GSEA Class2: Canonical Pathways enriched in each subtypes of mRNAseq_cNMF in OV-TP
Ovarian Serous Cystadenocarcinoma (Primary solid tumor)
02 April 2015  |  analyses__2015_04_02
Maintainer Information
Citation Information
Maintained by Juok Cho (Broad Institute)
Cite as Broad Institute TCGA Genome Data Analysis Center (2015): GSEA Class2: Canonical Pathways enriched in each subtypes of mRNAseq_cNMF in OV-TP. Broad Institute of MIT and Harvard. doi:10.7908/C1CN730X
Overview
Introduction

This pipeline performs Gene Set Enrichment Analysis (GSEA) using The Broad Institute GSEA tool with MSigDB - Class2: Canonical Pathways gene sets. For a given phenotype subtype, it shows what pathways are significantly enriched in each subtype by comparing gene expression profiles between subtypes. Here, the phenotype is mRNAseq_cNMF subtypes in OV-TP. This pipeline has the following features:

  1. For each subtype, calculates enrichment scores (ES) using signal to noise (S2N) that checks similarity between subtypes in expression level then calculates p values through permutation test.

  2. Lists pathways significantly enriched in each phenotype subtype and their enrichment scores (ES).

  3. Lists top 20 core genes enriched in each significant gene set and their enrichment scores (ES).

  4. Checks if the top core genes are up-regulated or down-regulated.

  5. Checks if the top core genes are high expressed or low expressed.

  6. Checks if the top core genes are significantly differently expressed genes.

Summary

Table 1.  Get Full Table basic data info

basic data info
Number of Gene Sets: 192
Number of samples: 261
Original number of Gene Sets: 404
Maximum gene set size: 388

Table 2.  Get Full Table pheno data info

phenotype info
pheno.type: 1 - 3 :[ clus1 ] 102
pheno.type: 2 - 3 :[ clus2 ] 67
pheno.type: 3 - 3 :[ clus3 ] 92

For the expression subtypes of 18555 genes in 262 samples, GSEA found enriched gene sets in each cluster using 261 gene sets in MSigDB canonical pathways. Top enriched gene sets are listed as below.

  • clus1

    • Top enriched gene sets are BIOCARTA AT1R PATHWAY, BIOCARTA BCR PATHWAY, BIOCARTA EGF PATHWAY, BIOCARTA FAS PATHWAY, BIOCARTA FCER1 PATHWAY, BIOCARTA HIVNEF PATHWAY, BIOCARTA IL2RB PATHWAY, BIOCARTA GSK3 PATHWAY, BIOCARTA KERATINOCYTE PATHWAY, BIOCARTA PYK2 PATHWAY

    • And common core enriched genes are FOS, MAPK11, TNF, CTSK, NFATC1, PPP3CC, VAV1, AKT3, PIK3CD, PIK3CG

  • clus2

    • Top enriched gene sets are BIOCARTA HIVNEF PATHWAY, BIOCARTA DEATH PATHWAY, BIOCARTA TOLL PATHWAY, KEGG CITRATE CYCLE TCA CYCLE, KEGG FATTY ACID METABOLISM, KEGG ALANINE ASPARTATE AND GLUTAMATE METABOLISM, KEGG VALINE LEUCINE AND ISOLEUCINE DEGRADATION, KEGG GLUTATHIONE METABOLISM, KEGG SPHINGOLIPID METABOLISM, KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES

    • And common core enriched genes are IDH1, IDH2, CASP10, CASP8, TRADD, ABCD1, ACAA1, ACOX1, ACSL5, ACSL6

  • clus3

    • Top enriched gene sets are BIOCARTA ALK PATHWAY, BIOCARTA BIOPEPTIDES PATHWAY, BIOCARTA CARM ER PATHWAY, BIOCARTA MPR PATHWAY, BIOCARTA INTEGRIN PATHWAY, BIOCARTA WNT PATHWAY, KEGG RNA DEGRADATION, KEGG SPLICEOSOME, KEGG CARDIAC MUSCLE CONTRACTION, KEGG WNT SIGNALING PATHWAY

    • And common core enriched genes are MYH6, MYH7, GLI1, GLI2, LEF1, PTCH1, PTCH2, SHH, SMO, STK36

Results
Subtype clus1 enriched pathways

Table 3.  Get Full Table This table shows top 10 pathways which are significantly enriched in cluster clus1. It displays only significant gene sets satisfying nom.p.val.threshold (-1), fwer.p.val.threshold (-1) , fdr.q.val.threshold (0.25) and the default table is sorted by Normalized Enrichment Score (NES). Further details on NES statistics, please visit The Broad GSEA website.

