Correlation between molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 11 clinical features across 134 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on RPPA data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'LYMPH.NODE.METASTASIS'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 11 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
Time to Death logrank test 0.978
(1.00)
0.57
(1.00)
0.245
(1.00)
0.485
(1.00)
0.586
(1.00)
0.536
(1.00)
0.242
(1.00)
0.581
(1.00)
AGE ANOVA 0.418
(1.00)
0.0565
(1.00)
0.473
(1.00)
0.227
(1.00)
0.357
(1.00)
0.358
(1.00)
0.083
(1.00)
0.112
(1.00)
GENDER Chi-square test 1
(1.00)
0.055
(1.00)
0.633
(1.00)
0.166
(1.00)
0.79
(1.00)
0.3
(1.00)
0.0713
(1.00)
0.044
(1.00)
KARNOFSKY PERFORMANCE SCORE ANOVA 0.522
(1.00)
0.854
(1.00)
0.465
(1.00)
0.359
(1.00)
0.498
(1.00)
0.841
(1.00)
0.735
(1.00)
0.855
(1.00)
NUMBERPACKYEARSSMOKED ANOVA 0.0268
(1.00)
0.996
(1.00)
0.657
(1.00)
0.943
(1.00)
0.586
(1.00)
0.317
(1.00)
0.452
(1.00)
0.262
(1.00)
TOBACCOSMOKINGHISTORYINDICATOR ANOVA 0.597
(1.00)
0.509
(1.00)
0.845
(1.00)
0.538
(1.00)
0.508
(1.00)
0.256
(1.00)
DISTANT METASTASIS Chi-square test 0.297
(1.00)
0.595
(1.00)
0.111
(1.00)
0.00829
(0.58)
0.315
(1.00)
0.984
(1.00)
LYMPH NODE METASTASIS Chi-square test 0.0455
(1.00)
0.187
(1.00)
0.28
(1.00)
0.000632
(0.0455)
0.0222
(1.00)
0.0135
(0.929)
NUMBER OF LYMPH NODES ANOVA 0.466
(1.00)
0.2
(1.00)
0.201
(1.00)
0.697
(1.00)
0.265
(1.00)
0.0193
(1.00)
0.327
(1.00)
0.0185
(1.00)
TUMOR STAGECODE ANOVA
NEOPLASM DISEASESTAGE Chi-square test 0.322
(1.00)
0.135
(1.00)
0.424
(1.00)
0.00446
(0.317)
0.0352
(1.00)
0.0367
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 39 58 34
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.978 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 124 32 0.1 - 131.2 (7.0)
subtype1 37 10 0.8 - 100.5 (6.4)
subtype2 54 13 0.1 - 131.2 (7.0)
subtype3 33 9 0.4 - 123.8 (7.7)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.418 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 130 67.4 (10.6)
subtype1 38 68.7 (10.9)
subtype2 58 66.0 (11.4)
subtype3 34 68.1 (8.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 33 98
subtype1 10 29
subtype2 15 43
subtype3 8 26

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.522 (ANOVA), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 37 78.1 (16.3)
subtype1 13 82.3 (12.4)
subtype2 13 75.4 (20.7)
subtype3 11 76.4 (15.0)

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'Copy Number Ratio CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0268 (ANOVA), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 81 36.6 (23.0)
subtype1 24 31.7 (24.1)
subtype2 32 32.4 (18.1)
subtype3 25 46.8 (25.1)

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'Copy Number Ratio CNMF subtypes' versus 'TOBACCOSMOKINGHISTORYINDICATOR'

P value = 0.597 (ANOVA), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

nPatients Mean (Std.Dev)
ALL 80 2.8 (1.2)
subtype1 26 2.6 (1.2)
subtype2 32 2.8 (1.2)
subtype3 22 3.0 (1.0)

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

'Copy Number Ratio CNMF subtypes' versus 'DISTANT.METASTASIS'

