This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 12 different clustering approaches and 13 clinical features across 394 patients, 4 significant findings detected with P value < 0.05 and Q value < 0.25.
-
CNMF clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'PATHOLOGY.T.STAGE'.
-
Consensus hierarchical clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'PATHOLOGY.T.STAGE'.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.
-
CNMF clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on RPPA data identified 4 subtypes that do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.
-
4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'PATHOLOGY.M.STAGE'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'RADIATIONS.RADIATION.REGIMENINDICATION'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 12 different clustering approaches and 13 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 4 significant findings detected.
Clinical Features |
Statistical Tests |
mRNA CNMF subtypes |
mRNA cHierClus subtypes |
Copy Number Ratio CNMF subtypes |
METHLYATION CNMF |
RPPA CNMF subtypes |
RPPA cHierClus subtypes |
RNAseq CNMF subtypes |
RNAseq cHierClus subtypes |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRseq Mature CNMF subtypes |
MIRseq Mature cHierClus subtypes |
Time to Death | logrank test |
0.384 (1.00) |
0.415 (1.00) |
0.247 (1.00) |
0.158 (1.00) |
0.0101 (1.00) |
0.00999 (1.00) |
0.171 (1.00) |
0.864 (1.00) |
0.992 (1.00) |
0.413 (1.00) |
0.908 (1.00) |
0.875 (1.00) |
AGE | t-test |
0.962 (1.00) |
0.438 (1.00) |
0.033 (1.00) |
0.0972 (1.00) |
0.0153 (1.00) |
0.0759 (1.00) |
0.0394 (1.00) |
0.0437 (1.00) |
0.0751 (1.00) |
0.217 (1.00) |
0.129 (1.00) |
0.648 (1.00) |
NEOPLASM DISEASESTAGE | Chi-square test |
0.0228 (1.00) |
0.00998 (1.00) |
0.588 (1.00) |
0.672 (1.00) |
0.296 (1.00) |
0.454 (1.00) |
0.276 (1.00) |
0.451 (1.00) |
0.366 (1.00) |
0.0578 (1.00) |
0.0159 (1.00) |
0.794 (1.00) |
PATHOLOGY T STAGE | Chi-square test |
0.00124 (0.19) |
9.97e-05 (0.0154) |
0.695 (1.00) |
0.652 (1.00) |
0.185 (1.00) |
0.274 (1.00) |
0.494 (1.00) |
0.527 (1.00) |
0.228 (1.00) |
0.563 (1.00) |
0.00297 (0.452) |
0.277 (1.00) |
PATHOLOGY N STAGE | Chi-square test |
0.877 (1.00) |
0.427 (1.00) |
0.432 (1.00) |
0.771 (1.00) |
0.308 (1.00) |
0.0902 (1.00) |
0.413 (1.00) |
0.333 (1.00) |
0.307 (1.00) |
0.375 (1.00) |
0.172 (1.00) |
0.661 (1.00) |
PATHOLOGY M STAGE | Chi-square test |
0.105 (1.00) |
0.0642 (1.00) |
0.673 (1.00) |
0.316 (1.00) |
0.612 (1.00) |
0.304 (1.00) |
0.64 (1.00) |
0.372 (1.00) |
4.74e-05 (0.0074) |
0.0718 (1.00) |
0.665 (1.00) |
0.0664 (1.00) |
GENDER | Fisher's exact test |
0.331 (1.00) |
0.00305 (0.46) |
0.0445 (1.00) |
0.841 (1.00) |
0.266 (1.00) |
0.874 (1.00) |
0.681 (1.00) |
0.144 (1.00) |
0.888 (1.00) |
0.286 (1.00) |
0.98 (1.00) |
0.433 (1.00) |
KARNOFSKY PERFORMANCE SCORE | t-test |
0.191 (1.00) |
0.108 (1.00) |
0.159 (1.00) |
0.344 (1.00) |
0.527 (1.00) |
0.918 (1.00) |
0.808 (1.00) |
0.649 (1.00) |
0.094 (1.00) |
0.662 (1.00) |
0.76 (1.00) |
0.0888 (1.00) |
HISTOLOGICAL TYPE | Chi-square test |
0.32 (1.00) |
0.264 (1.00) |
0.132 (1.00) |
0.362 (1.00) |
0.134 (1.00) |
0.0593 (1.00) |
0.689 (1.00) |
0.069 (1.00) |
0.0905 (1.00) |
0.474 (1.00) |
0.261 (1.00) |
0.232 (1.00) |
RADIATIONS RADIATION REGIMENINDICATION | Fisher's exact test |
0.55 (1.00) |
0.183 (1.00) |
1 (1.00) |
0.279 (1.00) |
0.524 (1.00) |
0.583 (1.00) |
0.305 (1.00) |
0.303 (1.00) |
0.665 (1.00) |
0.00107 (0.165) |
0.637 (1.00) |
0.502 (1.00) |
NUMBERPACKYEARSSMOKED | t-test |
0.525 (1.00) |
0.822 (1.00) |
0.268 (1.00) |
0.189 (1.00) |
0.0516 (1.00) |
0.105 (1.00) |
0.894 (1.00) |
0.652 (1.00) |
0.554 (1.00) |
0.793 (1.00) |
0.927 (1.00) |
0.476 (1.00) |
YEAROFTOBACCOSMOKINGONSET | t-test |
0.903 (1.00) |
0.0465 (1.00) |
0.263 (1.00) |
0.596 (1.00) |
0.151 (1.00) |
0.262 (1.00) |
0.276 (1.00) |
0.0771 (1.00) |
0.264 (1.00) |
0.0511 (1.00) |
0.272 (1.00) |
0.114 (1.00) |
COMPLETENESS OF RESECTION | Chi-square test |
0.546 (1.00) |
0.384 (1.00) |
0.238 (1.00) |
0.488 (1.00) |
0.033 (1.00) |
0.0213 (1.00) |
0.746 (1.00) |
0.327 (1.00) |
0.72 (1.00) |
0.882 (1.00) |
0.477 (1.00) |
0.494 (1.00) |
Table S1. Description of clustering approach #1: 'mRNA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 42 | 52 | 32 | 28 |
P value = 0.384 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 148 | 63 | 0.4 - 173.8 (20.7) |
subtype1 | 41 | 16 | 0.4 - 122.4 (19.0) |
subtype2 | 50 | 19 | 0.4 - 99.2 (29.4) |
subtype3 | 30 | 17 | 0.4 - 173.8 (17.5) |
subtype4 | 27 | 11 | 0.4 - 114.0 (11.8) |
Figure S1. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.962 (ANOVA), Q value = 1
Table S3. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 152 | 66.5 (8.6) |
subtype1 | 41 | 66.4 (7.7) |
subtype2 | 51 | 66.5 (8.2) |
subtype3 | 32 | 67.2 (9.8) |
subtype4 | 28 | 66.0 (9.4) |
Figure S2. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0228 (Chi-square test), Q value = 1
Table S4. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IA | STAGE IB | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|
ALL | 20 | 61 | 7 | 27 | 19 | 15 | 4 |
subtype1 | 2 | 21 | 0 | 9 | 6 | 2 | 2 |
subtype2 | 2 | 24 | 4 | 9 | 6 | 7 | 0 |
subtype3 | 8 | 11 | 2 | 4 | 4 | 2 | 0 |
subtype4 | 8 | 5 | 1 | 5 | 3 | 4 | 2 |
Figure S3. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.00124 (Chi-square test), Q value = 0.19
Table S5. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 30 | 100 | 12 | 12 |
subtype1 | 5 | 30 | 6 | 1 |
subtype2 | 4 | 41 | 1 | 6 |
subtype3 | 11 | 18 | 2 | 1 |
subtype4 | 10 | 11 | 3 | 4 |
Figure S4. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.877 (Chi-square test), Q value = 1
Table S6. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 96 | 40 | 13 | 5 |
subtype1 | 26 | 11 | 3 | 2 |
subtype2 | 28 | 17 | 5 | 2 |
subtype3 | 22 | 6 | 3 | 1 |
subtype4 | 20 | 6 | 2 | 0 |
Figure S5. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.105 (Fisher's exact test), Q value = 1
Table S7. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 |
---|---|---|
ALL | 146 | 4 |
subtype1 | 38 | 2 |
subtype2 | 50 | 0 |
subtype3 | 32 | 0 |
subtype4 | 26 | 2 |
Figure S6. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.331 (Fisher's exact test), Q value = 1
Table S8. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 44 | 110 |
