This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 12 different clustering approaches and 8 clinical features across 475 patients, 43 significant findings detected with P value < 0.05 and Q value < 0.25.
-
CNMF clustering analysis on array-based mRNA expression data identified 3 subtypes that correlate to 'HISTOLOGICAL_TYPE'.
-
Consensus hierarchical clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death' and 'HISTOLOGICAL_TYPE'.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'KARNOFSKY_PERFORMANCE_SCORE', 'HISTOLOGICAL_TYPE', and 'RACE'.
-
4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'KARNOFSKY_PERFORMANCE_SCORE', 'HISTOLOGICAL_TYPE', 'RADIATIONS_RADIATION_REGIMENINDICATION', and 'RACE'.
-
CNMF clustering analysis on RPPA data identified 4 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'GENDER', and 'HISTOLOGICAL_TYPE'.
-
Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'YEARS_TO_BIRTH'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'KARNOFSKY_PERFORMANCE_SCORE', 'HISTOLOGICAL_TYPE', and 'RADIATIONS_RADIATION_REGIMENINDICATION'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'KARNOFSKY_PERFORMANCE_SCORE', and 'HISTOLOGICAL_TYPE'.
-
4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'Time to Death', 'KARNOFSKY_PERFORMANCE_SCORE', and 'HISTOLOGICAL_TYPE'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'KARNOFSKY_PERFORMANCE_SCORE', and 'HISTOLOGICAL_TYPE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'Time to Death', 'GENDER', 'HISTOLOGICAL_TYPE', and 'RADIATIONS_RADIATION_REGIMENINDICATION'.
-
4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'KARNOFSKY_PERFORMANCE_SCORE', and 'HISTOLOGICAL_TYPE'.
Table 1. Get Full Table Overview of the association between subtypes identified by 12 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 43 significant findings detected.
Clinical Features |
Time to Death |
YEARS TO BIRTH |
GENDER |
KARNOFSKY PERFORMANCE SCORE |
HISTOLOGICAL TYPE |
RADIATIONS RADIATION REGIMENINDICATION |
RACE | ETHNICITY |
Statistical Tests | logrank test | Kruskal-Wallis (anova) | Fisher's exact test | Kruskal-Wallis (anova) | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test |
mRNA CNMF subtypes |
0.46 (0.6) |
0.247 (0.376) |
0.0993 (0.187) |
0.506 (0.64) |
0.0224 (0.0616) |
0.746 (0.832) |
0.515 (0.642) |
1 (1.00) |
mRNA cHierClus subtypes |
0.0486 (0.108) |
0.0787 (0.157) |
0.149 (0.265) |
0.312 (0.454) |
0.00826 (0.0248) |
0.485 (0.621) |
0.225 (0.36) |
0.431 (0.575) |
Copy Number Ratio CNMF subtypes |
6.55e-12 (7.86e-11) |
1.43e-13 (2.29e-12) |
0.184 (0.315) |
0.0377 (0.0953) |
1e-05 (5.05e-05) |
0.348 (0.492) |
0.00217 (0.00744) |
0.868 (0.936) |
METHLYATION CNMF |
0 (0) |
1.6e-19 (3.85e-18) |
0.556 (0.662) |
0.0129 (0.0363) |
1e-05 (5.05e-05) |
0.0432 (0.101) |
0.042 (0.101) |
0.911 (0.961) |
RPPA CNMF subtypes |
4.71e-05 (0.000216) |
0.00957 (0.0278) |
0.00812 (0.0248) |
0.0886 (0.174) |
8e-05 (0.000349) |
0.134 (0.243) |
0.951 (0.981) |
0.906 (0.961) |
RPPA cHierClus subtypes |
0.23 (0.36) |
0.00512 (0.017) |
0.553 (0.662) |
0.379 (0.527) |
0.0952 (0.183) |
0.231 (0.36) |
0.272 (0.408) |
0.933 (0.973) |
RNAseq CNMF subtypes |
2.32e-13 (3.19e-12) |
6.29e-11 (5.49e-10) |
0.462 (0.6) |
1.77e-05 (8.48e-05) |
1e-05 (5.05e-05) |
0.0451 (0.103) |
0.066 (0.135) |
0.843 (0.919) |
RNAseq cHierClus subtypes |
0 (0) |
2.26e-14 (4.34e-13) |
0.222 (0.36) |
0.000111 (0.000442) |
1e-05 (5.05e-05) |
0.0547 (0.117) |
0.194 (0.326) |
0.997 (1.00) |
MIRSEQ CNMF |
0.042 (0.101) |
0.652 (0.764) |
0.71 (0.811) |
0.0232 (0.0619) |
1e-05 (5.05e-05) |
0.317 (0.454) |
0.109 (0.201) |
0.827 (0.913) |
MIRSEQ CHIERARCHICAL |
1.14e-11 (1.22e-10) |
8.83e-08 (7.07e-07) |
0.232 (0.36) |
0.000327 (0.00121) |
1e-05 (5.05e-05) |
0.415 (0.561) |
0.559 (0.662) |
1 (1.00) |
MIRseq Mature CNMF subtypes |
0.000731 (0.0026) |
0.163 (0.285) |
0.031 (0.0804) |
0.0535 (0.117) |
9e-05 (0.000376) |
0.00677 (0.0217) |
0.74 (0.832) |
0.407 (0.558) |
MIRseq Mature cHierClus subtypes |
0 (0) |
1.51e-11 (1.45e-10) |
0.0623 (0.13) |
0.000172 (0.00066) |
1e-05 (5.05e-05) |
0.702 (0.811) |
0.301 (0.444) |
0.525 (0.646) |
Table S1. Description of clustering approach #1: 'mRNA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 9 | 10 | 8 |
