Correlation between aggregated molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 12 different clustering approaches and 13 clinical features across 459 patients, 8 significant findings detected with P value < 0.05 and Q value < 0.25.

  • CNMF clustering analysis on array-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'GENDER'.

  • CNMF clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'Time to Death',  'AGE', and 'GENDER'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'AGE',  'GENDER', and 'HISTOLOGICAL.TYPE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'GENDER'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 12 different clustering approaches and 13 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 8 significant findings detected.

Clinical
Features
Statistical
Tests
mRNA
CNMF
subtypes
mRNA
cHierClus
subtypes
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.798
(1.00)
0.952
(1.00)
0.605
(1.00)
0.597
(1.00)
0.0527
(1.00)
0.247
(1.00)
1.44e-05
(0.00222)
0.0104
(1.00)
0.473
(1.00)
0.628
(1.00)
0.66
(1.00)
0.806
(1.00)
AGE ANOVA 0.477
(1.00)
0.557
(1.00)
0.00462
(0.656)
0.385
(1.00)
0.0281
(1.00)
0.0158
(1.00)
0.000839
(0.126)
0.000865
(0.129)
0.0482
(1.00)
0.0412
(1.00)
0.00508
(0.716)
0.00367
(0.532)
NEOPLASM DISEASESTAGE Chi-square test 0.127
(1.00)
0.127
(1.00)
0.668
(1.00)
0.0912
(1.00)
0.734
(1.00)
0.788
(1.00)
0.0167
(1.00)
0.0201
(1.00)
0.111
(1.00)
0.13
(1.00)
0.497
(1.00)
0.307
(1.00)
PATHOLOGY T STAGE Chi-square test 0.489
(1.00)
0.479
(1.00)
0.499
(1.00)
0.0125
(1.00)
0.288
(1.00)
0.855
(1.00)
0.00608
(0.851)
0.176
(1.00)
0.0967
(1.00)
0.2
(1.00)
0.033
(1.00)
0.072
(1.00)
PATHOLOGY N STAGE Chi-square test 0.572
(1.00)
0.651
(1.00)
0.563
(1.00)
0.635
(1.00)
0.287
(1.00)
0.368
(1.00)
0.00619
(0.86)
0.0107
(1.00)
0.18
(1.00)
0.233
(1.00)
0.287
(1.00)
0.622
(1.00)
PATHOLOGY M STAGE Chi-square test 0.504
(1.00)
1
(1.00)
0.838
(1.00)
0.427
(1.00)
0.751
(1.00)
0.73
(1.00)
0.511
(1.00)
0.426
(1.00)
0.633
(1.00)
0.931
(1.00)
0.684
(1.00)
0.965
(1.00)
GENDER Fisher's exact test 0.272
(1.00)
0.373
(1.00)
0.00409
(0.585)
0.000799
(0.121)
0.198
(1.00)
0.0344
(1.00)
0.000472
(0.0718)
8.48e-05
(0.013)
0.737
(1.00)
0.00127
(0.187)
0.207
(1.00)
0.0237
(1.00)
KARNOFSKY PERFORMANCE SCORE ANOVA 0.843
(1.00)
0.661
(1.00)
0.0224
(1.00)
0.21
(1.00)
0.0786
(1.00)
0.666
(1.00)
0.766
(1.00)
0.444
(1.00)
0.832
(1.00)
0.401
(1.00)
HISTOLOGICAL TYPE Chi-square test 0.3
(1.00)
0.274
(1.00)
0.396
(1.00)
0.0504
(1.00)
0.13
(1.00)
0.216
(1.00)
0.0103
(1.00)
0.00123
(0.181)
0.0253
(1.00)
0.0108
(1.00)
0.032
(1.00)
0.0743
(1.00)
RADIATIONS RADIATION REGIMENINDICATION Fisher's exact test 1
(1.00)
1
(1.00)
0.254
(1.00)
0.22
(1.00)
0.11
(1.00)
0.257
(1.00)
0.528
(1.00)
0.592
(1.00)
0.827
(1.00)
1
(1.00)
0.242
(1.00)
0.869
(1.00)
NUMBERPACKYEARSSMOKED ANOVA 0.448
(1.00)
0.357
(1.00)
0.0852
(1.00)
0.0115
(1.00)
0.329
(1.00)
0.451
(1.00)
0.136
(1.00)
0.0751
(1.00)
0.134
(1.00)
0.0841
(1.00)
0.0643
(1.00)
0.0767
(1.00)
YEAROFTOBACCOSMOKINGONSET ANOVA 0.616
(1.00)
0.68
(1.00)
0.377
(1.00)
0.576
(1.00)
0.102
(1.00)
0.00375
(0.54)
0.411
(1.00)
0.0856
(1.00)
0.0267
(1.00)
0.0477
(1.00)
0.00221
(0.323)
0.00755
(1.00)
COMPLETENESS OF RESECTION Chi-square test 0.453
(1.00)
0.723
(1.00)
0.96
(1.00)
0.534
(1.00)
0.258
(1.00)
0.558
(1.00)
0.438
(1.00)
0.962
(1.00)
0.568
(1.00)
0.92
(1.00)
0.404
(1.00)
0.716
(1.00)
Clustering Approach #1: 'mRNA CNMF subtypes'

Table S1.  Description of clustering approach #1: 'mRNA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 5 9 12 6
'mRNA CNMF subtypes' versus 'Time to Death'

P value = 0.798 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 31 6 0.5 - 56.8 (23.7)
subtype1 4 0 6.0 - 48.6 (24.5)
subtype2 9 2 4.0 - 56.8 (38.2)
subtype3 12 2 0.5 - 44.9 (16.4)
subtype4 6 2 20.0 - 45.2 (30.9)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA CNMF subtypes' versus 'AGE'