subtype1 | 9 | 33 |
subtype2 | 13 | 39 |
subtype3 | 11 | 21 |
subtype4 | 11 | 17 |
Figure S7. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.191 (ANOVA), Q value = 1
Table S9. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 26 | 24.2 (38.5) |
subtype1 | 4 | 0.0 (0.0) |
subtype2 | 4 | 0.0 (0.0) |
subtype3 | 9 | 31.1 (46.8) |
subtype4 | 9 | 38.9 (39.5) |
Figure S8. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.32 (Chi-square test), Q value = 1
Table S10. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|
ALL | 5 | 1 | 148 |
subtype1 | 0 | 0 | 42 |
subtype2 | 3 | 0 | 49 |
subtype3 | 1 | 0 | 31 |
subtype4 | 1 | 1 | 26 |
Figure S9. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.55 (Fisher's exact test), Q value = 1
Table S11. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 2 | 152 |
subtype1 | 1 | 41 |
subtype2 | 0 | 52 |
subtype3 | 1 | 31 |
subtype4 | 0 | 28 |
Figure S10. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.525 (ANOVA), Q value = 1
Table S12. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 133 | 54.8 (36.5) |
subtype1 | 38 | 60.2 (41.4) |
subtype2 | 47 | 52.0 (25.5) |
subtype3 | 27 | 48.6 (36.2) |
subtype4 | 21 | 59.6 (47.7) |
Figure S11. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.903 (ANOVA), Q value = 1
Table S13. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 97 | 1958.0 (10.6) |
subtype1 | 28 | 1957.0 (8.8) |
subtype2 | 26 | 1958.5 (10.8) |
subtype3 | 23 | 1957.7 (10.9) |
subtype4 | 20 | 1959.2 (12.7) |
Figure S12. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.546 (Chi-square test), Q value = 1
Table S14. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 139 | 3 | 2 | 5 |
subtype1 | 38 | 0 | 1 | 1 |
subtype2 | 47 | 1 | 1 | 1 |
subtype3 | 27 | 1 | 0 | 3 |
subtype4 | 27 | 1 | 0 | 0 |
Figure S13. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S15. Description of clustering approach #2: 'mRNA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 22 | 56 | 23 | 53 |
P value = 0.415 (logrank test), Q value = 1
Table S16. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 148 | 63 | 0.4 - 173.8 (20.7) |
subtype1 | 22 | 7 | 0.4 - 92.7 (14.3) |
subtype2 | 54 | 21 | 0.4 - 99.2 (27.7) |
subtype3 | 22 | 10 | 1.0 - 122.4 (19.7) |
subtype4 | 50 | 25 | 0.4 - 173.8 (14.5) |
Figure S14. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.438 (ANOVA), Q value = 1
Table S17. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 152 | 66.5 (8.6) |
subtype1 | 22 | 64.1 (7.1) |
subtype2 | 55 | 66.2 (8.0) |
subtype3 | 22 | 67.1 (9.8) |
subtype4 | 53 | 67.6 (9.2) |
Figure S15. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.00998 (Chi-square test), Q value = 1
Table S18. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE IA | STAGE IB | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|
ALL | 20 | 61 | 7 | 27 | 19 | 15 | 4 |
subtype1 | 9 | 4 | 0 | 2 | 4 | 2 | 1 |
subtype2 | 2 | 25 | 4 | 10 | 6 | 9 | 0 |
subtype3 | 3 | 10 | 1 | 4 | 1 | 2 | 2 |
subtype4 | 6 | 22 | 2 | 11 | 8 | 2 | 1 |
Figure S16. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 9.97e-05 (Chi-square test), Q value = 0.015
Table S19. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 30 | 100 | 12 | 12 |
subtype1 | 12 | 6 | 3 | 1 |
subtype2 | 4 | 44 | 1 | 7 |
subtype3 | 4 | 16 | 1 | 2 |
subtype4 | 10 | 34 | 7 | 2 |
Figure S17. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.427 (Chi-square test), Q value = 1
Table S20. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 96 | 40 | 13 | 5 |
subtype1 | 17 | 2 | 3 | 0 |
subtype2 | 30 | 18 | 5 | 3 |
subtype3 | 13 | 8 | 1 | 1 |
subtype4 | 36 | 12 | 4 | 1 |
Figure S18. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.0642 (Fisher's exact test), Q value = 1
Table S21. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 |
---|---|---|
ALL | 146 | 4 |
subtype1 | 21 | 1 |
subtype2 | 54 | 0 |
subtype3 | 21 | 2 |
subtype4 | 50 | 1 |
Figure S19. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.00305 (Fisher's exact test), Q value = 0.46
Table S22. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 44 | 110 |
subtype1 | 14 | 8 |
subtype2 | 13 | 43 |
subtype3 | 5 | 18 |
subtype4 | 12 | 41 |
Figure S20. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.108 (ANOVA), Q value = 1
Table S23. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 26 | 24.2 (38.5) |
subtype1 | 8 | 48.8 (42.6) |
subtype2 | 5 | 10.0 (22.4) |
subtype3 | 5 | 0.0 (0.0) |
subtype4 | 8 | 23.8 (44.1) |
Figure S21. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.264 (Chi-square test), Q value = 1
Table S24. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|
ALL | 5 | 1 | 148 |
subtype1 | 1 | 0 | 21 |
subtype2 | 3 | 0 | 53 |
subtype3 | 0 | 1 | 22 |
subtype4 | 1 | 0 | 52 |
Figure S22. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.183 (Fisher's exact test), Q value = 1
Table S25. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 2 | 152 |
subtype1 | 1 | 21 |
subtype2 | 0 | 56 |
subtype3 | 0 | 23 |
subtype4 | 1 | 52 |
Figure S23. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.822 (ANOVA), Q value = 1
Table S26. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 133 | 54.8 (36.5) |
subtype1 | 18 | 59.3 (49.1) |
subtype2 | 51 | 51.1 (24.6) |
subtype3 | 20 | 56.7 (30.2) |
subtype4 | 44 | 56.5 (44.7) |
Figure S24. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.0465 (ANOVA), Q value = 1
Table S27. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 97 | 1958.0 (10.6) |
subtype1 | 17 | 1963.3 (10.5) |
subtype2 | 29 | 1959.5 (10.7) |
subtype3 | 15 | 1955.5 (10.3) |
subtype4 | 36 | 1955.4 (9.9) |
Figure S25. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.384 (Chi-square test), Q value = 1
Table S28. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 139 | 3 | 2 | 5 |
subtype1 | 21 | 0 | 0 | 0 |
subtype2 | 51 | 1 | 1 | 1 |
subtype3 | 22 | 0 | 1 | 0 |
subtype4 | 45 | 2 | 0 | 4 |
Figure S26. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S29. Description of clustering approach #3: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 158 | 129 | 104 |
P value = 0.247 (logrank test), Q value = 1
Table S30. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 357 | 122 | 0.0 - 173.8 (11.7) |
subtype1 | 141 | 56 | 0.0 - 173.8 (12.0) |
subtype2 | 121 | 36 | 0.1 - 114.0 (13.6) |
subtype3 | 95 | 30 | 0.0 - 122.4 (8.9) |