P value = 0.46 (logrank test), Q value = 0.6
Table S2. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 27 | 10 | 0.1 - 134.3 (47.9) |
subtype1 | 9 | 4 | 10.6 - 130.8 (43.9) |
subtype2 | 10 | 3 | 0.1 - 78.2 (36.5) |
subtype3 | 8 | 3 | 14.4 - 134.3 (61.9) |
Figure S1. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.247 (Kruskal-Wallis (anova)), Q value = 0.38
Table S3. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 27 | 39.3 (9.1) |
subtype1 | 9 | 39.2 (6.2) |
subtype2 | 10 | 42.3 (7.6) |
subtype3 | 8 | 35.8 (12.6) |
Figure S2. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0993 (Fisher's exact test), Q value = 0.19
Table S4. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 18 |
subtype1 | 2 | 7 |
subtype2 | 6 | 4 |
subtype3 | 1 | 7 |
Figure S3. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.506 (Kruskal-Wallis (anova)), Q value = 0.64
Table S5. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 88.8 (12.2) |
subtype1 | 7 | 84.3 (16.2) |
subtype2 | 7 | 92.9 (7.6) |
subtype3 | 3 | 90.0 (10.0) |
Figure S4. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.0224 (Fisher's exact test), Q value = 0.062
Table S6. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 10 | 9 | 8 |
subtype1 | 7 | 2 | 0 |
subtype2 | 2 | 3 | 5 |
subtype3 | 1 | 4 | 3 |
Figure S5. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.746 (Fisher's exact test), Q value = 0.83
Table S7. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 20 | 7 |
subtype1 | 7 | 2 |
subtype2 | 8 | 2 |
subtype3 | 5 | 3 |
Figure S6. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.515 (Fisher's exact test), Q value = 0.64
Table S8. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 2 | 25 |
subtype1 | 1 | 8 |
subtype2 | 0 | 10 |
subtype3 | 1 | 7 |
Figure S7. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 1 (Fisher's exact test), Q value = 1
Table S9. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 1 | 20 |
subtype1 | 0 | 6 |
subtype2 | 1 | 7 |
subtype3 | 0 | 7 |
Figure S8. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S10. Description of clustering approach #2: 'mRNA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 7 | 7 | 7 | 6 |
P value = 0.0486 (logrank test), Q value = 0.11
Table S11. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 27 | 10 | 0.1 - 134.3 (47.9) |
subtype1 | 7 | 4 | 10.6 - 82.0 (43.9) |
subtype2 | 7 | 4 | 18.1 - 130.8 (41.1) |
subtype3 | 7 | 1 | 0.1 - 78.2 (31.8) |
subtype4 | 6 | 1 | 14.4 - 134.3 (75.6) |
Figure S9. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0787 (Kruskal-Wallis (anova)), Q value = 0.16
Table S12. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 27 | 39.3 (9.1) |
subtype1 | 7 | 41.7 (5.3) |
subtype2 | 7 | 36.3 (4.0) |
subtype3 | 7 | 43.9 (8.6) |
subtype4 | 6 | 34.8 (14.6) |
Figure S10. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.149 (Fisher's exact test), Q value = 0.27
Table S13. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 9 | 18 |
subtype1 | 1 | 6 |
subtype2 | 2 | 5 |
subtype3 | 5 | 2 |
subtype4 | 1 | 5 |
Figure S11. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.312 (Kruskal-Wallis (anova)), Q value = 0.45
Table S14. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 17 | 88.8 (12.2) |
subtype1 | 5 | 90.0 (7.1) |
subtype2 | 5 | 82.0 (17.9) |
subtype3 | 5 | 94.0 (8.9) |
subtype4 | 2 | 90.0 (14.1) |
Figure S12. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.00826 (Fisher's exact test), Q value = 0.025
Table S15. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 10 | 9 | 8 |
subtype1 | 5 | 1 | 1 |
subtype2 | 4 | 3 | 0 |
subtype3 | 1 | 1 | 5 |
subtype4 | 0 | 4 | 2 |
Figure S13. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.485 (Fisher's exact test), Q value = 0.62
Table S16. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 20 | 7 |
subtype1 | 6 | 1 |
subtype2 | 6 | 1 |
subtype3 | 5 | 2 |
subtype4 | 3 | 3 |
Figure S14. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.225 (Fisher's exact test), Q value = 0.36
Table S17. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 2 | 25 |
subtype1 | 2 | 5 |
subtype2 | 0 | 7 |
subtype3 | 0 | 7 |
subtype4 | 0 | 6 |
Figure S15. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.431 (Fisher's exact test), Q value = 0.57
