This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 74 arm-level events and 2 clinical features across 32 patients, no significant finding detected with Q value < 0.25.
-
No arm-level cnvs related to clinical features.
Table 1. Get Full Table Overview of the association between significant copy number variation of 74 arm-level events and 2 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, no significant finding detected.
Clinical Features |
Time to Death |
AGE | ||
nCNV (%) | nWild-Type | logrank test | t-test | |
1p gain | 13 (41%) | 19 |
0.759 (1.00) |
0.269 (1.00) |
1q gain | 16 (50%) | 16 |
0.5 (1.00) |
0.378 (1.00) |
2p gain | 11 (34%) | 21 |
0.0631 (1.00) |
0.371 (1.00) |
2q gain | 10 (31%) | 22 |
0.332 (1.00) |
0.464 (1.00) |
3p gain | 6 (19%) | 26 |
0.599 (1.00) |
0.482 (1.00) |
3q gain | 10 (31%) | 22 |
0.647 (1.00) |
0.345 (1.00) |
4p gain | 3 (9%) | 29 |
0.508 (1.00) |
0.759 (1.00) |
5p gain | 13 (41%) | 19 |
0.0666 (1.00) |
0.563 (1.00) |
5q gain | 3 (9%) | 29 |
0.574 (1.00) |
0.695 (1.00) |
6p gain | 15 (47%) | 17 |
0.175 (1.00) |
0.115 (1.00) |
6q gain | 14 (44%) | 18 |
0.0954 (1.00) |
0.0356 (1.00) |
7p gain | 9 (28%) | 23 |
0.208 (1.00) |
0.0548 (1.00) |
7q gain | 7 (22%) | 25 |
0.476 (1.00) |
0.715 (1.00) |
8p gain | 10 (31%) | 22 |
0.382 (1.00) |
0.372 (1.00) |
8q gain | 15 (47%) | 17 |
0.993 (1.00) |
0.121 (1.00) |
9p gain | 4 (12%) | 28 |
0.605 (1.00) |
0.664 (1.00) |
10p gain | 10 (31%) | 22 |
0.156 (1.00) |
0.217 (1.00) |
10q gain | 9 (28%) | 23 |
0.281 (1.00) |
0.385 (1.00) |
11p gain | 3 (9%) | 29 |
0.139 (1.00) |
0.827 (1.00) |
11q gain | 4 (12%) | 28 |
0.4 (1.00) |
0.576 (1.00) |
12p gain | 11 (34%) | 21 |
0.0256 (1.00) |
0.984 (1.00) |
12q gain | 5 (16%) | 27 |
0.564 (1.00) |
0.941 (1.00) |
13q gain | 9 (28%) | 23 |
0.52 (1.00) |
0.902 (1.00) |
16p gain | 7 (22%) | 25 |
0.0553 (1.00) |
0.0306 (1.00) |
16q gain | 4 (12%) | 28 |
0.186 (1.00) |
0.273 (1.00) |
17p gain | 5 (16%) | 27 |
0.296 (1.00) |
0.626 (1.00) |
17q gain | 10 (31%) | 22 |
0.791 (1.00) |
0.506 (1.00) |
18p gain | 9 (28%) | 23 |
0.264 (1.00) |
0.143 (1.00) |
18q gain | 8 (25%) | 24 |
0.555 (1.00) |
0.11 (1.00) |
19p gain | 12 (38%) | 20 |
0.265 (1.00) |
0.826 (1.00) |
19q gain | 16 (50%) | 16 |
0.373 (1.00) |
0.639 (1.00) |
20p gain | 23 (72%) | 9 |
0.976 (1.00) |
0.235 (1.00) |
20q gain | 26 (81%) | 6 |
0.643 (1.00) |
0.211 (1.00) |
21q gain | 10 (31%) | 22 |
0.944 (1.00) |
0.186 (1.00) |
22q gain | 4 (12%) | 28 |
0.236 (1.00) |