Figure S27. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.033 (ANOVA), Q value = 1
Table S31. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 383 | 67.2 (8.8) |
subtype1 | 155 | 67.0 (9.7) |
subtype2 | 126 | 65.9 (8.2) |
subtype3 | 102 | 68.9 (7.7) |
Figure S28. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.588 (Chi-square test), Q value = 1
Table S32. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 67 | 131 | 1 | 45 | 65 | 53 | 20 | 5 |
subtype1 | 0 | 30 | 57 | 0 | 19 | 26 | 18 | 5 | 1 |
subtype2 | 0 | 20 | 44 | 1 | 15 | 19 | 17 | 11 | 2 |
subtype3 | 1 | 17 | 30 | 0 | 11 | 20 | 18 | 4 | 2 |
Figure S29. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.695 (Chi-square test), Q value = 1
Table S33. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 92 | 239 | 42 | 18 |
subtype1 | 37 | 95 | 21 | 5 |
subtype2 | 30 | 78 | 14 | 7 |
subtype3 | 25 | 66 | 7 | 6 |
Figure S30. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.432 (Chi-square test), Q value = 1
Table S34. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 245 | 103 | 33 | 5 |
subtype1 | 109 | 33 | 11 | 2 |
subtype2 | 75 | 40 | 11 | 2 |
subtype3 | 61 | 30 | 11 | 1 |
Figure S31. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.673 (Chi-square test), Q value = 1
Table S35. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 333 | 5 | 47 |
subtype1 | 133 | 1 | 23 |
subtype2 | 110 | 2 | 13 |
subtype3 | 90 | 2 | 11 |
Figure S32. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.0445 (Fisher's exact test), Q value = 1
Table S36. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 98 | 293 |
subtype1 | 50 | 108 |
subtype2 | 25 | 104 |
subtype3 | 23 | 81 |
Figure S33. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.159 (ANOVA), Q value = 1
Table S37. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 54 | 28.5 (39.7) |
subtype1 | 21 | 41.4 (43.9) |
subtype2 | 15 | 18.7 (34.8) |
subtype3 | 18 | 21.7 (36.2) |
Figure S34. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.132 (Chi-square test), Q value = 1
Table S38. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 12 | 5 | 1 | 373 |
subtype1 | 2 | 3 | 1 | 152 |
subtype2 | 8 | 2 | 0 | 119 |
subtype3 | 2 | 0 | 0 | 102 |
Figure S35. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 1 (Fisher's exact test), Q value = 1
Table S39. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 12 | 379 |
subtype1 | 5 | 153 |
subtype2 | 4 | 125 |
subtype3 | 3 | 101 |
Figure S36. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.268 (ANOVA), Q value = 1
Table S40. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 331 | 52.4 (31.7) |
subtype1 | 133 | 49.5 (30.6) |
subtype2 | 112 | 52.4 (31.6) |
subtype3 | 86 | 56.7 (33.4) |
Figure S37. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.263 (ANOVA), Q value = 1
Table S41. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 259 | 1959.6 (12.0) |
subtype1 | 108 | 1959.2 (12.5) |
subtype2 | 75 | 1961.4 (11.3) |
subtype3 | 76 | 1958.4 (11.9) |
Figure S38. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.238 (Chi-square test), Q value = 1
Table S42. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 317 | 7 | 4 | 18 |
subtype1 | 122 | 2 | 2 | 11 |
subtype2 | 106 | 3 | 1 | 7 |
subtype3 | 89 | 2 | 1 | 0 |
Figure S39. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S43. Description of clustering approach #4: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 106 | 82 | 72 |
P value = 0.158 (logrank test), Q value = 1
Table S44. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 230 | 70 | 0.0 - 173.8 (9.0) |
subtype1 | 91 | 31 | 0.0 - 173.8 (6.9) |
subtype2 | 75 | 22 | 0.1 - 141.3 (11.8) |
subtype3 | 64 | 17 | 0.0 - 107.0 (10.2) |
Figure S40. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.0972 (ANOVA), Q value = 1
Table S45. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 252 | 67.6 (9.0) |
subtype1 | 103 | 68.8 (9.8) |
subtype2 | 80 | 65.9 (8.8) |
subtype3 | 69 | 67.6 (7.7) |
Figure S41. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.672 (Chi-square test), Q value = 1
Table S46. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 52 | 76 | 1 | 41 | 42 | 37 | 5 | 2 |
subtype1 | 1 | 24 | 29 | 0 | 15 | 21 | 13 | 1 | 2 |
subtype2 | 1 | 15 | 29 | 1 | 14 | 8 | 12 | 2 | 0 |
subtype3 | 0 | 13 | 18 | 0 | 12 | 13 | 12 | 2 | 0 |
Figure S42. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.652 (Chi-square test), Q value = 1
Table S47. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 70 | 152 | 31 | 7 |
subtype1 | 28 | 62 | 13 | 3 |
subtype2 | 26 | 42 | 12 | 2 |
subtype3 | 16 | 48 | 6 | 2 |
Figure S43. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.771 (Chi-square test), Q value = 1
Table S48. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 164 | 69 | 22 |
subtype1 | 66 | 26 | 9 |
subtype2 | 56 | 20 | 6 |
subtype3 | 42 | 23 | 7 |
Figure S44. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.316 (Chi-square test), Q value = 1
Table S49. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 209 | 2 | 47 |
subtype1 | 81 | 2 | 23 |
subtype2 | 68 | 0 | 14 |
subtype3 | 60 | 0 | 10 |
Figure S45. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.841 (Fisher's exact test), Q value = 1
Table S50. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 64 | 196 |
subtype1 | 28 | 78 |
subtype2 | 20 | 62 |
subtype3 | 16 | 56 |
Figure S46. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.344 (ANOVA), Q value = 1
Table S51. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 31 | 29.4 (40.2) |
subtype1 | 5 | 42.0 (49.2) |
subtype2 | 13 | 16.9 (34.5) |
subtype3 | 13 | 36.9 (41.7) |
Figure S47. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.362 (Chi-square test), Q value = 1
Table S52. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 9 | 4 | 1 | 246 |
subtype1 | 1 | 2 | 0 | 103 |
subtype2 | 5 | 1 | 0 | 76 |
subtype3 | 3 | 1 | 1 | 67 |
Figure S48. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.279 (Fisher's exact test), Q value = 1
Table S53. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 10 | 250 |
subtype1 | 5 | 101 |
subtype2 | 1 | 81 |
subtype3 | 4 | 68 |
Figure S49. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.189 (ANOVA), Q value = 1
Table S54. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 220 | 51.3 (29.3) |
subtype1 | 88 | 49.2 (28.2) |
subtype2 | 69 | 48.7 (23.9) |