P value = 0.297 (Chi-square test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 34 2 44
subtype1 7 0 18
subtype2 17 1 15
subtype3 10 1 11

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'DISTANT.METASTASIS'

'Copy Number Ratio CNMF subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.0455 (Chi-square test), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 N3 NX
ALL 45 9 14 3 8
subtype1 8 4 6 1 5
subtype2 25 1 5 0 2
subtype3 12 4 3 2 1

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.466 (ANOVA), Q value = 1

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 98 1.9 (3.8)
subtype1 29 1.9 (2.9)
subtype2 42 1.4 (2.7)
subtype3 27 2.6 (5.6)

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.322 (Chi-square test), Q value = 1

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE II STAGE III STAGE IV
ALL 26 27 26
subtype1 9 6 10
subtype2 10 15 7
subtype3 7 6 9

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S12.  Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4
Number of samples 34 46 33 21
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.57 (logrank test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 127 33 0.1 - 131.2 (6.9)
subtype1 33 6 0.8 - 118.9 (6.7)
subtype2 45 15 0.4 - 131.2 (7.8)
subtype3 28 5 0.7 - 37.8 (6.4)
subtype4 21 7 0.1 - 46.8 (7.2)

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.0565 (ANOVA), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 133 67.4 (10.5)
subtype1 33 67.8 (10.1)
subtype2 46 68.6 (9.6)
subtype3 33 63.3 (12.2)
subtype4 21 70.5 (9.3)

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.055 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 100
subtype1 10 24
subtype2 16 30
subtype3 3 30
subtype4 5 16

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.854 (ANOVA), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 38 78.4 (16.2)
subtype1 7 82.9 (15.0)
subtype2 10 79.0 (15.2)
subtype3 16 76.2 (18.9)
subtype4 5 78.0 (13.0)

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.996 (ANOVA), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 82 37.1 (23.2)
subtype1 22 36.7 (28.1)
subtype2 32 36.8 (21.2)
subtype3 21 38.2 (21.7)
subtype4 7 36.7 (24.9)

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'METHLYATION CNMF' versus 'TOBACCOSMOKINGHISTORYINDICATOR'

P value = 0.509 (ANOVA), Q value = 1

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

nPatients Mean (Std.Dev)
ALL 80 2.8 (1.2)
subtype1 19 2.5 (1.2)
subtype2 27 2.9 (0.9)
subtype3 24 3.0 (1.4)
subtype4 10 2.7 (1.2)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

'METHLYATION CNMF' versus 'DISTANT.METASTASIS'

P value = 0.595 (Chi-square test), Q value = 1

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 34 2 44
subtype1 8 0 10
subtype2 9 1 17
subtype3 12 0 12
subtype4 5 1 5

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'DISTANT.METASTASIS'

'METHLYATION CNMF' versus 'LYMPH.NODE.METASTASIS'

P value = 0.187 (Chi-square test), Q value = 1

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 N3 NX
ALL 45 9 14 3 8
subtype1 5 3 7 1 2
subtype2 18 4 2 1 2
subtype3 17 2 2 1 2
subtype4 5 0 3 0 2

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

'METHLYATION CNMF' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.2 (ANOVA), Q value = 1

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 98 1.9 (3.8)
subtype1 24 2.2 (3.5)
subtype2 36 1.1 (2.4)
subtype3 24 1.7 (4.7)
subtype4 14 3.6 (4.8)

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.135 (Chi-square test), Q value = 1

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE II STAGE III STAGE IV
ALL 26 27 26
subtype1 4 4 10
subtype2 6 13 7
subtype3 11 7 6
subtype4 5 3 3

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S23.  Get Full Table Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 12 10 14 17
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.245 (logrank test), Q value = 1

Table S24.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 52 20 0.4 - 118.9 (8.3)
subtype1 12 4 5.7 - 49.9 (10.9)
subtype2 10 5 1.8 - 100.5 (5.5)
subtype3 13 2 0.5 - 19.5 (6.6)
subtype4 17 9 0.4 - 118.9 (14.9)

