This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 8 different clustering approaches and 11 clinical features across 176 patients, 9 significant findings detected with P value < 0.05 and Q value < 0.25.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE' and 'RACE'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'GENDER'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'AGE', 'GENDER', and 'RACE'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'AGE'.
-
5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'AGE'.
-
5 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'AGE'.
Table 1. Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 11 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 9 significant findings detected.
Clinical Features |
Statistical Tests |
Copy Number Ratio CNMF subtypes |
METHLYATION CNMF |
RNAseq CNMF subtypes |
RNAseq cHierClus subtypes |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRseq Mature CNMF subtypes |
MIRseq Mature cHierClus subtypes |
Time to Death | logrank test |
0.0797 (1.00) |
0.499 (1.00) |
0.0081 (0.624) |
0.75 (1.00) |
0.498 (1.00) |
0.0675 (1.00) |
0.135 (1.00) |
0.0828 (1.00) |
AGE | Kruskal-Wallis (anova) |
0.636 (1.00) |
0.000479 (0.0388) |
0.0103 (0.782) |
0.000113 (0.00976) |
0.0125 (0.928) |
4.19e-05 (0.00369) |
0.000652 (0.0522) |
6.14e-05 (0.00534) |
NEOPLASM DISEASESTAGE | Fisher's exact test |
0.156 (1.00) |
0.374 (1.00) |
0.0568 (1.00) |
0.111 (1.00) |
0.231 (1.00) |
0.851 (1.00) |
0.228 (1.00) |
0.923 (1.00) |
PATHOLOGY T STAGE | Fisher's exact test |
0.202 (1.00) |
0.561 (1.00) |
0.111 (1.00) |
0.00572 (0.446) |
0.315 (1.00) |
0.826 (1.00) |
0.445 (1.00) |
0.867 (1.00) |
PATHOLOGY N STAGE | Fisher's exact test |
1 (1.00) |
0.637 (1.00) |
1 (1.00) |
0.581 (1.00) |
1 (1.00) |
0.532 (1.00) |
0.519 (1.00) |
0.91 (1.00) |
PATHOLOGY M STAGE | Fisher's exact test |
0.929 (1.00) |
0.352 (1.00) |
0.417 (1.00) |
0.336 (1.00) |
0.278 (1.00) |
0.292 (1.00) |
0.421 (1.00) |
0.0312 (1.00) |
GENDER | Fisher's exact test |
0.0138 (1.00) |
0.136 (1.00) |
0.00024 (0.0204) |
0.00035 (0.0287) |
0.756 (1.00) |
0.0854 (1.00) |
0.0387 (1.00) |
0.0805 (1.00) |
HISTOLOGICAL TYPE | Fisher's exact test |
0.365 (1.00) |
0.58 (1.00) |
0.161 (1.00) |
0.786 (1.00) |
0.425 (1.00) |
0.975 (1.00) |
0.0232 (1.00) |
0.696 (1.00) |
COMPLETENESS OF RESECTION | Fisher's exact test |
0.694 (1.00) |
0.938 (1.00) |
0.407 (1.00) |
0.487 (1.00) |
0.863 (1.00) |
0.269 (1.00) |
0.141 (1.00) |
0.452 (1.00) |
RACE | Fisher's exact test |
0.133 (1.00) |
0.00026 (0.0218) |
0.0425 (1.00) |
0.00031 (0.0257) |
0.787 (1.00) |
0.00409 (0.323) |
0.0116 (0.868) |
0.0197 (1.00) |
ETHNICITY | Fisher's exact test |
1 (1.00) |
0.101 (1.00) |
0.734 (1.00) |
0.415 (1.00) |
0.269 (1.00) |
0.629 (1.00) |
0.248 (1.00) |
0.388 (1.00) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 45 | 61 | 54 |
P value = 0.0797 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 157 | 66 | 0.0 - 113.0 (13.9) |
subtype1 | 44 | 21 | 0.1 - 101.0 (13.1) |
subtype2 | 61 | 21 | 0.1 - 107.1 (19.2) |
subtype3 | 52 | 24 | 0.0 - 113.0 (12.6) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.636 (Kruskal-Wallis (anova)), Q value = 1
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 158 | 61.7 (13.6) |
subtype1 | 45 | 63.2 (13.0) |
subtype2 | 59 | 60.9 (14.3) |
subtype3 | 54 | 61.4 (13.5) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.156 (Fisher's exact test), Q value = 1
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 65 | 37 | 2 | 31 | 5 | 5 | 1 | 1 | 2 |
subtype1 | 22 | 9 | 0 | 8 | 1 | 0 | 1 | 1 | 0 |
subtype2 | 27 | 10 | 0 | 13 | 3 | 4 | 0 | 0 | 1 |
subtype3 | 16 | 18 | 2 | 10 | 1 | 1 | 0 | 0 | 1 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.202 (Fisher's exact test), Q value = 1
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 68 | 41 | 42 | 8 |
subtype1 | 23 | 11 | 10 | 0 |
subtype2 | 28 | 12 | 17 | 4 |
subtype3 | 17 | 18 | 15 | 4 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 102 | 3 |
subtype1 | 26 | 1 |
subtype2 | 47 | 1 |
subtype3 | 29 | 1 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.929 (Fisher's exact test), Q value = 1
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 120 | 3 | 37 |
subtype1 | 32 | 1 | 12 |
subtype2 | 48 | 1 | 12 |
subtype3 | 40 | 1 | 13 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.0138 (Fisher's exact test), Q value = 1
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 60 | 100 |
subtype1 | 9 | 36 |
subtype2 | 28 | 33 |
subtype3 | 23 | 31 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.365 (Fisher's exact test), Q value = 1
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 156 | 2 |
subtype1 | 0 | 44 | 1 |
subtype2 | 2 | 59 | 0 |
subtype3 | 0 | 53 | 1 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.694 (Fisher's exact test), Q value = 1
Table S10. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 131 | 11 | 1 | 12 |
subtype1 | 37 | 4 | 1 | 2 |
subtype2 | 50 | 3 | 0 | 4 |
subtype3 | 44 | 4 | 0 | 6 |
Figure S9. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.133 (Fisher's exact test), Q value = 1
Table S11. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 36 | 8 | 109 |
subtype1 | 1 | 7 | 5 | 27 |
subtype2 | 0 | 13 | 2 | 45 |
subtype3 | 0 | 16 | 1 | 37 |
Figure S10. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 1 (Fisher's exact test), Q value = 1
Table S12. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 3 | 143 |
subtype1 | 1 | 38 |
subtype2 | 1 | 56 |
subtype3 | 1 | 49 |
Figure S11. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