subtype3 | 63 | 56.9 (35.3) |
Figure S50. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.596 (ANOVA), Q value = 1
Table S55. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 177 | 1960.2 (12.3) |
subtype1 | 71 | 1959.3 (12.3) |
subtype2 | 53 | 1961.6 (11.9) |
subtype3 | 53 | 1960.0 (12.8) |
Figure S51. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.488 (Chi-square test), Q value = 1
Table S56. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 198 | 4 | 2 | 13 |
subtype1 | 77 | 1 | 0 | 8 |
subtype2 | 65 | 2 | 1 | 4 |
subtype3 | 56 | 1 | 1 | 1 |
Figure S52. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S57. Description of clustering approach #5: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 60 | 73 | 62 |
P value = 0.0101 (logrank test), Q value = 1
Table S58. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 182 | 75 | 0.0 - 173.8 (18.4) |
subtype1 | 57 | 17 | 0.0 - 173.8 (22.9) |
subtype2 | 69 | 30 | 0.2 - 119.5 (16.6) |
subtype3 | 56 | 28 | 0.1 - 119.8 (14.8) |
Figure S53. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0153 (ANOVA), Q value = 1
Table S59. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 187 | 67.4 (9.5) |
subtype1 | 59 | 65.5 (10.5) |
subtype2 | 69 | 66.6 (8.5) |
subtype3 | 59 | 70.3 (9.1) |
Figure S54. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.296 (Chi-square test), Q value = 1
Table S60. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 28 | 69 | 1 | 23 | 34 | 23 | 14 |
subtype1 | 0 | 10 | 17 | 0 | 7 | 11 | 7 | 8 |
subtype2 | 0 | 7 | 26 | 0 | 11 | 16 | 8 | 4 |
subtype3 | 1 | 11 | 26 | 1 | 5 | 7 | 8 | 2 |
Figure S55. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.185 (Chi-square test), Q value = 1
Table S61. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 44 | 120 | 20 | 11 |
subtype1 | 15 | 35 | 4 | 6 |
subtype2 | 11 | 51 | 9 | 2 |
subtype3 | 18 | 34 | 7 | 3 |
Figure S56. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.308 (Chi-square test), Q value = 1
Table S62. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 124 | 50 | 16 | 4 |
subtype1 | 34 | 17 | 7 | 2 |
subtype2 | 44 | 22 | 5 | 2 |
subtype3 | 46 | 11 | 4 | 0 |
Figure S57. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.612 (Fisher's exact test), Q value = 1
Table S63. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | MX |
---|---|---|
ALL | 176 | 16 |
subtype1 | 54 | 6 |
subtype2 | 67 | 4 |
subtype3 | 55 | 6 |
Figure S58. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.266 (Fisher's exact test), Q value = 1
Table S64. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 49 | 146 |
subtype1 | 12 | 48 |
subtype2 | 17 | 56 |
subtype3 | 20 | 42 |
Figure S59. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.527 (ANOVA), Q value = 1
Table S65. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 34 | 30.3 (39.3) |
subtype1 | 8 | 43.8 (35.0) |
subtype2 | 14 | 28.6 (40.0) |
subtype3 | 12 | 23.3 (42.3) |
Figure S60. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.134 (Chi-square test), Q value = 1
Table S66. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|
ALL | 3 | 2 | 190 |
subtype1 | 2 | 2 | 56 |
subtype2 | 0 | 0 | 73 |
subtype3 | 1 | 0 | 61 |
Figure S61. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.524 (Fisher's exact test), Q value = 1
Table S67. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 9 | 186 |
subtype1 | 4 | 56 |
subtype2 | 2 | 71 |
subtype3 | 3 | 59 |
Figure S62. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0516 (ANOVA), Q value = 1
Table S68. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 165 | 51.7 (32.3) |
subtype1 | 51 | 60.6 (39.7) |
subtype2 | 62 | 49.3 (30.0) |
subtype3 | 52 | 45.9 (25.1) |
Figure S63. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.151 (ANOVA), Q value = 1
Table S69. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 131 | 1958.5 (12.0) |
subtype1 | 39 | 1961.3 (11.6) |
subtype2 | 50 | 1958.2 (11.0) |
subtype3 | 42 | 1956.1 (13.3) |
Figure S64. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.033 (Chi-square test), Q value = 1
Table S70. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 149 | 4 | 4 | 9 |
subtype1 | 43 | 0 | 2 | 5 |
subtype2 | 55 | 4 | 2 | 4 |
subtype3 | 51 | 0 | 0 | 0 |
Figure S65. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S71. Description of clustering approach #6: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 58 | 48 | 49 | 40 |
P value = 0.00999 (logrank test), Q value = 1
Table S72. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 182 | 75 | 0.0 - 173.8 (18.4) |
subtype1 | 54 | 20 | 0.0 - 173.8 (20.0) |
subtype2 | 44 | 17 | 0.2 - 99.2 (23.0) |
subtype3 | 46 | 18 | 0.2 - 119.5 (17.3) |
subtype4 | 38 | 20 | 0.1 - 92.7 (12.0) |
Figure S66. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0759 (ANOVA), Q value = 1
Table S73. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 187 | 67.4 (9.5) |
subtype1 | 56 | 65.7 (10.6) |
subtype2 | 46 | 69.4 (8.9) |
subtype3 | 46 | 65.8 (7.9) |
subtype4 | 39 | 69.4 (9.9) |
Figure S67. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.454 (Chi-square test), Q value = 1
Table S74. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB |
---|---|---|---|---|---|---|---|---|
ALL | 1 | 28 | 69 | 1 | 23 | 34 | 23 | 14 |
subtype1 | 0 | 10 | 15 | 0 | 8 | 10 | 9 | 6 |
subtype2 | 1 | 8 | 19 | 0 | 3 | 7 | 6 | 4 |
subtype3 | 0 | 3 | 18 | 0 | 8 | 11 | 4 | 4 |
subtype4 | 0 | 7 | 17 | 1 | 4 | 6 | 4 | 0 |
Figure S68. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.274 (Chi-square test), Q value = 1
Table S75. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 44 | 120 | 20 | 11 |
subtype1 | 14 | 33 | 5 | 6 |
subtype2 | 16 | 25 | 5 | 2 |
subtype3 | 6 | 36 | 6 | 1 |
subtype4 | 8 | 26 | 4 | 2 |
Figure S69. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.0902 (Chi-square test), Q value = 1
Table S76. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 124 | 50 | 16 | 4 |
subtype1 | 33 | 16 | 9 | 0 |
subtype2 | 32 | 9 | 4 | 2 |
subtype3 | 29 | 17 | 1 | 2 |
subtype4 | 30 | 8 | 2 | 0 |
Figure S70. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.304 (Fisher's exact test), Q value = 1
Table S77. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | MX |
---|---|---|
ALL | 176 | 16 |
subtype1 | 53 | 5 |
subtype2 | 45 | 3 |
subtype3 | 45 | 2 |
subtype4 | 33 | 6 |