P value = 0.477 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 30 65.7 (10.8)
subtype1 4 58.5 (15.5)
subtype2 9 65.0 (9.1)
subtype3 12 67.1 (11.1)
subtype4 5 69.4 (9.0)

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'mRNA CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.127 (Chi-square test), Q value = 1

Table S4.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IV
ALL 12 11 1 3 3 2
subtype1 3 0 0 1 0 1
subtype2 4 4 0 0 1 0
subtype3 3 7 0 1 0 1
subtype4 2 0 1 1 2 0

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'mRNA CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.489 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3
ALL 12 19 1
subtype1 3 2 0
subtype2 4 4 1
subtype3 4 8 0
subtype4 1 5 0

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'mRNA CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.572 (Chi-square test), Q value = 1

Table S6.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 23 4 4
subtype1 3 1 1
subtype2 8 1 0
subtype3 9 1 1
subtype4 3 1 2

Figure S5.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'mRNA CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.504 (Fisher's exact test), Q value = 1

Table S7.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1
ALL 30 2
subtype1 4 1
subtype2 9 0
subtype3 11 1
subtype4 6 0

Figure S6.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'mRNA CNMF subtypes' versus 'GENDER'

P value = 0.272 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 18 14
subtype1 3 2
subtype2 3 6
subtype3 9 3
subtype4 3 3

Figure S7.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'mRNA CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.3 (Chi-square test), Q value = 1

Table S9.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG CLEAR CELL ADENOCARCINOMA
ALL 1 30 1
subtype1 0 4 1
subtype2 0 9 0
subtype3 1 11 0
subtype4 0 6 0

Figure S8.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'mRNA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 1 31
subtype1 0 5
subtype2 0 9
subtype3 1 11
subtype4 0 6

Figure S9.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'mRNA CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.448 (ANOVA), Q value = 1

Table S11.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 20 41.1 (15.0)
subtype1 2 29.0 (12.7)
subtype2 9 47.0 (15.5)
subtype3 6 37.0 (13.1)
subtype4 3 40.0 (17.3)

Figure S10.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'mRNA CNMF subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.616 (ANOVA), Q value = 1

Table S12.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 19 1968.5 (11.4)
subtype1 2 1977.0 (18.4)
subtype2 6 1971.2 (14.2)
subtype3 6 1965.8 (8.2)
subtype4 5 1965.2 (9.8)

Figure S11.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'mRNA CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.453 (Chi-square test), Q value = 1

Table S13.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R2 RX
ALL 26 1 2
subtype1 3 0 1
subtype2 7 1 0
subtype3 10 0 1
subtype4 6 0 0

Figure S12.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #2: 'mRNA cHierClus subtypes'

Table S14.  Description of clustering approach #2: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 7 13 12
'mRNA cHierClus subtypes' versus 'Time to Death'

P value = 0.952 (logrank test), Q value = 1

Table S15.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 31 6 0.5 - 56.8 (23.7)
subtype1 7 2 20.0 - 48.6 (38.7)
subtype2 13 2 0.5 - 47.0 (18.8)
subtype3 11 2 4.0 - 56.8 (34.1)

Figure S13.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA cHierClus subtypes' versus 'AGE'

P value = 0.557 (ANOVA), Q value = 1

Table S16.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 30 65.7 (10.8)
subtype1 5 69.4 (9.0)
subtype2 13 66.5 (10.9)
subtype3 12 63.3 (11.6)

Figure S14.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'mRNA cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.127 (Chi-square test), Q value = 1

Table S17.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IV
ALL 12 11 1 3 3 2
subtype1 3 0 1 1 2 0
subtype2 3 8 0 1 0 1
subtype3 6 3 0 1 1 1

Figure S15.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'mRNA cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.479 (Chi-square test), Q value = 1

Table S18.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3
ALL 12 19 1
subtype1 2 5 0
subtype2 4 9 0
subtype3 6 5 1

Figure S16.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'mRNA cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.651 (Chi-square test), Q value = 1

Table S19.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 23 4 4
subtype1 4 1 2
subtype2 10 1 1
subtype3 9 2 1

Figure S17.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'mRNA cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1
ALL 30 2
subtype1 7 0
subtype2 12 1
subtype3 11 1

Figure S18.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'mRNA cHierClus subtypes' versus 'GENDER'

P value = 0.373 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 18 14
subtype1 4 3
subtype2 9 4
subtype3 5 7

Figure S19.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'mRNA cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.274 (Chi-square test), Q value = 1

Table S22.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG CLEAR CELL ADENOCARCINOMA
ALL 1 30 1
subtype1 0 6 1
subtype2 1 12 0
subtype3 0 12 0

Figure S20.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'mRNA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 1 31
subtype1 0 7
subtype2 1 12
subtype3 0 12

Figure S21.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'mRNA cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.357 (ANOVA), Q value = 1

Table S24.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 20 41.1 (15.0)
subtype1 3 40.0 (17.3)
subtype2 7 35.0 (13.1)
subtype3 10 45.8 (15.4)

Figure S22.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'mRNA cHierClus subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.68 (ANOVA), Q value = 1

Table S25.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 19 1968.5 (11.4)
subtype1 6 1965.0 (8.8)
subtype2 7 1969.9 (13.0)
subtype3 6 1970.5 (12.9)

Figure S23.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'mRNA cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.723 (Chi-square test), Q value = 1

Table S26.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R2 RX
ALL 26 1 2
subtype1 6 0 0
subtype2 10 0 1
subtype3 10 1 1

Figure S24.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #3: 'Copy Number Ratio CNMF subtypes'

Table S27.  Description of clustering approach #3: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 180 189 86
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.605 (logrank test), Q value = 1