0.0308 (1.00) |
xq gain | 9 (28%) | 23 |
0.581 (1.00) |
0.712 (1.00) |
1p loss | 5 (16%) | 27 |
0.544 (1.00) |
0.414 (1.00) |
1q loss | 5 (16%) | 27 |
0.544 (1.00) |
0.414 (1.00) |
3p loss | 11 (34%) | 21 |
0.234 (1.00) |
0.712 (1.00) |
3q loss | 9 (28%) | 23 |
0.175 (1.00) |
0.708 (1.00) |
4p loss | 20 (62%) | 12 |
0.195 (1.00) |
0.496 (1.00) |
4q loss | 22 (69%) | 10 |
0.114 (1.00) |
0.992 (1.00) |
5p loss | 6 (19%) | 26 |
0.12 (1.00) |
0.325 (1.00) |
5q loss | 9 (28%) | 23 |
0.967 (1.00) |
0.153 (1.00) |
6p loss | 3 (9%) | 29 |
0.417 (1.00) |
0.904 (1.00) |
6q loss | 4 (12%) | 28 |
0.0264 (1.00) |
0.483 (1.00) |
7p loss | 6 (19%) | 26 |
0.543 (1.00) |
0.311 (1.00) |
7q loss | 7 (22%) | 25 |
0.525 (1.00) |
0.176 (1.00) |
8p loss | 12 (38%) | 20 |
0.787 (1.00) |
0.432 (1.00) |
8q loss | 5 (16%) | 27 |
0.232 (1.00) |
0.139 (1.00) |
9p loss | 16 (50%) | 16 |
0.838 (1.00) |
0.208 (1.00) |
9q loss | 19 (59%) | 13 |
0.82 (1.00) |
0.177 (1.00) |
10p loss | 14 (44%) | 18 |
0.212 (1.00) |
0.0489 (1.00) |
10q loss | 11 (34%) | 21 |
0.568 (1.00) |
0.231 (1.00) |
11p loss | 16 (50%) | 16 |
0.00833 (1.00) |
0.527 (1.00) |
11q loss | 15 (47%) | 17 |
0.533 (1.00) |
0.608 (1.00) |
12p loss | 10 (31%) | 22 |
0.738 (1.00) |
0.8 (1.00) |
12q loss | 9 (28%) | 23 |
0.375 (1.00) |
0.437 (1.00) |
13q loss | 14 (44%) | 18 |
0.954 (1.00) |
0.432 (1.00) |
14q loss | 18 (56%) | 14 |
0.126 (1.00) |
0.474 (1.00) |
15q loss | 18 (56%) | 14 |
0.371 (1.00) |
0.462 (1.00) |
16p loss | 18 (56%) | 14 |
0.364 (1.00) |
0.542 (1.00) |
16q loss | 22 (69%) | 10 |
0.998 (1.00) |
0.804 (1.00) |
17p loss | 19 (59%) | 13 |
0.208 (1.00) |
0.0609 (1.00) |
17q loss | 9 (28%) | 23 |
0.103 (1.00) |
0.00191 (0.283) |
18p loss | 8 (25%) | 24 |
0.613 (1.00) |
0.82 (1.00) |
18q loss | 8 (25%) | 24 |
0.957 (1.00) |
0.811 (1.00) |
19p loss | 11 (34%) | 21 |
0.848 (1.00) |
0.948 (1.00) |
19q loss | 9 (28%) | 23 |
0.438 (1.00) |
0.775 (1.00) |
20p loss | 4 (12%) | 28 |
0.843 (1.00) |
0.816 (1.00) |
20q loss | 3 (9%) | 29 |
0.525 (1.00) |
0.563 (1.00) |
21q loss | 8 (25%) | 24 |
0.528 (1.00) |
0.344 (1.00) |
22q loss | 21 (66%) | 11 |
0.19 (1.00) |
0.708 (1.00) |
xq loss | 12 (38%) | 20 |
0.145 (1.00) |
0.987 (1.00) |
-
Copy number data file = transformed.cor.cli.txt
-
Clinical data file = UCS-TP.merged_data.txt
-
Number of patients = 32
-
Number of significantly arm-level cnvs = 74
-
Number of selected clinical features = 2
-
Exclude regions that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.