Figure S71. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.874 (Fisher's exact test), Q value = 1
Table S78. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 49 | 146 |
subtype1 | 15 | 43 |
subtype2 | 14 | 34 |
subtype3 | 11 | 38 |
subtype4 | 9 | 31 |
Figure S72. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.918 (ANOVA), Q value = 1
Table S79. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 34 | 30.3 (39.3) |
subtype1 | 10 | 27.0 (33.7) |
subtype2 | 4 | 42.5 (49.2) |
subtype3 | 7 | 32.9 (41.1) |
subtype4 | 13 | 27.7 (43.4) |
Figure S73. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0593 (Chi-square test), Q value = 1
Table S80. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|
ALL | 3 | 2 | 190 |
subtype1 | 3 | 2 | 53 |
subtype2 | 0 | 0 | 48 |
subtype3 | 0 | 0 | 49 |
subtype4 | 0 | 0 | 40 |
Figure S74. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.583 (Fisher's exact test), Q value = 1
Table S81. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 9 | 186 |
subtype1 | 4 | 54 |
subtype2 | 3 | 45 |
subtype3 | 1 | 48 |
subtype4 | 1 | 39 |
Figure S75. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.105 (ANOVA), Q value = 1
Table S82. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 165 | 51.7 (32.3) |
subtype1 | 50 | 61.0 (44.8) |
subtype2 | 40 | 49.0 (25.0) |
subtype3 | 42 | 47.4 (24.2) |
subtype4 | 33 | 46.3 (24.0) |
Figure S76. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.262 (ANOVA), Q value = 1
Table S83. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 131 | 1958.5 (12.0) |
subtype1 | 39 | 1959.2 (10.8) |
subtype2 | 33 | 1958.5 (13.9) |
subtype3 | 35 | 1960.5 (11.6) |
subtype4 | 24 | 1954.3 (11.6) |
Figure S77. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.0213 (Chi-square test), Q value = 1
Table S84. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 149 | 4 | 4 | 9 |
subtype1 | 47 | 0 | 0 | 5 |
subtype2 | 38 | 0 | 2 | 0 |
subtype3 | 36 | 4 | 2 | 2 |
subtype4 | 28 | 0 | 0 | 2 |
Figure S78. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S85. Description of clustering approach #7: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 93 | 113 | 114 | 66 |
P value = 0.171 (logrank test), Q value = 1
Table S86. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 352 | 119 | 0.0 - 173.8 (11.6) |
subtype1 | 82 | 27 | 0.0 - 122.4 (12.6) |
subtype2 | 104 | 32 | 0.1 - 141.3 (15.6) |
subtype3 | 107 | 35 | 0.0 - 173.8 (8.1) |
subtype4 | 59 | 25 | 0.0 - 92.7 (12.2) |
Figure S79. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0394 (ANOVA), Q value = 1
Table S87. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 378 | 67.1 (8.7) |
subtype1 | 91 | 66.8 (9.3) |
subtype2 | 111 | 65.4 (8.3) |
subtype3 | 111 | 68.1 (8.4) |
subtype4 | 65 | 68.7 (8.9) |
Figure S80. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.276 (Chi-square test), Q value = 1
Table S88. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 68 | 127 | 1 | 46 | 63 | 52 | 19 | 5 |
subtype1 | 1 | 14 | 35 | 0 | 7 | 18 | 13 | 3 | 1 |
subtype2 | 1 | 13 | 44 | 1 | 14 | 19 | 13 | 8 | 0 |
subtype3 | 0 | 22 | 29 | 0 | 18 | 20 | 16 | 6 | 2 |
subtype4 | 0 | 19 | 19 | 0 | 7 | 6 | 10 | 2 | 2 |
Figure S81. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.494 (Chi-square test), Q value = 1
Table S89. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 94 | 233 | 42 | 17 |
subtype1 | 18 | 61 | 11 | 3 |
subtype2 | 23 | 72 | 11 | 7 |
subtype3 | 31 | 64 | 13 | 6 |
subtype4 | 22 | 36 | 7 | 1 |
Figure S82. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.413 (Chi-square test), Q value = 1
Table S90. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 244 | 100 | 32 | 5 |
subtype1 | 57 | 25 | 8 | 1 |
subtype2 | 71 | 32 | 9 | 1 |
subtype3 | 74 | 33 | 6 | 1 |
subtype4 | 42 | 10 | 9 | 2 |
Figure S83. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.64 (Chi-square test), Q value = 1
Table S91. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 328 | 5 | 47 |
subtype1 | 78 | 1 | 12 |
subtype2 | 100 | 0 | 11 |
subtype3 | 96 | 2 | 15 |
subtype4 | 54 | 2 | 9 |
Figure S84. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.681 (Fisher's exact test), Q value = 1
Table S92. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 97 | 289 |
subtype1 | 23 | 70 |
subtype2 | 25 | 88 |
subtype3 | 29 | 85 |
subtype4 | 20 | 46 |
Figure S85. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.808 (ANOVA), Q value = 1
Table S93. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 53 | 27.4 (39.1) |
subtype1 | 9 | 35.6 (42.2) |
subtype2 | 13 | 20.8 (35.2) |
subtype3 | 16 | 24.4 (38.5) |
subtype4 | 15 | 31.3 (43.7) |
Figure S86. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.689 (Chi-square test), Q value = 1
Table S94. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 11 | 5 | 1 | 369 |
subtype1 | 2 | 2 | 0 | 89 |
subtype2 | 4 | 1 | 0 | 108 |
subtype3 | 5 | 1 | 1 | 107 |
subtype4 | 0 | 1 | 0 | 65 |
Figure S87. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.305 (Fisher's exact test), Q value = 1
Table S95. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 11 | 375 |
subtype1 | 2 | 91 |
subtype2 | 1 | 112 |
subtype3 | 5 | 109 |
subtype4 | 3 | 63 |
Figure S88. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.894 (ANOVA), Q value = 1
Table S96. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 326 | 52.4 (31.6) |
subtype1 | 81 | 52.2 (34.1) |
subtype2 | 96 | 50.8 (27.4) |
subtype3 | 93 | 54.3 (33.1) |
subtype4 | 56 | 52.0 (33.0) |
Figure S89. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.276 (ANOVA), Q value = 1
Table S97. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 254 | 1959.7 (11.8) |
subtype1 | 64 | 1957.9 (13.2) |
subtype2 | 67 | 1961.7 (11.6) |
subtype3 | 80 | 1960.2 (10.2) |
subtype4 | 43 | 1958.6 (12.3) |
Figure S90. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.746 (Chi-square test), Q value = 1
Table S98. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 312 | 7 | 4 | 18 |
subtype1 | 74 | 2 | 2 | 3 |
subtype2 | 97 | 3 | 0 | 5 |
subtype3 | 90 | 2 | 1 | 5 |
subtype4 | 51 | 0 | 1 | 5 |
Figure S91. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S99. Description of clustering approach #8: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 80 | 112 | 194 |
P value = 0.864 (logrank test), Q value = 1
Table S100. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 352 | 119 | 0.0 - 173.8 (11.6) |