Table S28.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 419 118 0.0 - 224.0 (12.7)
subtype1 167 47 0.1 - 224.0 (13.9)
subtype2 173 48 0.0 - 120.8 (12.0)
subtype3 79 23 0.1 - 97.7 (13.6)

Figure S25.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.00462 (ANOVA), Q value = 0.66

Table S29.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 424 65.5 (9.7)
subtype1 168 64.5 (9.9)
subtype2 175 67.3 (9.1)
subtype3 81 63.7 (9.9)

Figure S26.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.668 (Chi-square test), Q value = 1

Table S30.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 113 131 44 65 65 11 22
subtype1 2 36 53 21 29 25 5 9
subtype2 0 54 56 17 26 23 3 9
subtype3 1 23 22 6 10 17 3 4

Figure S27.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.499 (Chi-square test), Q value = 1

Table S31.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 141 255 39 18
subtype1 49 107 19 5
subtype2 66 102 12 9
subtype3 26 46 8 4

Figure S28.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.563 (Chi-square test), Q value = 1

Table S32.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 290 85 70
subtype1 111 36 31
subtype2 123 37 24
subtype3 56 12 15

Figure S29.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.838 (Chi-square test), Q value = 1

Table S33.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 314 18 1 3 115
subtype1 122 8 1 0 47
subtype2 133 6 0 2 46
subtype3 59 4 0 1 22

Figure S30.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.00409 (Fisher's exact test), Q value = 0.59

Table S34.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 244 211
subtype1 108 72
subtype2 103 86
subtype3 33 53

Figure S31.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.843 (ANOVA), Q value = 1

Table S35.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 78 83.8 (23.0)
subtype1 39 83.8 (22.8)
subtype2 26 85.4 (20.4)
subtype3 13 80.8 (29.3)

Figure S32.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'Copy Number Ratio CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.396 (Chi-square test), Q value = 1

Table S36.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 92 292 4 17 2 3 2 18 1 4 7
subtype1 6 34 120 2 9 1 2 0 5 0 1 0
subtype2 3 42 113 2 7 1 1 2 10 1 1 6
subtype3 4 16 59 0 1 0 0 0 3 0 2 1

Figure S33.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'Copy Number Ratio CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.254 (Fisher's exact test), Q value = 1

Table S37.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 21 434
subtype1 5 175
subtype2 10 179
subtype3 6 80

Figure S34.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'Copy Number Ratio CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0852 (ANOVA), Q value = 1

Table S38.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 315 42.2 (27.3)
subtype1 117 45.0 (26.0)
subtype2 129 38.1 (26.8)
subtype3 69 45.1 (29.7)

Figure S35.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'Copy Number Ratio CNMF subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.377 (ANOVA), Q value = 1

Table S39.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 250 1964.9 (12.4)
subtype1 96 1964.9 (13.1)
subtype2 99 1963.8 (12.2)
subtype3 55 1966.7 (11.6)

Figure S36.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'Copy Number Ratio CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.96 (Chi-square test), Q value = 1

Table S40.  Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 312 10 4 18
subtype1 127 5 1 8
subtype2 129 4 2 6
subtype3 56 1 1 4

Figure S37.  Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #4: 'METHLYATION CNMF'

Table S41.  Description of clustering approach #4: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 133 129 134
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.597 (logrank test), Q value = 1

Table S42.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 363 98 0.0 - 224.0 (10.9)
subtype1 121 38 0.0 - 208.6 (12.4)
subtype2 120 30 0.1 - 163.1 (11.2)
subtype3 122 30 0.1 - 224.0 (8.0)

Figure S38.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.385 (ANOVA), Q value = 1

Table S43.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 368 65.2 (10.0)
subtype1 124 64.7 (9.8)
subtype2 122 64.7 (10.3)
subtype3 122 66.2 (9.8)

Figure S39.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0912 (Chi-square test), Q value = 1

Table S44.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 98 115 41 55 57 9 17
subtype1 2 33 34 12 19 21 5 7
subtype2 1 20 47 13 23 17 3 5
subtype3 0 45 34 16 13 19 1 5

Figure S40.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.0125 (Chi-square test), Q value = 1

Table S45.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 125 219 34 15
subtype1 39 75 13 5
subtype2 29 78 15 7
subtype3 57 66 6 3

Figure S41.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.635 (Chi-square test), Q value = 1

Table S46.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 255 72 60
subtype1 85 22 25
subtype2 85 27 16
subtype3 85 23 19

Figure S42.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.427 (Chi-square test), Q value = 1

Table S47.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 259 12 1 3 117
subtype1 93 5 1 2 32
subtype2 85 4 0 0 38
subtype3 81 3 0 1 47

Figure S43.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.000799 (Fisher's exact test), Q value = 0.12

Table S48.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 212 184
subtype1 57 76
subtype2 67 62
subtype3 88 46

Figure S44.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.661 (ANOVA), Q value = 1

Table S49.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 71 84.2 (21.6)
subtype1 30 81.7 (26.3)
subtype2 24 87.1 (12.0)
subtype3 17 84.7 (23.7)

Figure S45.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 0.0504 (Chi-square test), Q value = 1

Table S50.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 77 251 4 17 1 2 2 17 1 4 7
subtype1 8 32 76 0 4 0 0 0 9 0 1 3
subtype2 2 30 86 1 5 0 1 0 3 0 1 0
subtype3 3 15 89 3 8 1 1 2 5 1 2 4

Figure S46.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.22 (Fisher's exact test), Q value = 1

Table S51.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 18 378
subtype1 6 127
subtype2 3 126
subtype3 9 125

Figure S47.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'METHLYATION CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0115 (ANOVA), Q value = 1

Table S52.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 273 41.2 (27.3)
subtype1 97 47.8 (31.0)
subtype2 92 36.8 (26.0)
subtype3 84 38.5 (22.4)

