Correlation between gene mutation status and selected clinical features
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 25 genes and 5 clinical features across 195 patients, 6 significant findings detected with Q value < 0.25.

  • DNMT3A mutation correlated to 'Time to Death'.

  • IDH2 mutation correlated to 'YEARS_TO_BIRTH'.

  • U2AF1 mutation correlated to 'YEARS_TO_BIRTH'.

  • TP53 mutation correlated to 'Time to Death' and 'YEARS_TO_BIRTH'.

  • CEBPA mutation correlated to 'YEARS_TO_BIRTH'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 25 genes and 5 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 6 significant findings detected.

Clinical
Features
Time
to
Death
YEARS
TO
BIRTH
GENDER RACE ETHNICITY
nMutated (%) nWild-Type logrank test Wilcoxon-test Fisher's exact test Fisher's exact test Fisher's exact test
TP53 15 (8%) 180 6.22e-06
(0.000778)
0.00204
(0.0638)
0.177
(0.761)
1
(1.00)
1
(1.00)
DNMT3A 49 (25%) 146 0.00185
(0.0638)
0.266
(0.844)
0.188
(0.785)
0.389
(0.952)
0.161
(0.75)
IDH2 20 (10%) 175 0.724
(1.00)
0.0016
(0.0638)
0.815
(1.00)
0.355
(0.888)
0.282
(0.844)
U2AF1 8 (4%) 187 0.496
(1.00)
0.00419
(0.105)
0.0695
(0.595)
1
(1.00)
1
(1.00)
CEBPA 13 (7%) 182 0.737
(1.00)
0.0116
(0.242)
0.58
(1.00)
1
(1.00)
1
(1.00)
FLT3 53 (27%) 142 0.135
(0.75)
0.328
(0.844)
0.52
(1.00)
0.0713
(0.595)
0.562
(1.00)
NPM1 52 (27%) 143 0.044
(0.527)
0.774
(1.00)
0.145
(0.75)
0.231
(0.827)
0.564
(1.00)
IDH1 18 (9%) 177 0.609
(1.00)
0.322
(0.844)
0.466
(1.00)
0.7
(1.00)
1
(1.00)
RUNX1 18 (9%) 177 0.0714
(0.595)
0.0168
(0.288)
0.622
(1.00)
1
(1.00)
1
(1.00)
TET2 17 (9%) 178 0.805
(1.00)
0.128
(0.75)
0.319
(0.844)
1
(1.00)
1
(1.00)
NRAS 15 (8%) 180 0.637
(1.00)
0.257
(0.844)
1
(1.00)
0.674
(1.00)
1
(1.00)
WT1 12 (6%) 183 0.55
(1.00)
0.168
(0.75)
0.774
(1.00)
1
(1.00)
0.163
(0.75)
PHF6 6 (3%) 189 0.998
(1.00)
0.158
(0.75)
0.0309
(0.429)
1
(1.00)
1
(1.00)
KRAS 8 (4%) 187 0.319
(0.844)
0.101
(0.745)
0.149
(0.75)
1
(1.00)
0.12
(0.75)
SMC3 7 (4%) 188 0.129
(0.75)
0.782
(1.00)
0.707
(1.00)
1
(1.00)
1
(1.00)
KIT 8 (4%) 187 0.468
(1.00)
0.68
(1.00)
0.477
(1.00)
1
(1.00)
1
(1.00)
RAD21 5 (3%) 190 0.869
(1.00)
0.231
(0.827)
1
(1.00)
0.0184
(0.288)
1
(1.00)
EZH2 3 (2%) 192 0.214
(0.825)
1
(1.00)
1
(1.00)
1
(1.00)
STAG2 6 (3%) 189 0.331
(0.844)
0.214
(0.825)
0.42
(1.00)
0.128
(0.75)
1
(1.00)
PTPN11 9 (5%) 186 0.582
(1.00)
0.294
(0.844)
1
(1.00)
0.571
(1.00)
1
(1.00)
ASXL1 5 (3%) 190 0.281
(0.844)
0.0653
(0.595)
0.666
(1.00)
1
(1.00)
0.0765
(0.598)
SUZ12 3 (2%) 192 0.897
(1.00)
0.947
(1.00)
0.249
(0.844)
1
(1.00)
PHACTR1 3 (2%) 192 0.316
(0.844)
0.963
(1.00)
0.599
(1.00)
1
(1.00)
0.0464
(0.527)
SMC1A 6 (3%) 189 0.321
(0.844)
0.265
(0.844)
0.218
(0.825)
0.43
(1.00)
1
(1.00)
KDM6A 3 (2%) 192 0.793
(1.00)
0.893
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
'DNMT3A MUTATION STATUS' versus 'Time to Death'