Table S18. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 1 | 20 |
subtype1 | 0 | 4 |
subtype2 | 0 | 6 |
subtype3 | 1 | 4 |
subtype4 | 0 | 6 |
Figure S16. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S19. Description of clustering approach #3: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 156 | 110 | 206 |
P value = 6.55e-12 (logrank test), Q value = 7.9e-11
Table S20. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 470 | 94 | 0.0 - 211.2 (18.7) |
subtype1 | 156 | 28 | 0.1 - 156.2 (20.5) |
subtype2 | 109 | 43 | 0.1 - 211.2 (16.0) |
subtype3 | 205 | 23 | 0.0 - 182.3 (20.4) |
Figure S17. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 1.43e-13 (Kruskal-Wallis (anova)), Q value = 2.3e-12
Table S21. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 471 | 43.1 (13.4) |
subtype1 | 156 | 37.8 (11.7) |
subtype2 | 110 | 50.7 (12.8) |
subtype3 | 205 | 43.0 (13.1) |
Figure S18. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.184 (Fisher's exact test), Q value = 0.32
Table S22. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 206 | 266 |
subtype1 | 62 | 94 |
subtype2 | 56 | 54 |
subtype3 | 88 | 118 |
Figure S19. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.0377 (Kruskal-Wallis (anova)), Q value = 0.095
Table S23. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 269 | 87.7 (12.0) |
subtype1 | 91 | 88.7 (11.4) |
subtype2 | 64 | 84.2 (14.0) |
subtype3 | 114 | 88.9 (10.9) |
Figure S20. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S24. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 176 | 118 | 178 |
subtype1 | 90 | 41 | 25 |
subtype2 | 52 | 31 | 27 |
subtype3 | 34 | 46 | 126 |
Figure S21. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.348 (Fisher's exact test), Q value = 0.49
Table S25. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 92 | 380 |
subtype1 | 34 | 122 |
subtype2 | 24 | 86 |
subtype3 | 34 | 172 |
Figure S22. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.00217 (Fisher's exact test), Q value = 0.0074
Table S26. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 437 |
subtype1 | 0 | 0 | 2 | 151 |
subtype2 | 1 | 3 | 9 | 96 |
subtype3 | 0 | 5 | 4 | 190 |
Figure S23. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.868 (Fisher's exact test), Q value = 0.94
Table S27. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 419 |
subtype1 | 6 | 136 |
subtype2 | 5 | 99 |
subtype3 | 7 | 184 |
Figure S24. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S28. Description of clustering approach #4: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 208 | 72 | 156 | 39 |
P value = 0 (logrank test), Q value = 0
Table S29. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 473 | 94 | 0.0 - 211.2 (18.6) |
subtype1 | 207 | 34 | 0.0 - 172.8 (20.7) |
subtype2 | 72 | 36 | 0.1 - 211.2 (12.5) |
subtype3 | 155 | 17 | 0.1 - 182.3 (20.1) |
subtype4 | 39 | 7 | 0.1 - 122.7 (20.1) |
Figure S25. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 1.6e-19 (Kruskal-Wallis (anova)), Q value = 3.9e-18
Table S30. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 474 | 43.0 (13.5) |
subtype1 | 208 | 38.1 (11.2) |
subtype2 | 72 | 54.5 (12.4) |
subtype3 | 155 | 45.6 (12.5) |
subtype4 | 39 | 37.7 (14.0) |
Figure S26. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.556 (Fisher's exact test), Q value = 0.66
Table S31. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 267 |
subtype1 | 87 | 121 |
subtype2 | 33 | 39 |
subtype3 | 67 | 89 |
subtype4 | 21 | 18 |
Figure S27. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.0129 (Kruskal-Wallis (anova)), Q value = 0.036
Table S32. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 270 | 87.7 (12.0) |
subtype1 | 126 | 88.7 (11.5) |
subtype2 | 42 | 83.8 (12.7) |
subtype3 | 85 | 88.9 (11.8) |
subtype4 | 17 | 83.5 (12.7) |
Figure S28. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S33. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 176 | 119 | 180 |
subtype1 | 112 | 65 | 31 |
subtype2 | 46 | 12 | 14 |
subtype3 | 4 | 31 | 121 |
subtype4 | 14 | 11 | 14 |
Figure S29. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.0432 (Fisher's exact test), Q value = 0.1
Table S34. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 92 | 383 |
subtype1 | 51 | 157 |
subtype2 | 15 | 57 |