Figure S48.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'METHLYATION CNMF' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.576 (ANOVA), Q value = 1

Table S53.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 226 1965.3 (12.4)
subtype1 82 1964.5 (13.8)
subtype2 79 1966.4 (12.6)
subtype3 65 1964.8 (10.2)

Figure S49.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'METHLYATION CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.534 (Chi-square test), Q value = 1

Table S54.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 261 8 1 15
subtype1 88 1 0 5
subtype2 90 5 0 5
subtype3 83 2 1 5

Figure S50.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #5: 'RPPA CNMF subtypes'

Table S55.  Description of clustering approach #5: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 95 68 74
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.0527 (logrank test), Q value = 1

Table S56.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 217 74 0.1 - 224.0 (18.9)
subtype1 82 29 0.1 - 71.5 (17.9)
subtype2 64 17 0.1 - 224.0 (16.9)
subtype3 71 28 0.4 - 97.7 (19.5)

Figure S51.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'AGE'

P value = 0.0281 (ANOVA), Q value = 1

Table S57.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 216 64.8 (9.8)
subtype1 81 64.3 (10.0)
subtype2 65 67.4 (8.4)
subtype3 70 63.0 (10.6)

Figure S52.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RPPA CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.734 (Chi-square test), Q value = 1

Table S58.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 1 55 69 20 30 42 7 13
subtype1 0 26 26 7 13 16 3 4
subtype2 1 18 17 7 8 10 3 4
subtype3 0 11 26 6 9 16 1 5

Figure S53.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.288 (Chi-square test), Q value = 1

Table S59.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 63 143 17 13
subtype1 30 51 9 5
subtype2 19 41 2 5
subtype3 14 51 6 3

Figure S54.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.287 (Chi-square test), Q value = 1

Table S60.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 141 46 44
subtype1 51 24 16
subtype2 45 11 11
subtype3 45 11 17

Figure S55.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.751 (Chi-square test), Q value = 1

Table S61.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 175 12 47
subtype1 73 4 16
subtype2 47 4 17
subtype3 55 4 14

Figure S56.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.198 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 131 106
subtype1 59 36
subtype2 36 32
subtype3 36 38

Figure S57.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0224 (ANOVA), Q value = 1

Table S63.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 23 70.4 (34.2)
subtype1 6 40.0 (45.2)
subtype2 8 87.5 (10.4)
subtype3 9 75.6 (28.8)

Figure S58.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RPPA CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.13 (Chi-square test), Q value = 1

Table S64.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 6 52 153 3 9 1 2 2 5 1 3
subtype1 2 19 65 1 2 1 1 1 1 1 1
subtype2 3 18 33 1 7 0 1 0 3 0 2
subtype3 1 15 55 1 0 0 0 1 1 0 0

Figure S59.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'RPPA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.11 (Fisher's exact test), Q value = 1

Table S65.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 16 221
subtype1 4 91
subtype2 3 65
subtype3 9 65

Figure S60.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RPPA CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.329 (ANOVA), Q value = 1

Table S66.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 170 40.8 (26.6)
subtype1 55 43.9 (28.1)
subtype2 60 36.8 (25.8)
subtype3 55 42.2 (25.9)

Figure S61.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'RPPA CNMF subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.102 (ANOVA), Q value = 1

Table S67.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 126 1964.4 (13.5)
subtype1 36 1965.4 (14.3)
subtype2 47 1961.2 (11.7)
subtype3 43 1967.2 (14.3)

Figure S62.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'RPPA CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.258 (Chi-square test), Q value = 1

Table S68.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 147 7 3 10
subtype1 57 3 3 6
subtype2 46 3 0 1
subtype3 44 1 0 3

Figure S63.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #6: 'RPPA cHierClus subtypes'

Table S69.  Description of clustering approach #6: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 107 70 60
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.247 (logrank test), Q value = 1

Table S70.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 217 74 0.1 - 224.0 (18.9)
subtype1 94 36 0.1 - 97.7 (19.3)
subtype2 66 20 0.1 - 224.0 (17.3)
subtype3 57 18 0.4 - 88.0 (19.4)

Figure S64.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'AGE'

P value = 0.0158 (ANOVA), Q value = 1

Table S71.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 216 64.8 (9.8)
subtype1 95 64.5 (9.8)
subtype2 65 67.4 (8.1)
subtype3 56 62.4 (11.0)

Figure S65.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RPPA cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.788 (Chi-square test), Q value = 1

Table S72.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 1 55 69 20 30 42 7 13
subtype1 0 27 32 9 14 16 3 6
subtype2 0 17 20 5 11 12 3 2
subtype3 1 11 17 6 5 14 1 5

Figure S66.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.855 (Chi-square test), Q value = 1

Table S73.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 63 143 17 13
subtype1 30 66 5 5
subtype2 17 41 7 5
subtype3 16 36 5 3

Figure S67.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.368 (Chi-square test), Q value = 1

Table S74.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 141 46 44
subtype1 60 25 18
subtype2 45 13 11
subtype3 36 8 15

Figure S68.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.73 (Chi-square test), Q value = 1

Table S75.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 175 12 47
subtype1 80 6 19
subtype2 51 2 17
subtype3 44 4 11

Figure S69.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.0344 (Fisher's exact test), Q value = 1

Table S76.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 131 106
subtype1 69 38
subtype2 33 37
subtype3 29 31

Figure S70.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.21 (ANOVA), Q value = 1

Table S77.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 23 70.4 (34.2)
subtype1 9 56.7 (43.9)
subtype2 8 86.2 (9.2)
subtype3 6 70.0 (34.6)

Figure S71.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RPPA cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.216 (Chi-square test), Q value = 1

Table S78.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 6 52 153 3 9 1 2 2 5 1 3
subtype1 2 22 74 0 3 1 1 1 1 1 1
subtype2 2 19 34 3 5 0 1 1 3 0 2
subtype3 2 11 45 0 1 0 0 0 1 0 0