Figure S21.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'AGE'

P value = 0.473 (ANOVA), Q value = 1

Table S25.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 52 67.3 (9.8)
subtype1 12 63.9 (9.2)
subtype2 10 69.5 (9.3)
subtype3 13 66.5 (10.2)
subtype4 17 69.1 (10.3)

Figure S22.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.633 (Fisher's exact test), Q value = 1

Table S26.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 21 32
subtype1 6 6
subtype2 5 5
subtype3 5 9
subtype4 5 12

Figure S23.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.465 (ANOVA), Q value = 1

Table S27.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 80.0 (16.7)
subtype1 5 88.0 (4.5)
subtype2 1 70.0 (NA)
subtype3 1 60.0 (NA)
subtype4 4 77.5 (25.0)

Figure S24.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RPPA CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.657 (ANOVA), Q value = 1

Table S28.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 27 32.1 (17.5)
subtype1 9 27.6 (12.4)
subtype2 5 28.8 (18.4)
subtype3 6 35.2 (20.4)
subtype4 7 37.9 (21.6)

Figure S25.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'RPPA CNMF subtypes' versus 'TUMOR.STAGECODE'

P value = NA (ANOVA), Q value = 1

Table S29.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'TUMOR.STAGECODE'

nPatients Mean (Std.Dev)
ALL 0 NaN (NA)
Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S30.  Get Full Table Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 14 15 24
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.485 (logrank test), Q value = 1

Table S31.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 52 20 0.4 - 118.9 (8.3)
subtype1 14 9 0.4 - 118.9 (10.4)
subtype2 15 5 1.9 - 49.9 (8.3)
subtype3 23 6 0.5 - 100.5 (6.6)

Figure S26.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'AGE'

P value = 0.227 (ANOVA), Q value = 1

Table S32.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 52 67.3 (9.8)
subtype1 14 70.5 (9.0)
subtype2 15 64.2 (9.6)
subtype3 23 67.4 (10.2)

Figure S27.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.166 (Fisher's exact test), Q value = 1

Table S33.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 21 32
subtype1 5 9
subtype2 9 6
subtype3 7 17

Figure S28.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.359 (ANOVA), Q value = 1

Table S34.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 80.0 (16.7)
subtype1 3 73.3 (28.9)
subtype2 4 90.0 (0.0)
subtype3 4 75.0 (12.9)

Figure S29.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RPPA cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.943 (ANOVA), Q value = 1

Table S35.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 27 32.1 (17.5)
subtype1 5 33.0 (23.3)
subtype2 9 30.4 (15.6)
subtype3 13 33.0 (17.8)

Figure S30.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'RPPA cHierClus subtypes' versus 'TUMOR.STAGECODE'

P value = NA (ANOVA), Q value = 1

Table S36.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'TUMOR.STAGECODE'

nPatients Mean (Std.Dev)
ALL 0 NaN (NA)
Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S37.  Get Full Table Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 45 21 41 24
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.586 (logrank test), Q value = 1

Table S38.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 124 32 0.1 - 131.2 (7.0)
subtype1 40 7 0.1 - 100.5 (6.6)
subtype2 21 7 0.8 - 118.9 (6.6)
subtype3 40 12 0.4 - 75.3 (7.8)
subtype4 23 6 1.3 - 131.2 (6.8)

Figure S31.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.357 (ANOVA), Q value = 1

Table S39.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 130 67.2 (10.6)
subtype1 44 67.0 (11.9)
subtype2 21 64.9 (9.3)
subtype3 41 66.8 (10.6)
subtype4 24 70.4 (8.9)

Figure S32.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.79 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 97
subtype1 10 35
subtype2 5 16
subtype3 13 28
subtype4 6 18

Figure S33.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.498 (ANOVA), Q value = 1