Table S13. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 76 | 50 | 41 |
P value = 0.499 (logrank test), Q value = 1
Table S14. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 163 | 68 | 0.0 - 113.0 (13.8) |
subtype1 | 74 | 32 | 0.0 - 102.7 (14.2) |
subtype2 | 49 | 20 | 0.1 - 113.0 (12.9) |
subtype3 | 40 | 16 | 0.1 - 107.1 (14.3) |
Figure S12. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.000479 (Kruskal-Wallis (anova)), Q value = 0.039
Table S15. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 165 | 61.6 (13.8) |
subtype1 | 74 | 66.5 (9.5) |
subtype2 | 50 | 57.1 (15.4) |
subtype3 | 41 | 58.2 (15.6) |
Figure S13. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.374 (Fisher's exact test), Q value = 1
Table S16. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 39 | 2 | 36 | 5 | 6 | 1 | 1 | 2 |
subtype1 | 31 | 20 | 1 | 14 | 1 | 1 | 0 | 1 | 1 |
subtype2 | 17 | 13 | 1 | 11 | 1 | 1 | 1 | 0 | 1 |
subtype3 | 16 | 6 | 0 | 11 | 3 | 4 | 0 | 0 | 0 |
Figure S14. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.561 (Fisher's exact test), Q value = 1
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 67 | 43 | 47 | 9 |
subtype1 | 33 | 22 | 17 | 3 |
subtype2 | 17 | 14 | 16 | 3 |
subtype3 | 17 | 7 | 14 | 3 |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.637 (Fisher's exact test), Q value = 1
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 106 | 3 |
subtype1 | 40 | 2 |
subtype2 | 34 | 0 |
subtype3 | 32 | 1 |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.352 (Fisher's exact test), Q value = 1
Table S19. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 127 | 3 | 37 |
subtype1 | 54 | 1 | 21 |
subtype2 | 40 | 2 | 8 |
subtype3 | 33 | 0 | 8 |
Figure S17. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.136 (Fisher's exact test), Q value = 1
Table S20. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 62 | 105 |
subtype1 | 23 | 53 |
subtype2 | 24 | 26 |
subtype3 | 15 | 26 |
Figure S18. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.58 (Fisher's exact test), Q value = 1
Table S21. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 1 | 163 | 3 |
subtype1 | 0 | 75 | 1 |
subtype2 | 0 | 49 | 1 |
subtype3 | 1 | 39 | 1 |
Figure S19. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.938 (Fisher's exact test), Q value = 1
Table S22. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 138 | 11 | 1 | 12 |
subtype1 | 64 | 5 | 0 | 5 |
subtype2 | 41 | 4 | 1 | 4 |
subtype3 | 33 | 2 | 0 | 3 |
Figure S20. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.00026 (Fisher's exact test), Q value = 0.022
Table S23. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 39 | 8 | 113 |
subtype1 | 1 | 9 | 4 | 59 |
subtype2 | 0 | 22 | 0 | 26 |
subtype3 | 0 | 8 | 4 | 28 |
Figure S21. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RACE'

