Correlation between gene mutation status and selected clinical features
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 10 genes and 8 clinical features across 293 patients, 5 significant findings detected with Q value < 0.25.

  • BAP1 mutation correlated to 'GENDER',  'DISTANT.METASTASIS', and 'NEOPLASM.DISEASESTAGE'.

  • TP53 mutation correlated to 'Time to Death'.

  • EBPL mutation correlated to 'GENDER'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 10 genes and 8 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 5 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER KARNOFSKY
PERFORMANCE
SCORE
DISTANT
METASTASIS
LYMPH
NODE
METASTASIS
TUMOR
STAGECODE
NEOPLASM
DISEASESTAGE
nMutated (%) nWild-Type logrank test t-test Fisher's exact test t-test Fisher's exact test Fisher's exact test t-test Fisher's exact test
BAP1 27 (9%) 266 0.0136
(0.76)
0.742
(1.00)
0.00238
(0.14)
0.00411
(0.238)
0.108
(1.00)
0.000291
(0.018)
TP53 6 (2%) 287 0.000354
(0.0216)
0.259
(1.00)
0.188
(1.00)
0.579
(1.00)
0.169
(1.00)
0.0221
(1.00)
EBPL 6 (2%) 287 0.48
(1.00)
0.527
(1.00)
0.00161
(0.0968)
1
(1.00)
0.0384
(1.00)
0.0758
(1.00)
PBRM1 107 (37%) 186 0.533
(1.00)
0.813
(1.00)
0.309
(1.00)
0.429
(1.00)
0.593
(1.00)
0.413
(1.00)
0.939
(1.00)
SV2C 3 (1%) 290 0.731
(1.00)
0.0205
(1.00)
1
(1.00)
1
(1.00)
0.205
(1.00)
1
(1.00)
VHL 138 (47%) 155 0.668
(1.00)
0.0301
(1.00)
0.176
(1.00)
0.359
(1.00)
1
(1.00)
0.491
(1.00)
0.145
(1.00)
SETD2 34 (12%) 259 0.762
(1.00)
0.0994
(1.00)
0.181
(1.00)
0.101
(1.00)
0.72
(1.00)
0.0591
(1.00)
KDM5C 18 (6%) 275 0.0803
(1.00)
0.206
(1.00)
0.00486
(0.277)
1
(1.00)
0.741
(1.00)
0.857
(1.00)
PTEN 9 (3%) 284 0.769
(1.00)
0.219
(1.00)
0.503
(1.00)
0.613
(1.00)
0.0299
(1.00)
0.226
(1.00)
TOR1A 3 (1%) 290 0.0532
(1.00)
0.704
(1.00)
1
(1.00)
1
(1.00)
0.0562
(1.00)
1
(1.00)
'BAP1 MUTATION STATUS' versus 'GENDER'

P value = 0.00238 (Fisher's exact test), Q value = 0.14

Table S1.  Gene #4: 'BAP1 MUTATION STATUS' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 102 191
BAP1 MUTATED 17 10
BAP1 WILD-TYPE 85 181

Figure S1.  Get High-res Image Gene #4: 'BAP1 MUTATION STATUS' versus Clinical Feature #3: 'GENDER'

'BAP1 MUTATION STATUS' versus 'DISTANT.METASTASIS'

P value = 0.00411 (Fisher's exact test), Q value = 0.24

Table S2.  Gene #4: 'BAP1 MUTATION STATUS' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1
ALL 254 39
BAP1 MUTATED 18 9
BAP1 WILD-TYPE 236 30

Figure S2.  Get High-res Image Gene #4: 'BAP1 MUTATION STATUS' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'BAP1 MUTATION STATUS' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.000291 (Fisher's exact test), Q value = 0.018

Table S3.  Gene #4: 'BAP1 MUTATION STATUS' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 144 32 77 40
BAP1 MUTATED 5 5 7 10
BAP1 WILD-TYPE 139 27 70 30

Figure S3.  Get High-res Image Gene #4: 'BAP1 MUTATION STATUS' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

'TP53 MUTATION STATUS' versus 'Time to Death'

P value = 0.000354 (logrank test), Q value = 0.022

Table S4.  Gene #7: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 291 77 0.1 - 109.6 (34.3)
TP53 MUTATED 6 3 0.2 - 25.7 (9.8)
TP53 WILD-TYPE 285 74 0.1 - 109.6 (35.2)

Figure S4.  Get High-res Image Gene #7: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

'EBPL MUTATION STATUS' versus 'GENDER'

P value = 0.00161 (Fisher's exact test), Q value = 0.097

Table S5.  Gene #9: 'EBPL MUTATION STATUS' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 102 191
EBPL MUTATED 6 0
EBPL WILD-TYPE 96 191

Figure S5.  Get High-res Image Gene #9: 'EBPL MUTATION STATUS' versus Clinical Feature #3: 'GENDER'

Methods & Data
Input
  • Mutation data file = KIRC-TP.mutsig.cluster.txt

  • Clinical data file = KIRC-TP.clin.merged.picked.txt

  • Number of patients = 293

  • Number of significantly mutated genes = 10

  • Number of selected clinical features = 8

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)