GeneSet(GS) Size(#genes) genes.ES.table ES NES NOM.p.val FDR.q.val FWER.p.val Tag.. Gene.. Signal FDR..median. glob.p.val
BIOCARTA AT1R PATHWAY 32 genes.ES.table 0.37 1.5 0.097 0.15 0.91 0.41 0.28 0.29 0.11 0
BIOCARTA BCR PATHWAY 33 genes.ES.table 0.67 2.1 0 0.052 0.037 0.33 0.12 0.29 0 0.014
BIOCARTA EGF PATHWAY 30 genes.ES.table 0.49 1.7 0.026 0.067 0.55 0.5 0.25 0.38 0.032 0
BIOCARTA FAS PATHWAY 29 genes.ES.table 0.53 1.9 0.004 0.051 0.17 0.38 0.23 0.29 0 0.007
BIOCARTA FCER1 PATHWAY 37 genes.ES.table 0.58 1.8 0.0083 0.046 0.26 0.27 0.12 0.24 0 0.001
BIOCARTA HIVNEF PATHWAY 57 genes.ES.table 0.4 1.8 0.018 0.06 0.42 0.35 0.26 0.26 0 0.001
BIOCARTA IL2RB PATHWAY 37 genes.ES.table 0.61 1.8 0.013 0.053 0.39 0.27 0.13 0.24 0 0.001
BIOCARTA GSK3 PATHWAY 26 genes.ES.table 0.51 1.6 0.043 0.1 0.8 0.23 0.091 0.21 0.064 0
BIOCARTA KERATINOCYTE PATHWAY 45 genes.ES.table 0.52 1.8 0.0061 0.053 0.31 0.31 0.16 0.26 0 0.001
BIOCARTA PYK2 PATHWAY 27 genes.ES.table 0.39 1.6 0.042 0.084 0.72 0.37 0.27 0.27 0.048 0
genes ES table in pathway: BIOCARTA AT1R PATHWAY