Table S41.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 38 78.4 (16.2)
subtype1 17 77.1 (17.2)
subtype2 7 85.7 (7.9)
subtype3 12 78.3 (18.5)
subtype4 2 65.0 (7.1)

Figure S34.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.586 (ANOVA), Q value = 1

Table S42.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 80 36.6 (23.1)
subtype1 22 42.0 (30.9)
subtype2 18 35.1 (21.1)
subtype3 28 33.0 (17.9)
subtype4 12 37.2 (20.9)

Figure S35.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'RNAseq CNMF subtypes' versus 'TOBACCOSMOKINGHISTORYINDICATOR'

P value = 0.845 (ANOVA), Q value = 1

Table S43.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

nPatients Mean (Std.Dev)
ALL 79 2.8 (1.2)
subtype1 25 2.7 (1.3)
subtype2 13 2.7 (1.1)
subtype3 25 3.0 (1.0)
subtype4 16 2.7 (1.2)

Figure S36.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

'RNAseq CNMF subtypes' versus 'DISTANT.METASTASIS'

P value = 0.111 (Chi-square test), Q value = 1

Table S44.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 33 2 44
subtype1 14 0 12
subtype2 4 0 8
subtype3 9 0 16
subtype4 6 2 8

Figure S37.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'DISTANT.METASTASIS'

'RNAseq CNMF subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.28 (Chi-square test), Q value = 1

Table S45.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 N3 NX
ALL 44 9 14 3 8
subtype1 13 2 7 0 3
subtype2 6 1 2 1 2
subtype3 16 5 0 1 3
subtype4 9 1 5 1 0

Figure S38.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

'RNAseq CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.265 (ANOVA), Q value = 1

Table S46.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 97 1.9 (3.8)
subtype1 29 2.1 (3.2)
subtype2 14 0.6 (1.0)
subtype3 32 1.5 (4.3)
subtype4 22 3.0 (4.5)

Figure S39.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.424 (Chi-square test), Q value = 1

Table S47.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE II STAGE III STAGE IV
ALL 26 26 26
subtype1 12 5 8
subtype2 4 5 4
subtype3 7 11 7
subtype4 3 5 7

Figure S40.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S48.  Get Full Table Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 29 45 57
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.536 (logrank test), Q value = 1

Table S49.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 124 32 0.1 - 131.2 (7.0)
subtype1 29 9 0.5 - 100.5 (5.8)
subtype2 39 6 0.1 - 37.8 (6.6)
subtype3 56 17 0.4 - 131.2 (7.8)

Figure S41.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.358 (ANOVA), Q value = 1

Table S50.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 130 67.2 (10.6)
subtype1 29 69.7 (9.5)
subtype2 44 66.1 (11.4)
subtype3 57 66.9 (10.4)

Figure S42.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.3 (Fisher's exact test), Q value = 1

Table S51.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 97
subtype1 8 21
subtype2 8 37
subtype3 18 39

Figure S43.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.841 (ANOVA), Q value = 1

Table S52.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 38 78.4 (16.2)
subtype1 6 81.7 (13.3)
subtype2 17 77.1 (17.2)
subtype3 15 78.7 (16.8)

Figure S44.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.317 (ANOVA), Q value = 1

Table S53.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 80 36.6 (23.1)
subtype1 13 44.8 (30.1)
subtype2 27 37.1 (25.3)
subtype3 40 33.6 (18.6)

Figure S45.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'RNAseq cHierClus subtypes' versus 'TOBACCOSMOKINGHISTORYINDICATOR'

P value = 0.538 (ANOVA), Q value = 1

Table S54.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

nPatients Mean (Std.Dev)
ALL 79 2.8 (1.2)
subtype1 12 2.8 (1.1)
subtype2 32 2.6 (1.3)
subtype3 35 2.9 (1.0)

Figure S46.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

'RNAseq cHierClus subtypes' versus 'DISTANT.METASTASIS'

P value = 0.00829 (Chi-square test), Q value = 0.58

Table S55.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 33 2 44
subtype1 3 2 8
subtype2 17 0 14
subtype3 13 0 22