Figure S72.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'RPPA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.257 (Fisher's exact test), Q value = 1

Table S79.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 16 221
subtype1 8 99
subtype2 2 68
subtype3 6 54

Figure S73.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RPPA cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.451 (ANOVA), Q value = 1

Table S80.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 170 40.8 (26.6)
subtype1 63 40.0 (24.2)
subtype2 59 38.5 (28.4)
subtype3 48 44.8 (27.4)

Figure S74.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'RPPA cHierClus subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.00375 (ANOVA), Q value = 0.54

Table S81.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 126 1964.4 (13.5)
subtype1 42 1966.3 (13.4)
subtype2 44 1959.1 (13.1)
subtype3 40 1968.3 (12.6)

Figure S75.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'RPPA cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.558 (Chi-square test), Q value = 1

Table S82.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 147 7 3 10
subtype1 65 3 3 5
subtype2 47 3 0 2
subtype3 35 1 0 3

Figure S76.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #7: 'RNAseq CNMF subtypes'

Table S83.  Description of clustering approach #7: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 132 101 70 101 46
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 1.44e-05 (logrank test), Q value = 0.0022

Table S84.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 414 116 0.0 - 224.0 (12.7)
subtype1 123 42 0.2 - 163.1 (14.7)
subtype2 93 17 0.0 - 120.8 (9.8)
subtype3 65 30 0.5 - 97.7 (10.6)
subtype4 92 21 0.1 - 224.0 (15.5)
subtype5 41 6 0.1 - 63.5 (11.1)

Figure S77.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.000839 (ANOVA), Q value = 0.13

Table S85.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 419 65.5 (9.7)
subtype1 123 63.5 (10.1)
subtype2 95 68.3 (7.8)
subtype3 65 67.4 (9.8)
subtype4 94 63.8 (9.5)
subtype5 42 65.6 (11.0)

Figure S78.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0167 (Chi-square test), Q value = 1

Table S86.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 111 131 41 64 66 11 22
subtype1 2 21 39 16 24 20 4 6
subtype2 0 39 29 9 9 12 1 2
subtype3 0 11 17 2 15 17 3 5
subtype4 1 23 35 10 11 12 3 6
subtype5 0 17 11 4 5 5 0 3

Figure S79.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.00608 (Chi-square test), Q value = 0.85

Table S87.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 139 251 40 18
subtype1 31 83 12 6
subtype2 46 45 6 4
subtype3 14 42 9 4
subtype4 26 63 8 3
subtype5 22 18 5 1

Figure S80.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.00619 (Chi-square test), Q value = 0.86

Table S88.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 285 85 70
subtype1 72 34 24
subtype2 74 14 10
subtype3 36 15 18
subtype4 74 13 13
subtype5 29 9 5

Figure S81.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.511 (Chi-square test), Q value = 1

Table S89.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 310 18 1 3 114
subtype1 91 5 0 0 35
subtype2 70 2 0 0 29
subtype3 52 5 0 0 13
subtype4 69 4 1 2 24
subtype5 28 2 0 1 13

Figure S82.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.000472 (Chi-square test), Q value = 0.072

Table S90.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 244 206
subtype1 76 56
subtype2 67 34
subtype3 34 36
subtype4 38 63
subtype5 29 17

Figure S83.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0786 (ANOVA), Q value = 1

Table S91.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 77 83.9 (23.1)
subtype1 27 76.3 (29.9)
subtype2 16 94.4 (7.3)
subtype3 6 93.3 (10.3)
subtype4 20 86.0 (15.7)
subtype5 8 76.2 (31.6)

Figure S84.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0103 (Chi-square test), Q value = 1

Table S92.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 92 287 4 17 2 3 2 18 1 4 7
subtype1 2 23 97 0 5 1 2 0 2 0 0 0
subtype2 5 22 58 2 8 0 1 0 5 0 0 0
subtype3 1 15 43 1 0 1 0 1 2 0 2 4
subtype4 4 19 66 0 2 0 0 0 7 0 2 1
subtype5 1 13 23 1 2 0 0 1 2 1 0 2

Figure S85.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.528 (Chi-square test), Q value = 1

Table S93.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 21 429
subtype1 6 126
subtype2 4 97
subtype3 6 64
subtype4 3 98
subtype5 2 44

Figure S86.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.136 (ANOVA), Q value = 1

Table S94.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 309 42.1 (27.4)
subtype1 89 45.7 (28.0)
subtype2 63 34.5 (23.7)
subtype3 51 41.5 (24.0)
subtype4 77 44.6 (31.7)
subtype5 29 41.8 (24.6)

Figure S87.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'RNAseq CNMF subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.411 (ANOVA), Q value = 1

Table S95.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 245 1965.0 (12.5)
subtype1 69 1966.2 (14.0)
subtype2 53 1962.4 (10.3)
subtype3 37 1963.9 (13.4)
subtype4 62 1965.6 (12.3)
subtype5 24 1967.0 (11.0)

Figure S88.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'RNAseq CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.438 (Chi-square test), Q value = 1

Table S96.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 309 10 4 16
subtype1 89 3 1 5
subtype2 72 3 0 3
subtype3 47 1 1 1
subtype4 71 3 0 4
subtype5 30 0 2 3

Figure S89.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #8: 'RNAseq cHierClus subtypes'

Table S97.  Description of clustering approach #8: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 115 187 148
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0104 (logrank test), Q value = 1

Table S98.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 414 116 0.0 - 224.0 (12.7)
subtype1 108 34 0.2 - 97.7 (12.7)
subtype2 171 38 0.0 - 224.0 (12.7)
subtype3 135 44 0.1 - 208.6 (12.6)