P value = 0.101 (Fisher's exact test), Q value = 1
Table S24. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 149 |
subtype1 | 0 | 65 |
subtype2 | 3 | 46 |
subtype3 | 2 | 38 |
Figure S22. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'ETHNICITY'

Table S25. Description of clustering approach #3: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 34 | 25 | 45 | 28 | 30 |
P value = 0.0081 (logrank test), Q value = 0.62
Table S26. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 159 | 66 | 0.0 - 113.0 (13.8) |
subtype1 | 34 | 13 | 0.0 - 107.1 (11.4) |
subtype2 | 24 | 14 | 0.1 - 45.1 (8.4) |
subtype3 | 44 | 18 | 0.1 - 102.7 (18.8) |
subtype4 | 28 | 12 | 0.1 - 113.0 (14.7) |
subtype5 | 29 | 9 | 0.2 - 93.7 (13.4) |
Figure S23. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0103 (Kruskal-Wallis (anova)), Q value = 0.78
Table S27. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 160 | 61.6 (13.5) |
subtype1 | 34 | 57.2 (14.9) |
subtype2 | 24 | 63.1 (12.0) |
subtype3 | 44 | 66.3 (10.6) |
subtype4 | 28 | 56.4 (15.1) |
subtype5 | 30 | 63.2 (13.1) |
Figure S24. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0568 (Fisher's exact test), Q value = 1
Table S28. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 37 | 2 | 34 | 4 | 6 | 1 | 1 | 2 |
subtype1 | 12 | 7 | 0 | 6 | 0 | 4 | 1 | 0 | 0 |
subtype2 | 5 | 7 | 0 | 8 | 1 | 1 | 0 | 0 | 0 |
subtype3 | 25 | 5 | 1 | 9 | 0 | 0 | 0 | 1 | 1 |
subtype4 | 8 | 10 | 1 | 5 | 2 | 1 | 0 | 0 | 1 |
subtype5 | 14 | 8 | 0 | 6 | 1 | 0 | 0 | 0 | 0 |
Figure S25. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.111 (Fisher's exact test), Q value = 1
Table S29. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 67 | 41 | 44 | 9 |
subtype1 | 13 | 9 | 9 | 3 |
subtype2 | 5 | 9 | 9 | 2 |
subtype3 | 26 | 5 | 11 | 3 |
subtype4 | 9 | 10 | 8 | 1 |
subtype5 | 14 | 8 | 7 | 0 |
Figure S26. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S30. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 103 | 3 |
subtype1 | 20 | 1 |
subtype2 | 15 | 0 |
subtype3 | 30 | 1 |
subtype4 | 19 | 1 |
subtype5 | 19 | 0 |
Figure S27. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.417 (Fisher's exact test), Q value = 1
Table S31. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 122 | 3 | 37 |
subtype1 | 24 | 1 | 9 |
subtype2 | 18 | 0 | 7 |
subtype3 | 33 | 1 | 11 |
subtype4 | 25 | 1 | 2 |
subtype5 | 22 | 0 | 8 |
Figure S28. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.00024 (Fisher's exact test), Q value = 0.02
Table S32. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 62 | 100 |
subtype1 | 17 | 17 |
subtype2 | 9 | 16 |
subtype3 | 15 | 30 |
subtype4 | 18 | 10 |
subtype5 | 3 | 27 |
Figure S29. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.161 (Fisher's exact test), Q value = 1
Table S33. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 158 | 2 |
subtype1 | 2 | 31 | 1 |
subtype2 | 0 | 25 | 0 |
subtype3 | 0 | 45 | 0 |
subtype4 | 0 | 27 | 1 |
subtype5 | 0 | 30 | 0 |
Figure S30. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.407 (Fisher's exact test), Q value = 1
Table S34. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 133 | 11 | 1 | 12 |
subtype1 | 26 | 3 | 1 | 2 |
subtype2 | 17 | 4 | 0 | 3 |
subtype3 | 38 | 3 | 0 | 4 |
subtype4 | 25 | 1 | 0 | 2 |
subtype5 | 27 | 0 | 0 | 1 |
Figure S31. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.0425 (Fisher's exact test), Q value = 1
Table S35. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 38 | 8 | 109 |
subtype1 | 0 | 10 | 2 | 20 |
subtype2 | 0 | 8 | 1 | 14 |
subtype3 | 0 | 5 | 2 | 37 |
subtype4 | 0 | 11 | 0 | 16 |
subtype5 | 1 | 4 | 3 | 22 |
Figure S32. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.734 (Fisher's exact test), Q value = 1
Table S36. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 4 | 144 |
subtype1 | 1 | 31 |
subtype2 | 1 | 20 |
subtype3 | 2 | 40 |
subtype4 | 0 | 26 |
subtype5 | 0 | 27 |
Figure S33. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