subtype3 | 21 | 135 |
subtype4 | 5 | 34 |
Figure S30. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.042 (Fisher's exact test), Q value = 0.1
Table S35. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 440 |
subtype1 | 0 | 1 | 5 | 199 |
subtype2 | 1 | 3 | 5 | 63 |
subtype3 | 0 | 4 | 3 | 143 |
subtype4 | 0 | 0 | 2 | 35 |
Figure S31. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'RACE'

P value = 0.911 (Fisher's exact test), Q value = 0.96
Table S36. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 422 |
subtype1 | 8 | 185 |
subtype2 | 2 | 66 |
subtype3 | 6 | 137 |
subtype4 | 2 | 34 |
Figure S32. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #8: 'ETHNICITY'

Table S37. Description of clustering approach #5: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 52 | 62 | 69 | 75 |
P value = 4.71e-05 (logrank test), Q value = 0.00022
Table S38. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 256 | 59 | 0.0 - 211.2 (18.7) |
subtype1 | 51 | 6 | 0.1 - 107.0 (17.5) |
subtype2 | 61 | 30 | 0.1 - 156.2 (16.8) |
subtype3 | 69 | 10 | 0.0 - 211.2 (20.4) |
subtype4 | 75 | 13 | 0.1 - 138.3 (20.1) |
Figure S33. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00957 (Kruskal-Wallis (anova)), Q value = 0.028
Table S39. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 42.4 (13.3) |
subtype1 | 52 | 37.7 (11.3) |
subtype2 | 62 | 46.3 (13.6) |
subtype3 | 69 | 43.3 (13.1) |
subtype4 | 75 | 41.6 (13.6) |
Figure S34. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.00812 (Fisher's exact test), Q value = 0.025
Table S40. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 111 | 147 |
subtype1 | 19 | 33 |
subtype2 | 33 | 29 |
subtype3 | 20 | 49 |
subtype4 | 39 | 36 |
Figure S35. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.0886 (Kruskal-Wallis (anova)), Q value = 0.17
Table S41. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 86.7 (11.8) |
subtype1 | 27 | 88.9 (8.9) |
subtype2 | 30 | 83.7 (14.7) |
subtype3 | 26 | 90.0 (12.3) |
subtype4 | 32 | 85.0 (9.5) |
Figure S36. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 8e-05 (Fisher's exact test), Q value = 0.00035
Table S42. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 86 | 70 | 102 |
subtype1 | 20 | 21 | 11 |
subtype2 | 31 | 11 | 20 |
subtype3 | 20 | 21 | 28 |
subtype4 | 15 | 17 | 43 |
Figure S37. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.134 (Fisher's exact test), Q value = 0.24
Table S43. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 87 | 171 |
subtype1 | 16 | 36 |
subtype2 | 22 | 40 |
subtype3 | 30 | 39 |
subtype4 | 19 | 56 |
Figure S38. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.951 (Fisher's exact test), Q value = 0.98
Table S44. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 11 | 246 |
subtype1 | 3 | 49 |
subtype2 | 2 | 60 |
subtype3 | 3 | 65 |
subtype4 | 3 | 72 |
Figure S39. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.906 (Fisher's exact test), Q value = 0.96
Table S45. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 13 | 233 |
subtype1 | 3 | 48 |
subtype2 | 2 | 56 |
subtype3 | 4 | 60 |
subtype4 | 4 | 69 |
Figure S40. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S46. Description of clustering approach #6: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 67 | 132 | 59 |
P value = 0.23 (logrank test), Q value = 0.36
Table S47. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 256 | 59 | 0.0 - 211.2 (18.7) |
subtype1 | 66 | 9 | 0.0 - 138.3 (18.3) |
subtype2 | 131 | 39 | 0.1 - 211.2 (18.8) |
subtype3 | 59 | 11 | 0.1 - 134.3 (17.9) |
Figure S41. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00512 (Kruskal-Wallis (anova)), Q value = 0.017
Table S48. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 42.4 (13.3) |
subtype1 | 67 | 38.0 (10.5) |
subtype2 | 132 | 44.7 (13.4) |
subtype3 | 59 | 42.4 (14.7) |
Figure S42. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.553 (Fisher's exact test), Q value = 0.66
Table S49. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 111 | 147 |
subtype1 | 28 | 39 |
subtype2 | 54 | 78 |
subtype3 | 29 | 30 |
Figure S43. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.379 (Kruskal-Wallis (anova)), Q value = 0.53
Table S50. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 86.7 (11.8) |
