 | 17 |
subtype1 | 96 | 2 |
subtype2 | 85 | 12 |
subtype3 | 47 | 3 |
Figure S52. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.000645 (Fisher's exact test), Q value = 0.033
Table S60. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 403 | 77 |
subtype1 | 176 | 23 |
subtype2 | 136 | 44 |
subtype3 | 91 | 10 |
Figure S53. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 1.27e-06 (Chi-square test), Q value = 8.6e-05
Table S61. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 234 | 48 | 117 | 81 |
subtype1 | 118 | 18 | 39 | 24 |
subtype2 | 56 | 21 | 58 | 45 |
subtype3 | 60 | 9 | 20 | 12 |
Figure S54. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S62. Get Full Table Description of clustering approach #8: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 73 | 215 | 192 |
P value = 3.34e-08 (logrank test), Q value = 2.5e-06
Table S63. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 478 | 155 | 0.1 - 111.0 (34.3) |
subtype1 | 72 | 14 | 0.2 - 92.0 (27.8) |
subtype2 | 214 | 48 | 0.1 - 111.0 (37.2) |
subtype3 | 192 | 93 | 0.1 - 93.3 (30.5) |
Figure S55. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.358 (ANOVA), Q value = 1
Table S64. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 479 | 60.6 (12.2) |
subtype1 | 73 | 58.7 (13.2) |
subtype2 | 214 | 61.0 (12.4) |
subtype3 | 192 | 60.8 (11.5) |
Figure S56. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.00326 (Fisher's exact test), Q value = 0.15
Table S65. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 167 | 313 |
subtype1 | 23 | 50 |
subtype2 | 92 | 123 |
subtype3 | 52 | 140 |
Figure S57. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.357 (ANOVA), Q value = 1
Table S66. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 34 | 90.9 (17.8) |
subtype1 | 10 | 95.0 (9.7) |
subtype2 | 13 | 93.1 (6.3) |
subtype3 | 11 | 84.5 (29.1) |
Figure S58. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 7.56e-12 (Chi-square test), Q value = 5.8e-10
Table S67. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 238 | 60 | 171 | 11 |
subtype1 | 55 | 6 | 11 | 1 |
subtype2 | 126 | 27 | 61 | 1 |
subtype3 | 57 | 27 | 99 | 9 |
Figure S59. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.000966 (Fisher's exact test), Q value = 0.047
Table S68. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 228 | 17 |
subtype1 | 32 | 2 |
subtype2 | 104 | 1 |
subtype3 | 92 | 14 |
Figure S60. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 2e-06 (Fisher's exact test), Q value = 0.00013
Table S69. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 403 | 77 |
subtype1 | 70 | 3 |
subtype2 | 191 | 24 |
subtype3 | 142 | 50 |
Figure S61. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 2.63e-12 (Chi-square test), Q value = 2.1e-10
Table S70. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 234 | 48 | 117 | 81 |
subtype1 | 54 | 6 | 10 | 3 |
subtype2 | 126 | 21 | 43 | 25 |
subtype3 | 54 | 21 | 64 | 53 |
Figure S62. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S71. Get Full Table Description of clustering approach #9: 'MIRseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 209 | 106 | 165 |
P value = 8.12e-06 (logrank test), Q value = 5e-04
Table S72. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 478 | 155 | 0.1 - 111.0 (35.2) |
subtype1 | 209 | 47 | 0.1 - 111.0 (36.2) |
subtype2 | 106 | 30 | 0.1 - 109.9 (35.8) |
subtype3 | 163 | 78 | 0.2 - 93.3 (31.1) |
Figure S63. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0537 (ANOVA), Q value = 1
Table S73. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 480 | 60.6 (12.2) |
subtype1 | 209 | 62.0 (12.2) |
subtype2 | 106 | 58.7 (12.7) |
subtype3 | 165 | 59.9 (11.7) |
Figure S64. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.00265 (Fisher's exact test), Q value = 0.12
Table S74. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 163 | 317 |
subtype1 | 88 | 121 |
subtype2 | 33 | 73 |
subtype3 | 42 | 123 |
Figure S65. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.149 (ANOVA), Q value = 1
Table S75. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 36 | 88.3 (23.0) |
subtype1 | 16 | 91.9 (8.3) |
subtype2 | 9 | 95.6 (7.3) |
subtype3 | 11 | 77.3 (38.8) |
Figure S66. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.00028 (Chi-square test), Q value = 0.015
Table S76. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 233 | 62 | 174 | 11 |
subtype1 | 115 | 26 | 66 | 2 |
subtype2 | 62 | 8 | 32 | 4 |
subtype3 | 56 | 28 | 76 | 5 |
Figure S67. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.00693 (Fisher's exact test), Q value = 0.3
Table S77. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 222 | 17 |
subtype1 | 95 | 2 |
subtype2 | 51 | 3 |
subtype3 | 76 | 12 |
Figure S68. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.000305 (Fisher's exact test), Q value = 0.016
Table S78. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 405 | 75 |
subtype1 | 184 | 25 |
subtype2 | 97 | 9 |
subtype3 | 124 | 41 |
Figure S69. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 8.11e-05 (Chi-square test), Q value = 0.0047
Table S79. Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 229 | 50 | 122 | 79 |
subtype1 | 114 | 20 | 49 | 26 |
subtype2 | 60 | 8 | 28 | 10 |
subtype3 | 55 | 22 | 45 | 43 |
Figure S70. Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