Table S37. Description of clustering approach #4: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 65 | 66 | 31 |
P value = 0.75 (logrank test), Q value = 1
Table S38. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 159 | 66 | 0.0 - 113.0 (13.8) |
subtype1 | 64 | 28 | 0.1 - 113.0 (13.6) |
subtype2 | 65 | 29 | 0.0 - 102.7 (13.9) |
subtype3 | 30 | 9 | 0.2 - 93.7 (13.5) |
Figure S34. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000113 (Kruskal-Wallis (anova)), Q value = 0.0098
Table S39. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 160 | 61.6 (13.5) |
subtype1 | 65 | 56.0 (15.2) |
subtype2 | 64 | 66.3 (9.9) |
subtype3 | 31 | 63.7 (12.4) |
Figure S35. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.111 (Fisher's exact test), Q value = 1
Table S40. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 37 | 2 | 34 | 4 | 6 | 1 | 1 | 2 |
subtype1 | 16 | 17 | 1 | 19 | 3 | 3 | 1 | 0 | 1 |
subtype2 | 34 | 11 | 1 | 10 | 0 | 2 | 0 | 1 | 1 |
subtype3 | 14 | 9 | 0 | 5 | 1 | 1 | 0 | 0 | 0 |
Figure S36. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.00572 (Fisher's exact test), Q value = 0.45
Table S41. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 67 | 41 | 44 | 9 |
subtype1 | 16 | 19 | 26 | 4 |
subtype2 | 36 | 13 | 12 | 5 |
subtype3 | 15 | 9 | 6 | 0 |
Figure S37. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.581 (Fisher's exact test), Q value = 1
Table S42. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 103 | 3 |
subtype1 | 45 | 1 |
subtype2 | 40 | 1 |
subtype3 | 18 | 1 |
Figure S38. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.336 (Fisher's exact test), Q value = 1
Table S43. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 122 | 3 | 37 |
subtype1 | 53 | 2 | 10 |
subtype2 | 46 | 1 | 19 |
subtype3 | 23 | 0 | 8 |
Figure S39. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.00035 (Fisher's exact test), Q value = 0.029
Table S44. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 62 | 100 |
subtype1 | 35 | 30 |
subtype2 | 23 | 43 |
subtype3 | 4 | 27 |
Figure S40. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.786 (Fisher's exact test), Q value = 1
Table S45. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 158 | 2 |
subtype1 | 2 | 62 | 1 |
subtype2 | 0 | 65 | 1 |
subtype3 | 0 | 31 | 0 |
Figure S41. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.487 (Fisher's exact test), Q value = 1
Table S46. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 133 | 11 | 1 | 12 |
subtype1 | 52 | 5 | 1 | 6 |
subtype2 | 53 | 6 | 0 | 5 |
subtype3 | 28 | 0 | 0 | 1 |
Figure S42. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.00031 (Fisher's exact test), Q value = 0.026
Table S47. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 38 | 8 | 109 |
subtype1 | 0 | 26 | 1 | 36 |
subtype2 | 0 | 7 | 4 | 51 |
subtype3 | 1 | 5 | 3 | 22 |
Figure S43. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.415 (Fisher's exact test), Q value = 1
Table S48. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 4 | 144 |
subtype1 | 1 | 60 |
subtype2 | 3 | 56 |
subtype3 | 0 | 28 |
Figure S44. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