subtype1 | 29 | 89.0 (10.1) |
subtype2 | 57 | 86.3 (13.2) |
subtype3 | 29 | 85.2 (10.2) |
Figure S44. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.0952 (Fisher's exact test), Q value = 0.18
Table S51. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 86 | 70 | 102 |
subtype1 | 18 | 23 | 26 |
subtype2 | 53 | 33 | 46 |
subtype3 | 15 | 14 | 30 |
Figure S45. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.231 (Fisher's exact test), Q value = 0.36
Table S52. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 87 | 171 |
subtype1 | 20 | 47 |
subtype2 | 51 | 81 |
subtype3 | 16 | 43 |
Figure S46. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.272 (Fisher's exact test), Q value = 0.41
Table S53. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 11 | 246 |
subtype1 | 5 | 62 |
subtype2 | 5 | 126 |
subtype3 | 1 | 58 |
Figure S47. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.933 (Fisher's exact test), Q value = 0.97
Table S54. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 13 | 233 |
subtype1 | 4 | 61 |
subtype2 | 6 | 117 |
subtype3 | 3 | 55 |
Figure S48. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S55. Description of clustering approach #7: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 124 | 100 | 99 | 128 | 24 |
P value = 2.32e-13 (logrank test), Q value = 3.2e-12
Table S56. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 473 | 94 | 0.0 - 211.2 (18.6) |
subtype1 | 124 | 20 | 0.0 - 130.8 (21.2) |
subtype2 | 99 | 40 | 0.1 - 211.2 (14.4) |
subtype3 | 99 | 12 | 0.1 - 182.3 (17.8) |
subtype4 | 127 | 20 | 0.1 - 172.8 (20.6) |
subtype5 | 24 | 2 | 2.4 - 98.2 (18.2) |
Figure S49. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 6.29e-11 (Kruskal-Wallis (anova)), Q value = 5.5e-10
Table S57. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 474 | 43.0 (13.5) |
subtype1 | 124 | 36.7 (10.6) |
subtype2 | 100 | 49.2 (13.8) |
subtype3 | 99 | 45.9 (12.7) |
subtype4 | 127 | 41.8 (13.8) |
subtype5 | 24 | 44.0 (12.2) |
Figure S50. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.462 (Fisher's exact test), Q value = 0.6
Table S58. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 267 |
subtype1 | 46 | 78 |
subtype2 | 48 | 52 |
subtype3 | 47 | 52 |
subtype4 | 57 | 71 |
subtype5 | 10 | 14 |
Figure S51. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 1.77e-05 (Kruskal-Wallis (anova)), Q value = 8.5e-05
Table S59. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 270 | 87.7 (12.0) |
subtype1 | 75 | 91.7 (8.8) |
subtype2 | 63 | 83.2 (12.7) |
subtype3 | 56 | 90.0 (12.1) |
subtype4 | 63 | 85.1 (12.8) |
subtype5 | 13 | 89.2 (11.2) |
Figure S52. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S60. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 176 | 119 | 180 |
subtype1 | 64 | 39 | 21 |
subtype2 | 70 | 16 | 14 |
subtype3 | 3 | 17 | 79 |
subtype4 | 34 | 36 | 58 |
subtype5 | 5 | 11 | 8 |
Figure S53. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.0451 (Fisher's exact test), Q value = 0.1
Table S61. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 92 | 383 |
subtype1 | 31 | 93 |
subtype2 | 23 | 77 |
subtype3 | 11 | 88 |
subtype4 | 25 | 103 |
subtype5 | 2 | 22 |
Figure S54. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.066 (Fisher's exact test), Q value = 0.13
Table S62. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 440 |
subtype1 | 0 | 0 | 5 | 116 |
subtype2 | 1 | 2 | 5 | 91 |
subtype3 | 0 | 4 | 0 | 91 |
subtype4 | 0 | 1 | 5 | 119 |
subtype5 | 0 | 1 | 0 | 23 |
Figure S55. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.843 (Fisher's exact test), Q value = 0.92
Table S63. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 422 |
subtype1 | 5 | 107 |
subtype2 | 2 | 92 |
subtype3 | 4 | 85 |
subtype4 | 6 | 115 |
subtype5 | 1 | 23 |
Figure S56. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S64. Description of clustering approach #8: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Number of samples | 124 | 65 | 33 | 61 | 83 | 37 | 72 |
P value = 0 (logrank test), Q value = 0
Table S65. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 473 | 94 | 0.0 - 211.2 (18.6) |
subtype1 | 124 | 21 | 0.0 - 130.8 (23.5) |
subtype2 | 65 | 31 | 0.1 - 133.7 (12.2) |
subtype3 | 33 | 4 | 0.1 - 169.8 (16.4) |