Figure S47.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'DISTANT.METASTASIS'

'RNAseq cHierClus subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.000632 (Chi-square test), Q value = 0.045

Table S56.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 N3 NX
ALL 44 9 14 3 8
subtype1 4 1 8 0 0
subtype2 16 4 5 0 5
subtype3 24 4 1 3 3

Figure S48.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

'RNAseq cHierClus subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.0193 (ANOVA), Q value = 1

Table S57.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 97 1.9 (3.8)
subtype1 23 3.8 (4.3)
subtype2 28 1.6 (3.1)
subtype3 46 1.2 (3.7)

Figure S49.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00446 (Chi-square test), Q value = 0.32

Table S58.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE II STAGE III STAGE IV
ALL 26 26 26
subtype1 1 2 9
subtype2 15 8 8
subtype3 10 16 9

Figure S50.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S59.  Get Full Table Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 32 54 48
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.242 (logrank test), Q value = 1

Table S60.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 127 33 0.1 - 131.2 (6.9)
subtype1 28 3 0.8 - 118.9 (5.4)
subtype2 51 12 0.4 - 49.9 (7.0)
subtype3 48 18 0.1 - 131.2 (8.2)

Figure S51.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.083 (ANOVA), Q value = 1

Table S61.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 133 67.4 (10.5)
subtype1 31 69.8 (11.3)
subtype2 54 65.0 (10.6)
subtype3 48 68.5 (9.6)

Figure S52.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.0713 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 100
subtype1 4 28
subtype2 13 41
subtype3 17 31

Figure S53.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.735 (ANOVA), Q value = 1

Table S63.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 38 78.4 (16.2)
subtype1 7 82.9 (9.5)
subtype2 24 77.5 (18.9)
subtype3 7 77.1 (11.1)

Figure S54.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.452 (ANOVA), Q value = 1

Table S64.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 82 37.1 (23.2)
subtype1 20 37.5 (29.2)
subtype2 37 33.9 (17.7)
subtype3 25 41.5 (25.3)

Figure S55.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'MIRSEQ CNMF' versus 'TOBACCOSMOKINGHISTORYINDICATOR'

P value = 0.508 (ANOVA), Q value = 1

Table S65.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

nPatients Mean (Std.Dev)
ALL 80 2.8 (1.2)
subtype1 20 2.5 (1.4)
subtype2 36 2.8 (1.0)
subtype3 24 3.0 (1.1)

Figure S56.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

'MIRSEQ CNMF' versus 'DISTANT.METASTASIS'

P value = 0.315 (Chi-square test), Q value = 1

Table S66.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 34 2 44
subtype1 8 0 11
subtype2 15 0 21
subtype3 11 2 12

Figure S57.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'DISTANT.METASTASIS'

'MIRSEQ CNMF' versus 'LYMPH.NODE.METASTASIS'

P value = 0.0222 (Chi-square test), Q value = 1

Table S67.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 N3 NX
ALL 45 9 14 3 8
subtype1 8 5 4 2 0
subtype2 21 4 3 1 6
subtype3 16 0 7 0 2

Figure S58.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

'MIRSEQ CNMF' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.327 (ANOVA), Q value = 1

Table S68.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 98 1.9 (3.8)
subtype1 24 2.5 (5.0)
subtype2 36 1.1 (2.7)
subtype3 38 2.2 (3.7)

Figure S59.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0352 (Chi-square test), Q value = 1

Table S69.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE II STAGE III STAGE IV
ALL 26 27 26
subtype1 3 4 11
subtype2 16 12 8
subtype3 7 11 7

Figure S60.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S70.  Get Full Table Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5
Number of samples 20 63 7 36 8
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.581 (logrank test), Q value = 1