Table S49. Description of clustering approach #5: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 37 | 70 | 64 |
P value = 0.498 (logrank test), Q value = 1
Table S50. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 167 | 66 | 0.0 - 113.0 (13.6) |
subtype1 | 35 | 18 | 0.0 - 102.7 (13.6) |
subtype2 | 69 | 23 | 0.2 - 113.0 (12.9) |
subtype3 | 63 | 25 | 0.1 - 101.0 (14.2) |
Figure S45. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.0125 (Kruskal-Wallis (anova)), Q value = 0.93
Table S51. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 169 | 61.5 (13.7) |
subtype1 | 35 | 63.9 (13.5) |
subtype2 | 70 | 63.2 (14.0) |
subtype3 | 64 | 58.2 (13.1) |
Figure S46. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.231 (Fisher's exact test), Q value = 1
Table S52. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 39 | 2 | 38 | 5 | 7 | 1 | 1 | 2 |
subtype1 | 15 | 5 | 1 | 7 | 3 | 1 | 0 | 1 | 1 |
subtype2 | 25 | 22 | 0 | 15 | 1 | 2 | 0 | 0 | 0 |
subtype3 | 24 | 12 | 1 | 16 | 1 | 4 | 1 | 0 | 1 |
Figure S47. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.315 (Fisher's exact test), Q value = 1
Table S53. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 68 | 43 | 49 | 10 |
subtype1 | 16 | 6 | 12 | 3 |
subtype2 | 26 | 24 | 17 | 2 |
subtype3 | 26 | 13 | 20 | 5 |
Figure S48. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S54. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 108 | 3 |
subtype1 | 25 | 1 |
subtype2 | 41 | 1 |
subtype3 | 42 | 1 |
Figure S49. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.278 (Fisher's exact test), Q value = 1
Table S55. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 128 | 3 | 40 |
subtype1 | 24 | 1 | 12 |
subtype2 | 55 | 0 | 15 |
subtype3 | 49 | 2 | 13 |
Figure S50. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.756 (Fisher's exact test), Q value = 1
Table S56. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 64 | 107 |
subtype1 | 12 | 25 |
subtype2 | 28 | 42 |
subtype3 | 24 | 40 |
Figure S51. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.425 (Fisher's exact test), Q value = 1
Table S57. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 166 | 3 |
subtype1 | 0 | 37 | 0 |
subtype2 | 0 | 69 | 1 |
subtype3 | 2 | 60 | 2 |
Figure S52. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.863 (Fisher's exact test), Q value = 1
Table S58. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 141 | 11 | 1 | 13 |
subtype1 | 27 | 3 | 0 | 3 |
subtype2 | 61 | 4 | 0 | 4 |
subtype3 | 53 | 4 | 1 | 6 |
Figure S53. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.787 (Fisher's exact test), Q value = 1
Table S59. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 41 | 8 | 115 |
subtype1 | 0 | 8 | 2 | 25 |
subtype2 | 1 | 15 | 2 | 50 |
subtype3 | 0 | 18 | 4 | 40 |
Figure S54. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RACE'

P value = 0.269 (Fisher's exact test), Q value = 1
Table S60. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 6 | 151 |
subtype1 | 0 | 34 |
subtype2 | 2 | 61 |
subtype3 | 4 | 56 |
Figure S55. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #11: 'ETHNICITY'

Table S61. Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 19 | 45 | 67 | 18 | 22 |
P value = 0.0675 (logrank test), Q value = 1
Table S62. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 167 | 66 | 0.0 - 113.0 (13.6) |
subtype1 | 18 | 11 | 0.0 - 83.6 (6.5) |
subtype2 | 44 | 16 | 0.1 - 102.7 (14.2) |
subtype3 | 67 | 29 | 0.1 - 113.0 (14.2) |
subtype4 | 16 | 6 | 0.1 - 60.4 (13.5) |
subtype5 | 22 | 4 | 0.3 - 93.7 (12.9) |
Figure S56. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 4.19e-05 (Kruskal-Wallis (anova)), Q value = 0.0037
Table S63. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 169 | 61.5 (13.7) |
subtype1 | 19 | 61.0 (14.1) |
subtype2 | 43 | 68.3 (9.0) |
subtype3 | 67 | 55.6 (14.8) |
subtype4 | 18 | 62.8 (14.0) |
subtype5 | 22 | 65.1 (10.0) |
Figure S57. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