subtype4 | 61 | 14 | 0.1 - 172.8 (17.9) |
subtype5 | 83 | 11 | 0.1 - 182.3 (22.1) |
subtype6 | 36 | 8 | 0.1 - 211.2 (19.5) |
subtype7 | 71 | 5 | 0.1 - 138.3 (20.2) |
Figure S57. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 2.26e-14 (Kruskal-Wallis (anova)), Q value = 4.3e-13
Table S66. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 474 | 43.0 (13.5) |
subtype1 | 124 | 37.2 (10.8) |
subtype2 | 65 | 53.6 (12.6) |
subtype3 | 33 | 50.3 (13.7) |
subtype4 | 61 | 41.0 (14.3) |
subtype5 | 83 | 44.6 (12.1) |
subtype6 | 37 | 39.9 (11.7) |
subtype7 | 71 | 41.5 (12.9) |
Figure S58. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.222 (Fisher's exact test), Q value = 0.36
Table S67. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 267 |
subtype1 | 46 | 78 |
subtype2 | 32 | 33 |
subtype3 | 20 | 13 |
subtype4 | 29 | 32 |
subtype5 | 32 | 51 |
subtype6 | 16 | 21 |
subtype7 | 33 | 39 |
Figure S59. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.000111 (Kruskal-Wallis (anova)), Q value = 0.00044
Table S68. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 270 | 87.7 (12.0) |
subtype1 | 73 | 91.8 (9.5) |
subtype2 | 36 | 82.8 (13.0) |
subtype3 | 20 | 89.5 (14.3) |
subtype4 | 33 | 85.8 (12.8) |
subtype5 | 48 | 89.2 (11.6) |
subtype6 | 26 | 83.1 (12.3) |
subtype7 | 34 | 86.5 (11.0) |
Figure S60. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S69. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 176 | 119 | 180 |
subtype1 | 60 | 43 | 21 |
subtype2 | 42 | 11 | 12 |
subtype3 | 1 | 1 | 31 |
subtype4 | 32 | 21 | 8 |
subtype5 | 2 | 23 | 58 |
subtype6 | 30 | 4 | 3 |
subtype7 | 9 | 16 | 47 |
Figure S61. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.0547 (Fisher's exact test), Q value = 0.12
Table S70. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 92 | 383 |
subtype1 | 31 | 93 |
subtype2 | 11 | 54 |
subtype3 | 2 | 31 |
subtype4 | 12 | 49 |
subtype5 | 10 | 73 |
subtype6 | 11 | 26 |
subtype7 | 15 | 57 |
Figure S62. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.194 (Fisher's exact test), Q value = 0.33
Table S71. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 440 |
subtype1 | 0 | 0 | 5 | 116 |
subtype2 | 1 | 1 | 4 | 58 |
subtype3 | 0 | 1 | 0 | 29 |
subtype4 | 0 | 1 | 2 | 56 |
subtype5 | 0 | 4 | 1 | 76 |
subtype6 | 0 | 1 | 0 | 36 |
subtype7 | 0 | 0 | 3 | 69 |
Figure S63. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.997 (Fisher's exact test), Q value = 1
Table S72. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 422 |
subtype1 | 5 | 107 |
subtype2 | 2 | 59 |
subtype3 | 1 | 27 |
subtype4 | 3 | 52 |
subtype5 | 3 | 74 |
subtype6 | 1 | 36 |
subtype7 | 3 | 67 |
Figure S64. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S73. Description of clustering approach #9: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 124 | 103 | 172 | 72 |
P value = 0.042 (logrank test), Q value = 0.1
Table S74. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 469 | 93 | 0.0 - 211.2 (18.7) |
subtype1 | 123 | 23 | 0.0 - 122.5 (18.6) |
subtype2 | 103 | 32 | 0.1 - 211.2 (19.6) |
subtype3 | 171 | 26 | 0.1 - 156.2 (17.4) |
subtype4 | 72 | 12 | 0.1 - 182.3 (20.8) |
Figure S65. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.652 (Kruskal-Wallis (anova)), Q value = 0.76
Table S75. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 470 | 43.0 (13.5) |
subtype1 | 124 | 42.0 (13.5) |
subtype2 | 103 | 42.8 (13.2) |
subtype3 | 171 | 43.4 (13.8) |
subtype4 | 72 | 44.2 (13.2) |
Figure S66. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.71 (Fisher's exact test), Q value = 0.81
Table S76. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 263 |
subtype1 | 51 | 73 |
subtype2 | 43 | 60 |
subtype3 | 81 | 91 |
subtype4 | 33 | 39 |
Figure S67. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.0232 (Kruskal-Wallis (anova)), Q value = 0.062
Table S77. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 268 | 87.7 (12.0) |
subtype1 | 70 | 89.9 (10.4) |
subtype2 | 66 | 84.7 (12.6) |
subtype3 | 93 | 87.5 (12.4) |
subtype4 | 39 | 89.5 (12.1) |
Figure S68. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S78. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 175 | 116 | 180 |
subtype1 | 61 | 33 | 30 |
subtype2 | 62 | 22 | 19 |
subtype3 | 48 | 46 | 78 |