Figure S90.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.000865 (ANOVA), Q value = 0.13

Table S99.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 419 65.5 (9.7)
subtype1 107 63.6 (10.4)
subtype2 173 67.6 (9.1)
subtype3 139 64.3 (9.5)

Figure S91.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0201 (Chi-square test), Q value = 1

Table S100.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 111 131 41 64 66 11 22
subtype1 1 20 35 11 21 18 5 4
subtype2 0 61 58 16 24 17 3 7
subtype3 2 30 38 14 19 31 3 11

Figure S92.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.176 (Chi-square test), Q value = 1

Table S101.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 139 251 40 18
subtype1 30 66 13 6
subtype2 71 94 16 6
subtype3 38 91 11 6

Figure S93.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0107 (Chi-square test), Q value = 1

Table S102.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 285 85 70
subtype1 66 27 21
subtype2 131 33 17
subtype3 88 25 32

Figure S94.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.426 (Chi-square test), Q value = 1

Table S103.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 310 18 1 3 114
subtype1 79 3 0 0 32
subtype2 130 5 1 1 48
subtype3 101 10 0 2 34

Figure S95.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 8.48e-05 (Fisher's exact test), Q value = 0.013

Table S104.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 244 206
subtype1 64 51
subtype2 120 67
subtype3 60 88

Figure S96.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.666 (ANOVA), Q value = 1

Table S105.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 77 83.9 (23.1)
subtype1 20 80.0 (22.2)
subtype2 30 86.0 (24.9)
subtype3 27 84.4 (22.2)

Figure S97.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.00123 (Chi-square test), Q value = 0.18

Table S106.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 92 287 4 17 2 3 2 18 1 4 7
subtype1 1 16 90 0 2 1 2 0 2 0 1 0
subtype2 9 45 97 4 12 0 1 2 12 1 0 4
subtype3 3 31 100 0 3 1 0 0 4 0 3 3

Figure S98.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.592 (Fisher's exact test), Q value = 1

Table S107.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 21 429
subtype1 4 111
subtype2 8 179
subtype3 9 139

Figure S99.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0751 (ANOVA), Q value = 1

Table S108.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 309 42.1 (27.4)
subtype1 81 42.5 (26.8)
subtype2 116 37.9 (26.0)
subtype3 112 46.1 (28.9)

Figure S100.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'RNAseq cHierClus subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.0856 (ANOVA), Q value = 1

Table S109.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 245 1965.0 (12.5)
subtype1 63 1966.1 (13.5)
subtype2 93 1962.7 (11.8)
subtype3 89 1966.5 (12.2)

Figure S101.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'RNAseq cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.962 (Chi-square test), Q value = 1

Table S110.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 309 10 4 16
subtype1 80 2 1 3
subtype2 131 4 1 7
subtype3 98 4 2 6

Figure S102.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #9: 'MIRSEQ CNMF'

Table S111.  Description of clustering approach #9: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 159 221 72
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.473 (logrank test), Q value = 1

Table S112.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 416 116 0.0 - 224.0 (12.7)
subtype1 147 37 0.0 - 163.1 (12.9)
subtype2 204 55 0.1 - 208.6 (12.6)
subtype3 65 24 0.1 - 224.0 (12.2)

Figure S103.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.0482 (ANOVA), Q value = 1

Table S113.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 422 65.5 (9.7)
subtype1 150 66.9 (9.4)
subtype2 210 64.4 (10.1)
subtype3 62 65.8 (9.1)

Figure S104.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.111 (Chi-square test), Q value = 1

Table S114.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 112 131 44 63 66 11 21
subtype1 0 54 36 14 23 20 2 9
subtype2 2 45 74 21 30 31 8 10
subtype3 1 13 21 9 10 15 1 2

Figure S105.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.0967 (Chi-square test), Q value = 1

Table S115.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 140 251 40 18
subtype1 62 75 15 7
subtype2 55 135 19 10
subtype3 23 41 6 1

Figure S106.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.18 (Chi-square test), Q value = 1

Table S116.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 287 84 70
subtype1 98 36 19
subtype2 147 36 35
subtype3 42 12 16

Figure S107.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.633 (Chi-square test), Q value = 1

Table S117.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 311 16 1 3 117
subtype1 110 7 0 1 39
subtype2 156 8 1 2 53
subtype3 45 1 0 0 25

Figure S108.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.737 (Fisher's exact test), Q value = 1

Table S118.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 242 210
subtype1 89 70
subtype2 115 106
subtype3 38 34

Figure S109.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.766 (ANOVA), Q value = 1

Table S119.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 76 83.4 (23.1)
subtype1 24 81.7 (26.6)
subtype2 47 83.6 (22.4)
subtype3 5 90.0 (10.0)

Figure S110.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 0.0253 (Chi-square test), Q value = 1

Table S120.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 91 291 4 17 2 2 2 18 1 4 7
subtype1 5 35 90 3 11 0 1 2 7 1 1 3
subtype2 8 50 143 0 4 2 0 0 9 0 3 2
subtype3 0 6 58 1 2 0 1 0 2 0 0 2

Figure S111.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'MIRSEQ CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.827 (Fisher's exact test), Q value = 1

Table S121.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 20 432
subtype1 7 152
subtype2 9 212
subtype3 4 68

Figure S112.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRSEQ CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.134 (ANOVA), Q value = 1

Table S122.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 312 42.3 (27.3)
subtype1 104 37.9 (24.8)
subtype2 162 44.5 (28.4)
subtype3 46 44.4 (28.2)

Figure S113.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'MIRSEQ CNMF' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.0267 (ANOVA), Q value = 1

Table S123.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 248 1964.7 (12.4)
subtype1 86 1962.3 (12.3)
subtype2 130 1966.7 (12.5)
subtype3 32 1963.0 (11.4)