Table S1.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CTSK CTSK CTSK 61 0.58 0.073 YES
2 CTSW CTSW CTSW 125 0.52 0.14 YES
3 CTSE CTSE CTSE 839 0.28 0.13 YES
4 LAPTM5 LAPTM5 LAPTM5 949 0.25 0.16 YES
5 CTSS CTSS CTSS 959 0.25 0.19 YES
6 CD68 CD68 CD68 1134 0.22 0.21 YES
7 SLC11A1 SLC11A1 SLC11A1 1505 0.18 0.22 YES
8 ATP6V0D2 ATP6V0D2 ATP6V0D2 1781 0.15 0.22 YES
9 CTSO CTSO CTSO 1954 0.14 0.23 YES
10 ARSB ARSB ARSB 2032 0.13 0.24 YES
11 LAMP3 LAMP3 LAMP3 2119 0.12 0.25 YES
12 ACP5 ACP5 ACP5 2164 0.12 0.27 YES
13 ARSA ARSA ARSA 2172 0.12 0.28 YES
14 TCIRG1 TCIRG1 TCIRG1 2185 0.12 0.3 YES
15 CTSL1 CTSL1 CTSL1 2484 0.1 0.29 YES
16 NPC1 NPC1 NPC1 2566 0.097 0.3 YES
17 AP4E1 AP4E1 AP4E1 2594 0.096 0.31 YES
18 CTSG CTSG CTSG 2682 0.092 0.32 YES
19 NAGA NAGA NAGA 2801 0.087 0.32 YES
20 CLTB CLTB CLTB 2808 0.087 0.34 YES
21 CTSZ CTSZ CTSZ 2823 0.086 0.35 YES
22 GM2A GM2A GM2A 2855 0.085 0.36 YES
23 AP1B1 AP1B1 AP1B1 2912 0.082 0.36 YES
24 CLTCL1 CLTCL1 CLTCL1 2934 0.082 0.37 YES
25 SMPD1 SMPD1 SMPD1 2965 0.081 0.38 YES
26 CTSA CTSA CTSA 2977 0.08 0.39 YES
27 TPP1 TPP1 TPP1 2988 0.08 0.4 YES
28 LAPTM4B LAPTM4B LAPTM4B 3021 0.078 0.41 YES
29 CTSB CTSB CTSB 3138 0.074 0.41 YES
30 CTSD CTSD CTSD 3175 0.073 0.42 YES
31 CTSC CTSC CTSC 3188 0.072 0.43 YES
32 CTSH CTSH CTSH 3223 0.072 0.44 YES
33 GALNS GALNS GALNS 3325 0.068 0.44 YES
34 ATP6AP1 ATP6AP1 ATP6AP1 3336 0.067 0.45 YES
35 GAA GAA GAA 3372 0.066 0.46 YES
36 MCOLN1 MCOLN1 MCOLN1 3391 0.066 0.46 YES
37 LIPA LIPA LIPA 3430 0.065 0.47 YES
38 LGMN LGMN LGMN 3833 0.054 0.45 YES
39 HEXB HEXB HEXB 3912 0.052 0.46 YES
40 NPC2 NPC2 NPC2 4024 0.05 0.46 YES
41 GNPTAB GNPTAB GNPTAB 4072 0.049 0.46 YES
42 ACP2 ACP2 ACP2 4104 0.048 0.46 YES
43 AP3S1 AP3S1 AP3S1 4105 0.048 0.47 YES
44 CLN3 CLN3 CLN3 4153 0.047 0.48 YES
45 ASAH1 ASAH1 ASAH1 4363 0.043 0.47 NO
46 ATP6V0B ATP6V0B ATP6V0B 4379 0.043 0.47 NO
47 PSAP PSAP PSAP 4569 0.039 0.47 NO
48 GGA3 GGA3 GGA3 4688 0.037 0.47 NO
49 GBA GBA GBA 4740 0.036 0.47 NO
50 HEXA HEXA HEXA 4841 0.035 0.47 NO
51 GLA GLA GLA 4970 0.033 0.47 NO
52 MANBA MANBA MANBA 5026 0.032 0.47 NO
53 GNPTG GNPTG GNPTG 5056 0.032 0.47 NO
54 DNASE2B DNASE2B DNASE2B 5215 0.029 0.46 NO
55 PLA2G15 PLA2G15 PLA2G15 5240 0.029 0.47 NO
56 IDS IDS IDS 5248 0.029 0.47 NO
57 SGSH SGSH SGSH 5321 0.028 0.47 NO
58 CLTC CLTC CLTC 5386 0.027 0.47 NO
59 AP1S2 AP1S2 AP1S2 5389 0.027 0.47 NO
60 NEU1 NEU1 NEU1 5512 0.026 0.47 NO
61 ENTPD4 ENTPD4 ENTPD4 5744 0.022 0.46 NO