subtype4 | 4 | 15 | 53 |
Figure S69. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.317 (Fisher's exact test), Q value = 0.45
Table S79. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 91 | 380 |
subtype1 | 26 | 98 |
subtype2 | 25 | 78 |
subtype3 | 30 | 142 |
subtype4 | 10 | 62 |
Figure S70. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.109 (Fisher's exact test), Q value = 0.2
Table S80. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 436 |
subtype1 | 1 | 1 | 8 | 111 |
subtype2 | 0 | 2 | 2 | 97 |
subtype3 | 0 | 2 | 5 | 162 |
subtype4 | 0 | 3 | 0 | 66 |
Figure S71. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RACE'

P value = 0.827 (Fisher's exact test), Q value = 0.91
Table S81. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 418 |
subtype1 | 5 | 110 |
subtype2 | 4 | 90 |
subtype3 | 8 | 156 |
subtype4 | 1 | 62 |
Figure S72. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #8: 'ETHNICITY'

Table S82. Description of clustering approach #10: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 202 | 172 | 97 |
P value = 1.14e-11 (logrank test), Q value = 1.2e-10
Table S83. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 469 | 93 | 0.0 - 211.2 (18.7) |
subtype1 | 201 | 34 | 0.0 - 182.3 (23.2) |
subtype2 | 171 | 23 | 0.1 - 172.8 (18.9) |
subtype3 | 97 | 36 | 0.1 - 211.2 (14.5) |
Figure S73. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 8.83e-08 (Kruskal-Wallis (anova)), Q value = 7.1e-07
Table S84. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 470 | 43.0 (13.5) |
subtype1 | 202 | 40.0 (11.7) |
subtype2 | 171 | 42.7 (13.8) |
subtype3 | 97 | 49.9 (14.0) |
Figure S74. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.232 (Fisher's exact test), Q value = 0.36
Table S85. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 263 |
subtype1 | 80 | 122 |
subtype2 | 82 | 90 |
subtype3 | 46 | 51 |
Figure S75. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

P value = 0.000327 (Kruskal-Wallis (anova)), Q value = 0.0012
Table S86. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 268 | 87.7 (12.0) |
subtype1 | 122 | 90.2 (10.3) |
subtype2 | 92 | 87.4 (12.7) |
subtype3 | 54 | 82.8 (12.9) |
Figure S76. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S87. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 175 | 116 | 180 |
subtype1 | 68 | 60 | 74 |
subtype2 | 43 | 40 | 89 |
subtype3 | 64 | 16 | 17 |
Figure S77. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.415 (Fisher's exact test), Q value = 0.56
Table S88. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 91 | 380 |
subtype1 | 44 | 158 |
subtype2 | 28 | 144 |
subtype3 | 19 | 78 |
Figure S78. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.559 (Fisher's exact test), Q value = 0.66
Table S89. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 436 |
subtype1 | 0 | 3 | 5 | 189 |
subtype2 | 0 | 3 | 5 | 159 |
subtype3 | 1 | 2 | 5 | 88 |
Figure S79. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RACE'

P value = 1 (Fisher's exact test), Q value = 1
Table S90. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 418 |
subtype1 | 8 | 177 |
subtype2 | 7 | 154 |
subtype3 | 3 | 87 |
Figure S80. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'ETHNICITY'

Table S91. Description of clustering approach #11: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 173 | 143 | 152 |
P value = 0.000731 (logrank test), Q value = 0.0026
Table S92. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 466 | 93 | 0.0 - 211.2 (18.7) |
subtype1 | 173 | 50 | 0.0 - 182.3 (17.6) |
subtype2 | 142 | 18 | 0.1 - 169.8 (21.8) |
subtype3 | 151 | 25 | 0.1 - 211.2 (17.9) |
Figure S81. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.163 (Kruskal-Wallis (anova)), Q value = 0.29
Table S93. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 467 | 43.1 (13.5) |
subtype1 | 173 | 44.1 (14.4) |
subtype2 | 143 | 41.0 (11.8) |
subtype3 | 151 | 43.9 (13.8) |
Figure S82. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.031 (Fisher's exact test), Q value = 0.08
Table S94. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 260 |
subtype1 | 64 | 109 |
subtype2 | 66 | 77 |
subtype3 | 78 | 74 |
Figure S83. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.0535 (Kruskal-Wallis (anova)), Q value = 0.12