subtype1 | 76 | 25 | 0.0 - 114.0 (9.5) |
subtype2 | 102 | 33 | 0.1 - 141.3 (13.6) |
subtype3 | 174 | 61 | 0.0 - 173.8 (12.1) |
Figure S92. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0437 (ANOVA), Q value = 1
Table S101. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 378 | 67.1 (8.7) |
subtype1 | 78 | 68.3 (7.7) |
subtype2 | 109 | 65.4 (8.6) |
subtype3 | 191 | 67.6 (9.1) |
Figure S93. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.451 (Chi-square test), Q value = 1
Table S102. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 68 | 127 | 1 | 46 | 63 | 52 | 19 | 5 |
subtype1 | 0 | 18 | 18 | 0 | 14 | 10 | 12 | 5 | 2 |
subtype2 | 1 | 16 | 40 | 1 | 13 | 19 | 15 | 7 | 0 |
subtype3 | 1 | 34 | 69 | 0 | 19 | 34 | 25 | 7 | 3 |
Figure S94. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.527 (Chi-square test), Q value = 1
Table S103. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 94 | 233 | 42 | 17 |
subtype1 | 26 | 42 | 7 | 5 |
subtype2 | 25 | 69 | 13 | 5 |
subtype3 | 43 | 122 | 22 | 7 |
Figure S95. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.333 (Chi-square test), Q value = 1
Table S104. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 244 | 100 | 32 | 5 |
subtype1 | 49 | 26 | 5 | 0 |
subtype2 | 70 | 33 | 7 | 2 |
subtype3 | 125 | 41 | 20 | 3 |
Figure S96. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.372 (Chi-square test), Q value = 1
Table S105. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 328 | 5 | 47 |
subtype1 | 68 | 2 | 10 |
subtype2 | 100 | 0 | 10 |
subtype3 | 160 | 3 | 27 |
Figure S97. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.144 (Fisher's exact test), Q value = 1
Table S106. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 97 | 289 |
subtype1 | 27 | 53 |
subtype2 | 25 | 87 |
subtype3 | 45 | 149 |
Figure S98. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.649 (ANOVA), Q value = 1
Table S107. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 53 | 27.4 (39.1) |
subtype1 | 14 | 27.9 (40.0) |
subtype2 | 14 | 19.3 (34.3) |
subtype3 | 25 | 31.6 (41.9) |
Figure S99. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.069 (Chi-square test), Q value = 1
Table S108. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 11 | 5 | 1 | 369 |
subtype1 | 5 | 0 | 1 | 74 |
subtype2 | 4 | 1 | 0 | 107 |
subtype3 | 2 | 4 | 0 | 188 |
Figure S100. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.303 (Fisher's exact test), Q value = 1
Table S109. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 11 | 375 |
subtype1 | 2 | 78 |
subtype2 | 1 | 111 |
subtype3 | 8 | 186 |
Figure S101. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.652 (ANOVA), Q value = 1
Table S110. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 326 | 52.4 (31.6) |
subtype1 | 69 | 53.6 (35.0) |
subtype2 | 96 | 49.8 (28.5) |
subtype3 | 161 | 53.3 (32.0) |
Figure S102. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.0771 (ANOVA), Q value = 1
Table S111. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 254 | 1959.7 (11.8) |
subtype1 | 60 | 1960.0 (10.4) |
subtype2 | 67 | 1962.3 (11.8) |
subtype3 | 127 | 1958.3 (12.2) |
Figure S103. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.327 (Chi-square test), Q value = 1
Table S112. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 312 | 7 | 4 | 18 |
subtype1 | 63 | 1 | 0 | 3 |
subtype2 | 97 | 3 | 0 | 3 |
subtype3 | 152 | 3 | 4 | 12 |
Figure S104. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S113. Description of clustering approach #9: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 138 | 89 | 93 | 48 |
P value = 0.992 (logrank test), Q value = 1
Table S114. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 335 | 110 | 0.0 - 173.8 (11.7) |
subtype1 | 131 | 52 | 0.0 - 173.8 (17.9) |
subtype2 | 77 | 18 | 0.1 - 96.8 (5.4) |
subtype3 | 82 | 25 | 0.0 - 107.0 (8.9) |
subtype4 | 45 | 15 | 0.2 - 92.7 (11.7) |
Figure S105. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.0751 (ANOVA), Q value = 1
Table S115. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 361 | 67.3 (8.8) |
subtype1 | 137 | 66.5 (8.4) |
subtype2 | 88 | 67.5 (8.3) |
subtype3 | 89 | 69.3 (9.4) |
subtype4 | 47 | 66.0 (9.2) |
Figure S106. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.366 (Chi-square test), Q value = 1
Table S116. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 63 | 122 | 1 | 43 | 63 | 51 | 17 | 4 |
subtype1 | 0 | 20 | 51 | 1 | 10 | 22 | 22 | 9 | 3 |
subtype2 | 1 | 13 | 27 | 0 | 14 | 17 | 14 | 2 | 0 |
subtype3 | 1 | 20 | 28 | 0 | 14 | 18 | 10 | 1 | 1 |
subtype4 | 0 | 10 | 16 | 0 | 5 | 6 | 5 | 5 | 0 |
Figure S107. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.228 (Chi-square test), Q value = 1
Table S117. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 86 | 226 | 40 | 16 |
subtype1 | 27 | 91 | 12 | 8 |
subtype2 | 18 | 56 | 13 | 2 |
subtype3 | 27 | 52 | 12 | 2 |
subtype4 | 14 | 27 | 3 | 4 |
Figure S108. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.307 (Chi-square test), Q value = 1
Table S118. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 229 | 97 | 33 | 4 |
subtype1 | 87 | 31 | 16 | 4 |
subtype2 | 54 | 29 | 6 | 0 |
subtype3 | 58 | 23 | 7 | 0 |
subtype4 | 30 | 14 | 4 | 0 |
Figure S109. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 4.74e-05 (Chi-square test), Q value = 0.0074
Table S119. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 312 | 4 | 46 |
subtype1 | 130 | 3 | 3 |
subtype2 | 68 | 0 | 20 |
subtype3 | 73 | 1 | 19 |
subtype4 | 41 | 0 | 4 |
Figure S110. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.888 (Fisher's exact test), Q value = 1
Table S120. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 92 | 276 |
subtype1 | 37 | 101 |
subtype2 | 23 | 66 |
subtype3 | 21 | 72 |
subtype4 | 11 | 37 |
Figure S111. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.094 (ANOVA), Q value = 1
Table S121. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 48 | 27.1 (39.0) |
subtype1 | 25 | 18.8 (34.9) |
subtype2 | 8 | 26.2 (39.6) |
subtype3 | 10 | 54.0 (43.0) |
subtype4 | 5 | 16.0 (35.8) |
Figure S112. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0905 (Chi-square test), Q value = 1
Table S122. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 10 | 5 | 1 | 352 |
subtype1 | 1 | 1 | 0 | 136 |
subtype2 | 4 | 2 | 1 | 82 |
subtype3 | 1 | 2 | 0 | 90 |