P value = 0.00185 (logrank test), Q value = 0.064

Table S1.  Gene #3: 'DNMT3A MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 181 117 0.0 - 94.1 (12.0)
DNMT3A MUTATED 45 35 0.0 - 34.0 (9.0)
DNMT3A WILD-TYPE 136 82 0.0 - 94.1 (12.5)

Figure S1.  Get High-res Image Gene #3: 'DNMT3A MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

'IDH2 MUTATION STATUS' versus 'YEARS_TO_BIRTH'

P value = 0.0016 (Wilcoxon-test), Q value = 0.064

Table S2.  Gene #4: 'IDH2 MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 195 54.9 (16.1)
IDH2 MUTATED 20 64.9 (8.0)
IDH2 WILD-TYPE 175 53.8 (16.5)

Figure S2.  Get High-res Image Gene #4: 'IDH2 MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'U2AF1 MUTATION STATUS' versus 'YEARS_TO_BIRTH'

P value = 0.00419 (Wilcoxon-test), Q value = 0.1

Table S3.  Gene #10: 'U2AF1 MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 195 54.9 (16.1)
U2AF1 MUTATED 8 69.9 (9.0)
U2AF1 WILD-TYPE 187 54.3 (16.1)

Figure S3.  Get High-res Image Gene #10: 'U2AF1 MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'TP53 MUTATION STATUS' versus 'Time to Death'

P value = 6.22e-06 (logrank test), Q value = 0.00078

Table S4.  Gene #11: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 181 117 0.0 - 94.1 (12.0)
TP53 MUTATED 14 14 0.0 - 17.0 (6.0)
TP53 WILD-TYPE 167 103 0.0 - 94.1 (12.0)

Figure S4.  Get High-res Image Gene #11: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

'TP53 MUTATION STATUS' versus 'YEARS_TO_BIRTH'

P value = 0.00204 (Wilcoxon-test), Q value = 0.064

Table S5.  Gene #11: 'TP53 MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 195 54.9 (16.1)
TP53 MUTATED 15 66.9 (10.7)
TP53 WILD-TYPE 180 53.9 (16.1)

Figure S5.  Get High-res Image Gene #11: 'TP53 MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'CEBPA MUTATION STATUS' versus 'YEARS_TO_BIRTH'

P value = 0.0116 (Wilcoxon-test), Q value = 0.24

Table S6.  Gene #12: 'CEBPA MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 195 54.9 (16.1)
CEBPA MUTATED 13 42.7 (17.6)
CEBPA WILD-TYPE 182 55.8 (15.7)

Figure S6.  Get High-res Image Gene #12: 'CEBPA MUTATION STATUS' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

Methods & Data
Input
  • Mutation data file = sample_sig_gene_table.txt from Mutsig_2CV pipeline

  • Processed Mutation data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_Correlate_Genomic_Events_Preprocess/LAML-TB/15166008/transformed.cor.cli.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/LAML-TB/15082450/LAML-TB.merged_data.txt

  • Number of patients = 195

  • Number of significantly mutated genes = 25

  • Number of selected clinical features = 5

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[3] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)