P value = 0.851 (Fisher's exact test), Q value = 1
Table S64. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 39 | 2 | 38 | 5 | 7 | 1 | 1 | 2 |
subtype1 | 6 | 3 | 0 | 6 | 1 | 1 | 0 | 0 | 1 |
subtype2 | 16 | 11 | 1 | 8 | 2 | 1 | 0 | 1 | 0 |
subtype3 | 26 | 15 | 1 | 15 | 1 | 3 | 1 | 0 | 1 |
subtype4 | 4 | 6 | 0 | 6 | 0 | 2 | 0 | 0 | 0 |
subtype5 | 12 | 4 | 0 | 3 | 1 | 0 | 0 | 0 | 0 |
Figure S58. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.826 (Fisher's exact test), Q value = 1
Table S65. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 68 | 43 | 49 | 10 |
subtype1 | 6 | 4 | 7 | 2 |
subtype2 | 17 | 12 | 13 | 3 |
subtype3 | 27 | 17 | 19 | 4 |
subtype4 | 5 | 6 | 6 | 1 |
subtype5 | 13 | 4 | 4 | 0 |
Figure S59. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.532 (Fisher's exact test), Q value = 1
Table S66. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 108 | 3 |
subtype1 | 13 | 0 |
subtype2 | 25 | 1 |
subtype3 | 45 | 1 |
subtype4 | 11 | 1 |
subtype5 | 14 | 0 |
Figure S60. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.292 (Fisher's exact test), Q value = 1
Table S67. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 128 | 3 | 40 |
subtype1 | 12 | 1 | 6 |
subtype2 | 32 | 0 | 13 |
subtype3 | 51 | 2 | 14 |
subtype4 | 17 | 0 | 1 |
subtype5 | 16 | 0 | 6 |
Figure S61. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.0854 (Fisher's exact test), Q value = 1
Table S68. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 64 | 107 |
subtype1 | 6 | 13 |
subtype2 | 17 | 28 |
subtype3 | 31 | 36 |
subtype4 | 7 | 11 |
subtype5 | 3 | 19 |
Figure S62. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

P value = 0.975 (Fisher's exact test), Q value = 1
Table S69. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 166 | 3 |
subtype1 | 0 | 19 | 0 |
subtype2 | 0 | 44 | 1 |
subtype3 | 2 | 63 | 2 |
subtype4 | 0 | 18 | 0 |
subtype5 | 0 | 22 | 0 |
Figure S63. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.269 (Fisher's exact test), Q value = 1
Table S70. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 141 | 11 | 1 | 13 |
subtype1 | 11 | 3 | 0 | 2 |
subtype2 | 37 | 4 | 0 | 3 |
subtype3 | 58 | 3 | 1 | 5 |
subtype4 | 14 | 1 | 0 | 3 |
subtype5 | 21 | 0 | 0 | 0 |
Figure S64. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.00409 (Fisher's exact test), Q value = 0.32
Table S71. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 41 | 8 | 115 |
subtype1 | 0 | 5 | 2 | 12 |
subtype2 | 0 | 3 | 1 | 38 |
subtype3 | 0 | 24 | 4 | 36 |
subtype4 | 0 | 6 | 0 | 12 |
subtype5 | 1 | 3 | 1 | 17 |
Figure S65. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RACE'

P value = 0.629 (Fisher's exact test), Q value = 1
Table S72. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 6 | 151 |
subtype1 | 0 | 18 |
subtype2 | 1 | 39 |
subtype3 | 4 | 60 |
subtype4 | 1 | 15 |
subtype5 | 0 | 19 |
Figure S66. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'ETHNICITY'