subtype4 | 4 | 0 | 0 | 44 |
Figure S113. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.665 (Fisher's exact test), Q value = 1
Table S123. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 11 | 357 |
subtype1 | 4 | 134 |
subtype2 | 3 | 86 |
subtype3 | 4 | 89 |
subtype4 | 0 | 48 |
Figure S114. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.554 (ANOVA), Q value = 1
Table S124. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 313 | 53.0 (32.2) |
subtype1 | 121 | 56.0 (37.1) |
subtype2 | 73 | 51.5 (28.5) |
subtype3 | 77 | 52.3 (29.0) |
subtype4 | 42 | 48.4 (29.0) |
Figure S115. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.264 (ANOVA), Q value = 1
Table S125. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 245 | 1959.7 (12.0) |
subtype1 | 92 | 1958.8 (10.2) |
subtype2 | 63 | 1961.3 (12.0) |
subtype3 | 59 | 1958.1 (13.3) |
subtype4 | 31 | 1962.2 (14.1) |
Figure S116. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.72 (Chi-square test), Q value = 1
Table S126. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 298 | 6 | 3 | 16 |
subtype1 | 124 | 2 | 2 | 3 |
subtype2 | 66 | 2 | 1 | 6 |
subtype3 | 69 | 1 | 0 | 5 |
subtype4 | 39 | 1 | 0 | 2 |
Figure S117. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S127. Description of clustering approach #10: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 59 | 116 | 193 |
P value = 0.413 (logrank test), Q value = 1
Table S128. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 335 | 110 | 0.0 - 173.8 (11.7) |
subtype1 | 56 | 17 | 0.2 - 141.3 (10.5) |
subtype2 | 104 | 31 | 0.0 - 114.0 (9.8) |
subtype3 | 175 | 62 | 0.0 - 173.8 (12.2) |
Figure S118. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.217 (ANOVA), Q value = 1
Table S129. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 361 | 67.3 (8.8) |
subtype1 | 57 | 66.1 (8.9) |
subtype2 | 115 | 68.4 (8.3) |
subtype3 | 189 | 67.1 (9.1) |
Figure S119. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

P value = 0.0578 (Chi-square test), Q value = 1
Table S130. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 63 | 122 | 1 | 43 | 63 | 51 | 17 | 4 |
subtype1 | 0 | 8 | 21 | 0 | 7 | 9 | 6 | 8 | 0 |
subtype2 | 2 | 25 | 35 | 0 | 11 | 19 | 19 | 3 | 0 |
subtype3 | 0 | 30 | 66 | 1 | 25 | 35 | 26 | 6 | 4 |
Figure S120. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.563 (Chi-square test), Q value = 1
Table S131. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 86 | 226 | 40 | 16 |
subtype1 | 13 | 36 | 5 | 5 |
subtype2 | 32 | 67 | 13 | 4 |
subtype3 | 41 | 123 | 22 | 7 |
Figure S121. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.375 (Chi-square test), Q value = 1
Table S132. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 229 | 97 | 33 | 4 |
subtype1 | 33 | 21 | 4 | 1 |
subtype2 | 74 | 33 | 9 | 0 |
subtype3 | 122 | 43 | 20 | 3 |
Figure S122. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.0718 (Chi-square test), Q value = 1
Table S133. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 312 | 4 | 46 |
subtype1 | 52 | 0 | 5 |
subtype2 | 92 | 0 | 21 |
subtype3 | 168 | 4 | 20 |
Figure S123. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.286 (Fisher's exact test), Q value = 1
Table S134. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 92 | 276 |
subtype1 | 10 | 49 |
subtype2 | 32 | 84 |
subtype3 | 50 | 143 |
Figure S124. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

P value = 0.662 (ANOVA), Q value = 1
Table S135. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 48 | 27.1 (39.0) |
subtype1 | 4 | 20.0 (40.0) |
subtype2 | 13 | 35.4 (41.0) |
subtype3 | 31 | 24.5 (38.9) |
Figure S125. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.474 (Chi-square test), Q value = 1
Table S136. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 10 | 5 | 1 | 352 |
subtype1 | 3 | 0 | 0 | 56 |
subtype2 | 1 | 1 | 0 | 114 |
subtype3 | 6 | 4 | 1 | 182 |
Figure S126. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.00107 (Fisher's exact test), Q value = 0.16
Table S137. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 11 | 357 |
subtype1 | 1 | 58 |
subtype2 | 9 | 107 |
subtype3 | 1 | 192 |
Figure S127. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.793 (ANOVA), Q value = 1
Table S138. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 313 | 53.0 (32.2) |
subtype1 | 53 | 53.6 (28.6) |
subtype2 | 99 | 51.2 (26.8) |
subtype3 | 161 | 53.9 (36.3) |
Figure S128. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.0511 (ANOVA), Q value = 1
Table S139. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 245 | 1959.7 (12.0) |
subtype1 | 39 | 1963.9 (14.9) |
subtype2 | 80 | 1958.4 (11.9) |
subtype3 | 126 | 1959.2 (10.8) |
Figure S129. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.882 (Chi-square test), Q value = 1
Table S140. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 298 | 6 | 3 | 16 |
subtype1 | 48 | 2 | 1 | 2 |
subtype2 | 89 | 1 | 1 | 5 |
subtype3 | 161 | 3 | 1 | 9 |
Figure S130. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S141. Description of clustering approach #11: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 80 | 80 | 72 |
P value = 0.908 (logrank test), Q value = 1
Table S142. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 205 | 57 | 0.0 - 107.0 (6.9) |
subtype1 | 70 | 23 | 0.0 - 96.8 (10.1) |
subtype2 | 68 | 17 | 0.0 - 107.0 (3.9) |
subtype3 | 67 | 17 | 0.0 - 71.8 (10.2) |
Figure S131. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.129 (ANOVA), Q value = 1
Table S143. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 227 | 67.4 (9.0) |
subtype1 | 79 | 65.9 (9.3) |
subtype2 | 78 | 67.6 (9.5) |
subtype3 | 70 | 68.8 (7.9) |
Figure S132. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0159 (Chi-square test), Q value = 1
Table S144. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 45 | 69 | 1 | 37 | 38 | 32 | 5 | 1 |
subtype1 | 1 | 7 | 25 | 0 | 13 | 18 | 13 | 2 | 0 |
subtype2 | 1 | 12 | 24 | 1 | 13 | 15 | 11 | 3 | 0 |
subtype3 | 0 | 26 | 20 | 0 | 11 | 5 | 8 | 0 | 1 |
Figure S133. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.00297 (Chi-square test), Q value = 0.45
Table S145. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 60 | 137 | 30 | 5 |
subtype1 | 12 | 55 | 12 | 1 |
subtype2 | 18 | 46 | 12 | 4 |
subtype3 | 30 | 36 | 6 | 0 |