Table S95. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 267 | 87.8 (12.0) |
subtype1 | 89 | 87.9 (11.2) |
subtype2 | 93 | 89.9 (10.9) |
subtype3 | 85 | 85.4 (13.5) |
Figure S84. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 9e-05 (Fisher's exact test), Q value = 0.00038
Table S96. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 174 | 115 | 179 |
subtype1 | 86 | 42 | 45 |
subtype2 | 46 | 34 | 63 |
subtype3 | 42 | 39 | 71 |
Figure S85. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.00677 (Fisher's exact test), Q value = 0.022
Table S97. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 91 | 377 |
subtype1 | 46 | 127 |
subtype2 | 18 | 125 |
subtype3 | 27 | 125 |
Figure S86. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.74 (Fisher's exact test), Q value = 0.83
Table S98. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 433 |
subtype1 | 1 | 2 | 7 | 159 |
subtype2 | 0 | 4 | 3 | 131 |
subtype3 | 0 | 2 | 5 | 143 |
Figure S87. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.407 (Fisher's exact test), Q value = 0.56
Table S99. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 415 |
subtype1 | 5 | 155 |
subtype2 | 8 | 120 |
subtype3 | 5 | 140 |
Figure S88. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S100. Description of clustering approach #12: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 83 | 125 | 178 | 82 |
P value = 0 (logrank test), Q value = 0
Table S101. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 466 | 93 | 0.0 - 211.2 (18.7) |
subtype1 | 82 | 12 | 0.0 - 122.5 (22.1) |
subtype2 | 125 | 16 | 0.1 - 172.8 (21.4) |
subtype3 | 177 | 27 | 0.1 - 211.2 (19.6) |
subtype4 | 82 | 38 | 0.1 - 133.7 (13.2) |
Figure S89. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 1.51e-11 (Kruskal-Wallis (anova)), Q value = 1.5e-10
Table S102. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 467 | 43.1 (13.5) |
subtype1 | 83 | 36.6 (11.4) |
subtype2 | 125 | 42.7 (12.0) |
subtype3 | 177 | 42.1 (13.0) |
subtype4 | 82 | 52.2 (14.1) |
Figure S90. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0623 (Fisher's exact test), Q value = 0.13
Table S103. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 208 | 260 |
subtype1 | 31 | 52 |
subtype2 | 47 | 78 |
subtype3 | 89 | 89 |
subtype4 | 41 | 41 |
Figure S91. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.000172 (Kruskal-Wallis (anova)), Q value = 0.00066
Table S104. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 267 | 87.8 (12.0) |
subtype1 | 48 | 90.4 (9.9) |
subtype2 | 81 | 90.5 (10.2) |
subtype3 | 93 | 87.0 (12.8) |
subtype4 | 45 | 81.8 (13.0) |
Figure S92. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 1e-05 (Fisher's exact test), Q value = 5.1e-05
Table S105. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'
nPatients | ASTROCYTOMA | OLIGOASTROCYTOMA | OLIGODENDROGLIOMA |
---|---|---|---|
ALL | 174 | 115 | 179 |
subtype1 | 45 | 24 | 14 |
subtype2 | 33 | 33 | 59 |
subtype3 | 40 | 47 | 91 |
subtype4 | 56 | 11 | 15 |
Figure S93. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL_TYPE'

P value = 0.702 (Fisher's exact test), Q value = 0.81
Table S106. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 91 | 377 |
subtype1 | 18 | 65 |
subtype2 | 20 | 105 |
subtype3 | 37 | 141 |
subtype4 | 16 | 66 |
Figure S94. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS_RADIATION_REGIMENINDICATION'

P value = 0.301 (Fisher's exact test), Q value = 0.44
Table S107. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 8 | 15 | 433 |
subtype1 | 0 | 0 | 2 | 79 |
subtype2 | 0 | 4 | 3 | 116 |
subtype3 | 0 | 2 | 5 | 166 |
subtype4 | 1 | 2 | 5 | 72 |
Figure S95. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.525 (Fisher's exact test), Q value = 0.65
Table S108. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 415 |
subtype1 | 5 | 69 |
subtype2 | 3 | 109 |
subtype3 | 8 | 163 |
subtype4 | 2 | 74 |
Figure S96. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/LGG-TP/15115118/LGG-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/LGG-TP/15082624/LGG-TP.merged_data.txt
-
Number of patients = 475
-
Number of clustering approaches = 12
-
Number of selected clinical features = 8
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.