Figure S114.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'MIRSEQ CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.568 (Chi-square test), Q value = 1

Table S124.  Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 308 10 4 18
subtype1 106 1 2 7
subtype2 159 6 2 8
subtype3 43 3 0 3

Figure S115.  Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #10: 'MIRSEQ CHIERARCHICAL'

Table S125.  Description of clustering approach #10: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 49 239 164
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.628 (logrank test), Q value = 1

Table S126.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 416 116 0.0 - 224.0 (12.7)
subtype1 46 13 0.1 - 224.0 (12.2)
subtype2 222 62 0.1 - 208.6 (13.1)
subtype3 148 41 0.0 - 163.1 (12.2)

Figure S116.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.0412 (ANOVA), Q value = 1

Table S127.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 422 65.5 (9.7)
subtype1 45 64.8 (8.4)
subtype2 226 64.5 (10.0)
subtype3 151 67.1 (9.5)

Figure S117.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.13 (Chi-square test), Q value = 1

Table S128.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 112 131 44 63 66 11 21
subtype1 0 12 12 9 6 9 0 1
subtype2 3 50 76 22 33 37 9 9
subtype3 0 50 43 13 24 20 2 11

Figure S118.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.2 (Chi-square test), Q value = 1

Table S129.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 140 251 40 18
subtype1 15 31 3 0
subtype2 64 140 23 10
subtype3 61 80 14 8

Figure S119.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.233 (Chi-square test), Q value = 1

Table S130.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 287 84 70
subtype1 29 12 8
subtype2 156 37 43
subtype3 102 35 19

Figure S120.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.931 (Chi-square test), Q value = 1

Table S131.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 311 16 1 3 117
subtype1 35 1 0 0 12
subtype2 167 7 1 2 61
subtype3 109 8 0 1 44

Figure S121.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.00127 (Fisher's exact test), Q value = 0.19

Table S132.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 242 210
subtype1 37 12
subtype2 114 125
subtype3 91 73

Figure S122.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.444 (ANOVA), Q value = 1

Table S133.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 76 83.4 (23.1)
subtype1 10 91.0 (13.7)
subtype2 46 83.5 (22.1)
subtype3 20 79.5 (28.6)

Figure S123.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CHIERARCHICAL' versus 'HISTOLOGICAL.TYPE'

P value = 0.0108 (Chi-square test), Q value = 1

Table S134.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 91 291 4 17 2 2 2 18 1 4 7
subtype1 0 6 37 2 0 0 1 0 3 0 0 0
subtype2 8 47 164 0 5 1 0 0 9 0 3 2
subtype3 5 38 90 2 12 1 1 2 6 1 1 5

Figure S124.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'MIRSEQ CHIERARCHICAL' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test), Q value = 1

Table S135.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 20 432
subtype1 2 47
subtype2 11 228
subtype3 7 157

Figure S125.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRSEQ CHIERARCHICAL' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0841 (ANOVA), Q value = 1

Table S136.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 312 42.3 (27.3)
subtype1 29 40.3 (18.0)
subtype2 174 45.3 (29.3)
subtype3 109 38.0 (25.8)

Figure S126.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'MIRSEQ CHIERARCHICAL' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.0477 (ANOVA), Q value = 1

Table S137.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 248 1964.7 (12.4)
subtype1 24 1962.7 (9.0)
subtype2 132 1966.5 (12.9)
subtype3 92 1962.6 (12.1)

Figure S127.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'MIRSEQ CHIERARCHICAL' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.92 (Chi-square test), Q value = 1

Table S138.  Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 308 10 4 18
subtype1 36 2 0 3
subtype2 164 5 2 10
subtype3 108 3 2 5

Figure S128.  Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #11: 'MIRseq Mature CNMF subtypes'

Table S139.  Description of clustering approach #11: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 139 177 73
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.66 (logrank test), Q value = 1

Table S140.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 355 94 0.0 - 224.0 (10.8)
subtype1 130 35 0.0 - 163.1 (12.2)
subtype2 159 36 0.1 - 208.6 (9.4)
subtype3 66 23 0.1 - 224.0 (11.6)

Figure S129.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.00508 (ANOVA), Q value = 0.72

Table S141.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 361 65.5 (9.8)
subtype1 132 67.3 (9.6)
subtype2 165 63.7 (9.9)
subtype3 64 66.1 (9.2)

Figure S130.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.497 (Chi-square test), Q value = 1

Table S142.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 97 111 41 53 57 9 17
subtype1 0 43 36 12 16 20 4 7
subtype2 2 39 58 21 23 22 4 8
subtype3 1 15 17 8 14 15 1 2

Figure S131.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.033 (Chi-square test), Q value = 1

Table S143.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 124 213 34 15
subtype1 53 62 14 10
subtype2 49 107 15 4
subtype3 22 44 5 1

Figure S132.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.287 (Chi-square test), Q value = 1

Table S144.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 250 70 60
subtype1 89 26 19
subtype2 121 28 25
subtype3 40 16 16

Figure S133.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.684 (Chi-square test), Q value = 1

Table S145.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 252 12 1 3 117
subtype1 90 5 0 1 41
subtype2 119 6 1 2 48
subtype3 43 1 0 0 28

Figure S134.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.207 (Fisher's exact test), Q value = 1

Table S146.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 208 181
subtype1 81 58
subtype2 86 91
subtype3 41 32

Figure S135.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.832 (ANOVA), Q value = 1

Table S147.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 71 84.2 (21.6)
subtype1 17 82.9 (23.1)
subtype2 44 83.9 (22.8)
subtype3 10 88.0 (13.2)

Figure S136.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.032 (Chi-square test), Q value = 1