Table S73. Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 21 | 29 | 32 | 54 | 35 |
P value = 0.135 (logrank test), Q value = 1
Table S74. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 167 | 66 | 0.0 - 113.0 (13.6) |
subtype1 | 19 | 5 | 0.1 - 75.7 (13.4) |
subtype2 | 29 | 10 | 0.1 - 80.8 (12.7) |
subtype3 | 31 | 17 | 0.0 - 102.7 (13.8) |
subtype4 | 54 | 18 | 0.2 - 113.0 (14.2) |
subtype5 | 34 | 16 | 0.2 - 101.0 (12.6) |
Figure S67. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000652 (Kruskal-Wallis (anova)), Q value = 0.052
Table S75. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 169 | 61.5 (13.7) |
subtype1 | 21 | 55.9 (16.2) |
subtype2 | 29 | 56.4 (13.2) |
subtype3 | 30 | 66.3 (12.0) |
subtype4 | 54 | 65.6 (11.0) |
subtype5 | 35 | 58.5 (14.8) |
Figure S68. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.228 (Fisher's exact test), Q value = 1
Table S76. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 39 | 2 | 38 | 5 | 7 | 1 | 1 | 2 |
subtype1 | 4 | 7 | 1 | 6 | 1 | 2 | 0 | 0 | 0 |
subtype2 | 13 | 5 | 0 | 6 | 0 | 1 | 1 | 0 | 0 |
subtype3 | 10 | 6 | 1 | 6 | 2 | 2 | 0 | 1 | 1 |
subtype4 | 25 | 15 | 0 | 9 | 1 | 0 | 0 | 0 | 0 |
subtype5 | 12 | 6 | 0 | 11 | 1 | 2 | 0 | 0 | 1 |
Figure S69. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.445 (Fisher's exact test), Q value = 1
Table S77. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 68 | 43 | 49 | 10 |
subtype1 | 5 | 7 | 8 | 1 |
subtype2 | 14 | 5 | 8 | 2 |
subtype3 | 11 | 8 | 9 | 4 |
subtype4 | 26 | 15 | 11 | 1 |
subtype5 | 12 | 8 | 13 | 2 |
Figure S70. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.519 (Fisher's exact test), Q value = 1
Table S78. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 108 | 3 |
subtype1 | 13 | 1 |
subtype2 | 17 | 0 |
subtype3 | 22 | 1 |
subtype4 | 29 | 0 |
subtype5 | 27 | 1 |
Figure S71. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.421 (Fisher's exact test), Q value = 1
Table S79. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 128 | 3 | 40 |
subtype1 | 18 | 0 | 3 |
subtype2 | 21 | 1 | 7 |
subtype3 | 21 | 1 | 10 |
subtype4 | 39 | 0 | 15 |
subtype5 | 29 | 1 | 5 |
Figure S72. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.0387 (Fisher's exact test), Q value = 1
Table S80. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 64 | 107 |
subtype1 | 8 | 13 |
subtype2 | 6 | 23 |
subtype3 | 13 | 19 |
subtype4 | 17 | 37 |
subtype5 | 20 | 15 |
Figure S73. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0232 (Fisher's exact test), Q value = 1
Table S81. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 166 | 3 |
subtype1 | 0 | 20 | 1 |
subtype2 | 2 | 27 | 0 |
subtype3 | 0 | 32 | 0 |
subtype4 | 0 | 54 | 0 |
subtype5 | 0 | 33 | 2 |
Figure S74. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.141 (Fisher's exact test), Q value = 1
Table S82. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 141 | 11 | 1 | 13 |
subtype1 | 17 | 1 | 0 | 3 |
subtype2 | 25 | 2 | 1 | 1 |
subtype3 | 21 | 4 | 0 | 3 |
subtype4 | 50 | 2 | 0 | 1 |
subtype5 | 28 | 2 | 0 | 5 |
Figure S75. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.0116 (Fisher's exact test), Q value = 0.87
Table S83. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 41 | 8 | 115 |
subtype1 | 0 | 8 | 0 | 13 |
subtype2 | 0 | 9 | 3 | 15 |
subtype3 | 0 | 4 | 2 | 24 |
subtype4 | 1 | 6 | 3 | 42 |
subtype5 | 0 | 14 | 0 | 21 |
Figure S76. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.248 (Fisher's exact test), Q value = 1
Table S84. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 6 | 151 |
subtype1 | 0 | 20 |
subtype2 | 2 | 25 |
subtype3 | 0 | 28 |
subtype4 | 1 | 47 |
subtype5 | 3 | 31 |
Figure S77. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