Table S80. Get Full Table Description of clustering approach #10: 'MIRseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 51 | 281 | 148 |
P value = 2.74e-05 (logrank test), Q value = 0.0016
Table S81. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 478 | 155 | 0.1 - 111.0 (35.2) |
subtype1 | 50 | 16 | 0.5 - 93.3 (39.6) |
subtype2 | 280 | 70 | 0.1 - 111.0 (36.0) |
subtype3 | 148 | 69 | 0.1 - 109.9 (29.5) |
Figure S71. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0521 (ANOVA), Q value = 1
Table S82. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 480 | 60.6 (12.2) |
subtype1 | 51 | 56.7 (12.1) |
subtype2 | 281 | 61.1 (11.9) |
subtype3 | 148 | 61.0 (12.6) |
Figure S72. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.182 (Fisher's exact test), Q value = 1
Table S83. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 163 | 317 |
subtype1 | 15 | 36 |
subtype2 | 105 | 176 |
subtype3 | 43 | 105 |
Figure S73. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.849 (ANOVA), Q value = 1
Table S84. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 36 | 88.3 (23.0) |
subtype1 | 4 | 92.5 (9.6) |
subtype2 | 19 | 86.3 (22.4) |
subtype3 | 13 | 90.0 (27.4) |
Figure S74. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.00064 (Chi-square test), Q value = 0.033
Table S85. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 233 | 62 | 174 | 11 |
subtype1 | 22 | 12 | 15 | 2 |
subtype2 | 153 | 35 | 91 | 2 |
subtype3 | 58 | 15 | 68 | 7 |
Figure S75. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.T'

P value = 0.00892 (Fisher's exact test), Q value = 0.36
Table S86. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'
nPatients | 0 | 1 |
---|---|---|
ALL | 222 | 17 |
subtype1 | 26 | 5 |
subtype2 | 128 | 4 |
subtype3 | 68 | 8 |
Figure S76. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.N'

P value = 0.282 (Fisher's exact test), Q value = 1
Table S87. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'
nPatients | M0 | M1 |
---|---|---|
ALL | 405 | 75 |
subtype1 | 45 | 6 |
subtype2 | 241 | 40 |
subtype3 | 119 | 29 |
Figure S77. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGICSPREAD(M)'

P value = 0.0143 (Chi-square test), Q value = 0.5
Table S88. Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 229 | 50 | 122 | 79 |
subtype1 | 22 | 10 | 13 | 6 |
subtype2 | 150 | 27 | 62 | 42 |
subtype3 | 57 | 13 | 47 | 31 |
Figure S78. Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'TUMOR.STAGE'

-
Cluster data file = KIRC-TP.mergedcluster.txt
-
Clinical data file = KIRC-TP.clin.merged.picked.txt
-
Number of patients = 502
-
Number of clustering approaches = 10
-
Number of selected clinical features = 8
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.