62 HYAL1 HYAL1 HYAL1 5786 0.022 0.46 NO
63 SORT1 SORT1 SORT1 5881 0.02 0.46 NO
64 LAMP1 LAMP1 LAMP1 5972 0.019 0.46 NO
65 ATP6V0C ATP6V0C ATP6V0C 6000 0.019 0.46 NO
66 AGA AGA AGA 6045 0.018 0.46 NO
67 FUCA1 FUCA1 FUCA1 6115 0.017 0.46 NO
68 CLN5 CLN5 CLN5 6145 0.017 0.46 NO
69 ATP6V0D1 ATP6V0D1 ATP6V0D1 6298 0.015 0.45 NO
70 MFSD8 MFSD8 MFSD8 6406 0.014 0.45 NO
71 GGA1 GGA1 GGA1 6558 0.012 0.44 NO
72 AP1M2 AP1M2 AP1M2 6566 0.012 0.44 NO
73 CD63 CD63 CD63 6693 0.01 0.44 NO
74 AP3D1 AP3D1 AP3D1 6857 0.0084 0.43 NO
75 DNASE2 DNASE2 DNASE2 6927 0.0076 0.42 NO
76 GNS GNS GNS 6945 0.0075 0.42 NO
77 CTNS CTNS CTNS 6946 0.0075 0.42 NO
78 NAGPA NAGPA NAGPA 7035 0.0066 0.42 NO
79 ABCB9 ABCB9 ABCB9 7084 0.006 0.42 NO
80 SLC17A5 SLC17A5 SLC17A5 7118 0.0056 0.42 NO
81 LAMP2 LAMP2 LAMP2 7246 0.0042 0.41 NO
82 IGF2R IGF2R IGF2R 7446 0.0023 0.4 NO
83 GGA2 GGA2 GGA2 7506 0.0019 0.4 NO
84 MAN2B1 MAN2B1 MAN2B1 7577 0.0013 0.4 NO
85 AP3B1 AP3B1 AP3B1 7623 0.00079 0.39 NO
86 AP4B1 AP4B1 AP4B1 7691 0.000044 0.39 NO
87 SCARB2 SCARB2 SCARB2 7763 -0.00067 0.38 NO
88 CTSF CTSF CTSF 8017 -0.0029 0.37 NO
89 AP1G1 AP1G1 AP1G1 8373 -0.0063 0.35 NO
90 GUSB GUSB GUSB 8386 -0.0065 0.35 NO
91 NAGLU NAGLU NAGLU 8476 -0.0072 0.35 NO
92 CLTA CLTA CLTA 8574 -0.0084 0.35 NO
93 GALC GALC GALC 9029 -0.013 0.32 NO
94 AP3M1 AP3M1 AP3M1 9059 -0.013 0.32 NO
95 LAPTM4A LAPTM4A LAPTM4A 9678 -0.018 0.29 NO
96 M6PR M6PR M6PR 9807 -0.02 0.29 NO
97 CD164 CD164 CD164 9865 -0.021 0.29 NO
98 GLB1 GLB1 GLB1 9875 -0.021 0.29 NO
99 SLC11A2 SLC11A2 SLC11A2 9888 -0.021 0.29 NO
100 ATP6V0A2 ATP6V0A2 ATP6V0A2 9898 -0.021 0.29 NO
101 IDUA IDUA IDUA 9931 -0.021 0.29 NO
102 ATP6V1H ATP6V1H ATP6V1H 10236 -0.024 0.28 NO
103 PPT1 PPT1 PPT1 10334 -0.026 0.28 NO
104 NAPSA NAPSA NAPSA 10374 -0.026 0.28 NO
105 ATP6V0A1 ATP6V0A1 ATP6V0A1 10583 -0.028 0.27 NO
106 AP1S1 AP1S1 AP1S1 10662 -0.029 0.27 NO
107 AP1M1 AP1M1 AP1M1 10664 -0.029 0.28 NO
108 AP3S2 AP3S2 AP3S2 11031 -0.032 0.26 NO
109 AP4S1 AP4S1 AP4S1 11325 -0.036 0.25 NO
110 ABCA2 ABCA2 ABCA2 11565 -0.038 0.24 NO
111 SUMF1 SUMF1 SUMF1 11602 -0.039 0.24 NO
112 AP4M1 AP4M1 AP4M1 11608 -0.039 0.25 NO
113 PPT2 PPT2 PPT2 12925 -0.057 0.18 NO
114 PSAPL1 PSAPL1 PSAPL1 14192 -0.081 0.13 NO
115 ATP6V0A4 ATP6V0A4 ATP6V0A4 14917 -0.1 0.1 NO
116 AP1S3 AP1S3 AP1S3 14958 -0.1 0.11 NO
117 AP3M2 AP3M2 AP3M2 15148 -0.11 0.12 NO
118 ARSG ARSG ARSG 15230 -0.11 0.13 NO
119 CTSL2 CTSL2 CTSL2 16075 -0.15 0.099 NO
120 AP3B2 AP3B2 AP3B2 17580 -0.26 0.052 NO