Table S71.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 127 33 0.1 - 131.2 (6.9)
subtype1 16 3 1.5 - 118.9 (5.9)
subtype2 60 19 0.1 - 49.9 (7.2)
subtype3 7 1 0.8 - 7.9 (4.1)
subtype4 36 8 0.5 - 131.2 (8.5)
subtype5 8 2 1.4 - 75.3 (6.2)

Figure S61.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.112 (ANOVA), Q value = 1

Table S72.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 133 67.4 (10.5)
subtype1 19 68.4 (12.3)
subtype2 63 65.0 (10.3)
subtype3 7 68.0 (7.2)
subtype4 36 69.5 (10.3)
subtype5 8 73.4 (8.3)

Figure S62.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.044 (Chi-square test), Q value = 1

Table S73.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 100
subtype1 3 17
subtype2 17 46
subtype3 0 7
subtype4 14 22
subtype5 0 8

Figure S63.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.855 (ANOVA), Q value = 1

Table S74.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 38 78.4 (16.2)
subtype1 5 82.0 (11.0)
subtype2 26 77.3 (18.2)
subtype3 2 85.0 (7.1)
subtype4 4 77.5 (15.0)
subtype5 1 80.0 (NA)

Figure S64.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CHIERARCHICAL' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.262 (ANOVA), Q value = 1

Table S75.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 82 37.1 (23.2)
subtype1 12 37.5 (25.8)
subtype2 41 37.2 (20.4)
subtype3 5 53.2 (37.0)
subtype4 17 38.1 (24.1)
subtype5 7 22.3 (18.9)

Figure S65.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'NUMBERPACKYEARSSMOKED'

'MIRSEQ CHIERARCHICAL' versus 'TOBACCOSMOKINGHISTORYINDICATOR'

P value = 0.256 (ANOVA), Q value = 1

Table S76.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

nPatients Mean (Std.Dev)
ALL 80 2.8 (1.2)
subtype1 11 2.4 (1.4)
subtype2 38 2.8 (1.1)
subtype3 7 2.6 (1.4)
subtype4 18 2.7 (1.1)
subtype5 6 3.7 (0.8)

Figure S66.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'TOBACCOSMOKINGHISTORYINDICATOR'

'MIRSEQ CHIERARCHICAL' versus 'DISTANT.METASTASIS'

P value = 0.984 (Chi-square test), Q value = 1

Table S77.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 34 2 44
subtype1 4 0 7
subtype2 17 1 20
subtype3 2 0 4
subtype4 8 1 10
subtype5 3 0 3

Figure S67.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'DISTANT.METASTASIS'

'MIRSEQ CHIERARCHICAL' versus 'LYMPH.NODE.METASTASIS'

P value = 0.0135 (Chi-square test), Q value = 0.93

Table S78.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 N3 NX
ALL 45 9 14 3 8
subtype1 4 3 3 1 0
subtype2 22 3 3 1 8
subtype3 2 2 1 1 0
subtype4 12 0 7 0 0
subtype5 5 1 0 0 0

Figure S68.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'LYMPH.NODE.METASTASIS'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.0185 (ANOVA), Q value = 1

Table S79.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 98 1.9 (3.8)
subtype1 14 1.6 (3.2)
subtype2 40 1.0 (2.4)
subtype3 5 6.4 (9.3)
subtype4 31 2.7 (4.1)
subtype5 8 0.8 (1.4)

Figure S69.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'NUMBER.OF.LYMPH.NODES'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0367 (Chi-square test), Q value = 1

Table S80.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE II STAGE III STAGE IV
ALL 26 27 26
subtype1 2 1 6
subtype2 19 12 7
subtype3 1 2 4
subtype4 3 9 7
subtype5 1 3 2

Figure S70.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NEOPLASM.DISEASESTAGE'

Methods & Data
Input
  • Cluster data file = BLCA-TP.mergedcluster.txt

  • Clinical data file = BLCA-TP.clin.merged.picked.txt

  • Number of patients = 134

  • Number of clustering approaches = 8

  • Number of selected clinical features = 11

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)