Table S85. Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 18 | 38 | 30 | 63 | 22 |
P value = 0.0828 (logrank test), Q value = 1
Table S86. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 167 | 66 | 0.0 - 113.0 (13.6) |
subtype1 | 17 | 10 | 0.0 - 83.6 (8.7) |
subtype2 | 37 | 14 | 0.2 - 102.7 (21.5) |
subtype3 | 29 | 14 | 0.2 - 113.0 (11.0) |
subtype4 | 62 | 23 | 0.1 - 80.8 (13.7) |
subtype5 | 22 | 5 | 0.3 - 107.1 (12.9) |
Figure S78. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 6.14e-05 (Kruskal-Wallis (anova)), Q value = 0.0053
Table S87. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 169 | 61.5 (13.7) |
subtype1 | 18 | 62.4 (13.0) |
subtype2 | 36 | 68.8 (9.7) |
subtype3 | 30 | 60.1 (15.1) |
subtype4 | 63 | 56.3 (14.3) |
subtype5 | 22 | 65.3 (10.1) |
Figure S79. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.923 (Fisher's exact test), Q value = 1
Table S88. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 64 | 39 | 2 | 38 | 5 | 7 | 1 | 1 | 2 |
subtype1 | 6 | 3 | 0 | 5 | 1 | 1 | 0 | 0 | 1 |
subtype2 | 13 | 9 | 1 | 7 | 2 | 1 | 0 | 1 | 0 |
subtype3 | 11 | 10 | 0 | 7 | 0 | 1 | 0 | 0 | 1 |
subtype4 | 23 | 12 | 1 | 16 | 1 | 4 | 1 | 0 | 0 |
subtype5 | 11 | 5 | 0 | 3 | 1 | 0 | 0 | 0 | 0 |
Figure S80. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.867 (Fisher's exact test), Q value = 1
Table S89. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 68 | 43 | 49 | 10 |
subtype1 | 6 | 4 | 6 | 2 |
subtype2 | 14 | 10 | 11 | 3 |
subtype3 | 11 | 10 | 7 | 2 |
subtype4 | 25 | 14 | 21 | 3 |
subtype5 | 12 | 5 | 4 | 0 |
Figure S81. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.91 (Fisher's exact test), Q value = 1
Table S90. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 108 | 3 |
subtype1 | 12 | 0 |
subtype2 | 22 | 1 |
subtype3 | 21 | 0 |
subtype4 | 39 | 2 |
subtype5 | 14 | 0 |
Figure S82. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.0312 (Fisher's exact test), Q value = 1
Table S91. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 128 | 3 | 40 |
subtype1 | 11 | 1 | 6 |
subtype2 | 26 | 0 | 12 |
subtype3 | 28 | 1 | 1 |
subtype4 | 47 | 1 | 15 |
subtype5 | 16 | 0 | 6 |
Figure S83. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.0805 (Fisher's exact test), Q value = 1
Table S92. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 64 | 107 |
subtype1 | 6 | 12 |
subtype2 | 14 | 24 |
subtype3 | 17 | 13 |
subtype4 | 23 | 40 |
subtype5 | 4 | 18 |
Figure S84. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.696 (Fisher's exact test), Q value = 1
Table S93. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 166 | 3 |
subtype1 | 0 | 18 | 0 |
subtype2 | 0 | 38 | 0 |
subtype3 | 0 | 30 | 0 |
subtype4 | 2 | 58 | 3 |
subtype5 | 0 | 22 | 0 |
Figure S85. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

P value = 0.452 (Fisher's exact test), Q value = 1
Table S94. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 141 | 11 | 1 | 13 |
subtype1 | 11 | 3 | 0 | 1 |
subtype2 | 31 | 3 | 0 | 3 |
subtype3 | 24 | 2 | 0 | 4 |
subtype4 | 54 | 3 | 1 | 5 |
subtype5 | 21 | 0 | 0 | 0 |
Figure S86. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'COMPLETENESS.OF.RESECTION'

P value = 0.0197 (Fisher's exact test), Q value = 1
Table S95. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 41 | 8 | 115 |
subtype1 | 0 | 4 | 2 | 12 |
subtype2 | 0 | 3 | 1 | 31 |
subtype3 | 0 | 12 | 0 | 17 |
subtype4 | 0 | 19 | 4 | 38 |
subtype5 | 1 | 3 | 1 | 17 |
Figure S87. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RACE'

P value = 0.388 (Fisher's exact test), Q value = 1
Table S96. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 6 | 151 |
subtype1 | 0 | 17 |
subtype2 | 0 | 34 |
subtype3 | 2 | 26 |
subtype4 | 4 | 55 |
subtype5 | 0 | 19 |
Figure S88. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

-
Cluster data file = LIHC-TP.mergedcluster.txt
-
Clinical data file = LIHC-TP.merged_data.txt
-
Number of patients = 176
-
Number of clustering approaches = 8
-
Number of selected clinical features = 11
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.