Table S148.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 76 245 4 17 1 2 2 17 1 4 7
subtype1 6 38 71 2 9 0 1 1 8 0 0 3
subtype2 6 31 118 0 7 1 0 0 7 1 4 2
subtype3 1 7 56 2 1 0 1 1 2 0 0 2

Figure S137.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'MIRseq Mature CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.242 (Fisher's exact test), Q value = 1

Table S149.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 18 371
subtype1 6 133
subtype2 6 171
subtype3 6 67

Figure S138.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRseq Mature CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0643 (ANOVA), Q value = 1

Table S150.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 268 41.4 (27.4)
subtype1 94 36.1 (25.5)
subtype2 129 43.9 (28.4)
subtype3 45 45.3 (27.4)

Figure S139.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'MIRseq Mature CNMF subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.00221 (ANOVA), Q value = 0.32

Table S151.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 220 1964.8 (12.2)
subtype1 79 1962.4 (12.1)
subtype2 110 1967.6 (12.1)
subtype3 31 1960.9 (10.7)

Figure S140.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'MIRseq Mature CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.404 (Chi-square test), Q value = 1

Table S152.  Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 256 8 1 15
subtype1 84 4 1 4
subtype2 127 2 0 6
subtype3 45 2 0 5

Figure S141.  Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #12: 'MIRseq Mature cHierClus subtypes'

Table S153.  Description of clustering approach #12: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 45 180 164
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.806 (logrank test), Q value = 1

Table S154.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 355 94 0.0 - 224.0 (10.8)
subtype1 42 13 0.1 - 224.0 (10.6)
subtype2 163 38 0.1 - 208.6 (8.8)
subtype3 150 43 0.0 - 163.1 (13.2)

Figure S142.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.00367 (ANOVA), Q value = 0.53

Table S155.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 361 65.5 (9.8)
subtype1 41 65.5 (8.4)
subtype2 165 63.7 (9.9)
subtype3 155 67.3 (9.7)

Figure S143.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.307 (Chi-square test), Q value = 1

Table S156.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IV
ALL 3 97 111 41 53 57 9 17
subtype1 0 10 11 8 5 10 0 1
subtype2 3 39 57 21 23 26 4 7
subtype3 0 48 43 12 25 21 5 9

Figure S144.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.072 (Chi-square test), Q value = 1

Table S157.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 124 213 34 15
subtype1 15 28 2 0
subtype2 52 107 15 4
subtype3 57 78 17 11

Figure S145.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.622 (Chi-square test), Q value = 1

Table S158.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 250 70 60
subtype1 27 8 10
subtype2 119 30 29
subtype3 104 32 21

Figure S146.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.965 (Chi-square test), Q value = 1

Table S159.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B MX
ALL 252 12 1 3 117
subtype1 29 1 0 0 14
subtype2 119 5 1 2 52
subtype3 104 6 0 1 51

Figure S147.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.0237 (Fisher's exact test), Q value = 1

Table S160.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 208 181
subtype1 30 15
subtype2 84 96
subtype3 94 70

Figure S148.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.401 (ANOVA), Q value = 1

Table S161.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 71 84.2 (21.6)
subtype1 8 93.8 (9.2)
subtype2 42 82.4 (22.8)
subtype3 21 84.3 (22.3)

Figure S149.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0743 (Chi-square test), Q value = 1

Table S162.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

nPatients LUNG ACINAR ADENOCARCINOMA LUNG ADENOCARCINOMA MIXED SUBTYPE LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) LUNG BRONCHIOLOALVEOLAR CARCINOMA MUCINOUS LUNG BRONCHIOLOALVEOLAR CARCINOMA NONMUCINOUS LUNG CLEAR CELL ADENOCARCINOMA LUNG MICROPAPILLARY ADENOCARCINOMA LUNG MUCINOUS ADENOCARCINOMA LUNG PAPILLARY ADENOCARCINOMA LUNG SIGNET RING ADENOCARCINOMA LUNG SOLID PATTERN PREDOMINANT ADENOCARCINOMA MUCINOUS (COLLOID) CARCINOMA
ALL 13 76 245 4 17 1 2 2 17 1 4 7
subtype1 0 6 33 2 1 0 1 0 2 0 0 0
subtype2 7 32 124 0 6 1 0 0 5 0 3 2
subtype3 6 38 88 2 10 0 1 2 10 1 1 5

Figure S150.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL.TYPE'

'MIRseq Mature cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.869 (Fisher's exact test), Q value = 1

Table S163.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 18 371
subtype1 1 44
subtype2 9 171
subtype3 8 156

Figure S151.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRseq Mature cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.0767 (ANOVA), Q value = 1

Table S164.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 268 41.4 (27.4)
subtype1 31 43.8 (24.9)
subtype2 129 44.7 (29.7)
subtype3 108 36.8 (24.7)

Figure S152.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBERPACKYEARSSMOKED'

'MIRseq Mature cHierClus subtypes' versus 'YEAROFTOBACCOSMOKINGONSET'

P value = 0.00755 (ANOVA), Q value = 1

Table S165.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

nPatients Mean (Std.Dev)
ALL 220 1964.8 (12.2)
subtype1 26 1963.4 (9.5)
subtype2 107 1967.4 (12.5)
subtype3 87 1962.1 (11.9)

Figure S153.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'YEAROFTOBACCOSMOKINGONSET'

'MIRseq Mature cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.716 (Chi-square test), Q value = 1

Table S166.  Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 256 8 1 15
subtype1 33 1 0 1
subtype2 120 2 0 7
subtype3 103 5 1 7

Figure S154.  Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'COMPLETENESS.OF.RESECTION'

Methods & Data
Input
  • Cluster data file = LUAD-TP.mergedcluster.txt

  • Clinical data file = LUAD-TP.merged_data.txt

  • Number of patients = 459

  • Number of clustering approaches = 12

  • Number of selected clinical features = 13

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)