Figure S134. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.172 (Chi-square test), Q value = 1
Table S146. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 147 | 60 | 20 |
subtype1 | 46 | 27 | 7 |
subtype2 | 50 | 22 | 6 |
subtype3 | 51 | 11 | 7 |
Figure S135. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.665 (Chi-square test), Q value = 1
Table S147. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 183 | 1 | 46 |
subtype1 | 64 | 0 | 15 |
subtype2 | 64 | 0 | 16 |
subtype3 | 55 | 1 | 15 |
Figure S136. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.98 (Fisher's exact test), Q value = 1
Table S148. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 53 | 179 |
subtype1 | 18 | 62 |
subtype2 | 19 | 61 |
subtype3 | 16 | 56 |
Figure S137. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.76 (ANOVA), Q value = 1
Table S149. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 28 | 32.5 (41.1) |
subtype1 | 12 | 31.7 (41.5) |
subtype2 | 9 | 40.0 (43.6) |
subtype3 | 7 | 24.3 (41.6) |
Figure S138. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.261 (Chi-square test), Q value = 1
Table S150. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 7 | 4 | 1 | 220 |
subtype1 | 5 | 1 | 1 | 73 |
subtype2 | 0 | 2 | 0 | 78 |
subtype3 | 2 | 1 | 0 | 69 |
Figure S139. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.637 (Fisher's exact test), Q value = 1
Table S151. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 9 | 223 |
subtype1 | 3 | 77 |
subtype2 | 2 | 78 |
subtype3 | 4 | 68 |
Figure S140. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.927 (ANOVA), Q value = 1
Table S152. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 194 | 50.6 (28.1) |
subtype1 | 68 | 49.6 (25.4) |
subtype2 | 63 | 51.5 (26.8) |
subtype3 | 63 | 50.9 (32.2) |
Figure S141. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.272 (ANOVA), Q value = 1
Table S153. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1960.9 (12.6) |
subtype1 | 55 | 1962.8 (12.5) |
subtype2 | 55 | 1958.9 (13.9) |
subtype3 | 47 | 1961.2 (11.1) |
Figure S142. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.477 (Chi-square test), Q value = 1
Table S154. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 174 | 4 | 2 | 13 |
subtype1 | 65 | 1 | 0 | 5 |
subtype2 | 57 | 2 | 0 | 5 |
subtype3 | 52 | 1 | 2 | 3 |
Figure S143. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Table S155. Description of clustering approach #12: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 |
---|---|---|
Number of samples | 133 | 99 |
P value = 0.875 (logrank test), Q value = 1
Table S156. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 205 | 57 | 0.0 - 107.0 (6.9) |
subtype1 | 117 | 29 | 0.0 - 107.0 (6.5) |
subtype2 | 88 | 28 | 0.0 - 96.8 (9.9) |
Figure S144. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.648 (t-test), Q value = 1
Table S157. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 227 | 67.4 (9.0) |
subtype1 | 129 | 67.6 (9.4) |
subtype2 | 98 | 67.1 (8.4) |
Figure S145. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.794 (Chi-square test), Q value = 1
Table S158. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE IIIA | STAGE IIIB | STAGE IV |
---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 45 | 69 | 1 | 37 | 38 | 32 | 5 | 1 |
subtype1 | 1 | 30 | 40 | 1 | 21 | 21 | 15 | 3 | 1 |
subtype2 | 1 | 15 | 29 | 0 | 16 | 17 | 17 | 2 | 0 |
Figure S146. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.277 (Chi-square test), Q value = 1
Table S159. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 60 | 137 | 30 | 5 |
subtype1 | 39 | 72 | 18 | 4 |
subtype2 | 21 | 65 | 12 | 1 |
Figure S147. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.661 (Chi-square test), Q value = 1
Table S160. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | N0 | N1 | N2 |
---|---|---|---|
ALL | 147 | 60 | 20 |
subtype1 | 86 | 32 | 10 |
subtype2 | 61 | 28 | 10 |
Figure S148. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.0664 (Chi-square test), Q value = 1
Table S161. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 183 | 1 | 46 |
subtype1 | 99 | 1 | 33 |
subtype2 | 84 | 0 | 13 |
Figure S149. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.433 (Fisher's exact test), Q value = 1
Table S162. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 53 | 179 |
subtype1 | 33 | 100 |
subtype2 | 20 | 79 |
Figure S150. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0888 (t-test), Q value = 1
Table S163. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 28 | 32.5 (41.1) |
subtype1 | 11 | 50.0 (44.9) |
subtype2 | 17 | 21.2 (35.2) |
Figure S151. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.232 (Chi-square test), Q value = 1
Table S164. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'
nPatients | LUNG BASALOID SQUAMOUS CELL CARCINOMA | LUNG PAPILLARY SQUAMOUS CELL CARICNOMA | LUNG SMALL CELL SQUAMOUS CELL CARCINOMA | LUNG SQUAMOUS CELL CARCINOMA- NOT OTHERWISE SPECIFIED (NOS) |
---|---|---|---|---|
ALL | 7 | 4 | 1 | 220 |
subtype1 | 2 | 3 | 0 | 128 |
subtype2 | 5 | 1 | 1 | 92 |
Figure S152. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

P value = 0.502 (Fisher's exact test), Q value = 1
Table S165. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 9 | 223 |
subtype1 | 4 | 129 |
subtype2 | 5 | 94 |
Figure S153. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.476 (t-test), Q value = 1
Table S166. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 194 | 50.6 (28.1) |
subtype1 | 110 | 51.9 (29.0) |
subtype2 | 84 | 49.0 (26.8) |
Figure S154. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

P value = 0.114 (t-test), Q value = 1
Table S167. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 157 | 1960.9 (12.6) |
subtype1 | 89 | 1959.6 (12.5) |
subtype2 | 68 | 1962.8 (12.7) |
Figure S155. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.494 (Chi-square test), Q value = 1
Table S168. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 174 | 4 | 2 | 13 |
subtype1 | 95 | 2 | 0 | 7 |
subtype2 | 79 | 2 | 2 | 6 |
Figure S156. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

-
Cluster data file = LUSC-TP.mergedcluster.txt
-
Clinical data file = LUSC-TP.clin.merged.picked.txt
-
Number of patients = 394
-
Number of clustering approaches = 12
-
Number of selected clinical features = 13
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.