Figure S1.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA AT1R PATHWAY.

Figure S2.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA AT1R PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA BCR PATHWAY

Table S2.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 BTK BTK BTK 265 0.44 0.11 YES
2 CD79A CD79A CD79A 382 0.4 0.22 YES
3 CD79B CD79B CD79B 404 0.39 0.33 YES
4 PRKCB PRKCB PRKCB 570 0.34 0.42 YES
5 VAV1 VAV1 VAV1 657 0.31 0.5 YES
6 NFATC1 NFATC1 NFATC1 1335 0.2 0.52 YES
7 BLNK BLNK BLNK 1713 0.16 0.55 YES
8 PPP3CC PPP3CC PPP3CC 1763 0.15 0.59 YES
9 FOS FOS FOS 1947 0.14 0.62 YES
10 PRKCA PRKCA PRKCA 2078 0.13 0.65 YES
11 LYN LYN LYN 2218 0.12 0.67 YES
12 GRB2 GRB2 GRB2 3635 0.059 0.61 NO
13 PPP3CA PPP3CA PPP3CA 4005 0.05 0.61 NO
14 SHC1 SHC1 SHC1 4213 0.046 0.61 NO
15 MAPK3 MAPK3 MAPK3 4466 0.041 0.61 NO
16 MAP2K1 MAP2K1 MAP2K1 4951 0.033 0.59 NO
17 CALM1 CALM1 CALM1 6900 0.0079 0.49 NO
18 JUN JUN JUN 6918 0.0077 0.49 NO
19 CALM3 CALM3 CALM3 7280 0.0038 0.47 NO
20 PPP3CB PPP3CB PPP3CB 7905 -0.0018 0.44 NO
21 RAC1 RAC1 RAC1 7911 -0.0019 0.44 NO
22 MAPK14 MAPK14 MAPK14 8248 -0.0052 0.42 NO
23 CALM2 CALM2 CALM2 8818 -0.011 0.39 NO
24 NFATC2 NFATC2 NFATC2 9968 -0.022 0.34 NO
25 MAP3K1 MAP3K1 MAP3K1 10162 -0.024 0.33 NO
26 SYK SYK SYK 10196 -0.024 0.34 NO
27 SOS1 SOS1 SOS1 10277 -0.025 0.34 NO
28 RAF1 RAF1 RAF1 10721 -0.029 0.33 NO
29 NFATC4 NFATC4 NFATC4 11424 -0.037 0.3 NO
30 ELK1 ELK1 ELK1 13064 -0.058 0.23 NO
31 MAPK8 MAPK8 MAPK8 13477 -0.066 0.22 NO
32 NFATC3 NFATC3 NFATC3 14097 -0.078 0.21 NO
33 PLCG1 PLCG1 PLCG1 14710 -0.095 0.21 NO

Figure S3.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA BCR PATHWAY.

Figure S4.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA BCR PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA EGF PATHWAY

Table S3.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ITK ITK ITK 23 0.67 0.04 YES
2 CD3D CD3D CD3D 36 0.63 0.078 YES
3 CD247 CD247 CD247 37 0.63 0.12 YES
4 ICOS ICOS ICOS 50 0.6 0.15 YES
5 GRAP2 GRAP2 GRAP2 70 0.58 0.19 YES
6 CD3E CD3E CD3E 74 0.57 0.22 YES
7 CTLA4 CTLA4 CTLA4 95 0.55 0.26 YES
8 ZAP70 ZAP70 ZAP70 114 0.53 0.29 YES
9 CD40LG CD40LG CD40LG 133 0.52 0.32 YES
10 CD3G CD3G CD3G 159 0.5 0.35 YES
11 CD8A CD8A CD8A 176 0.49 0.38 YES
12 IFNG IFNG IFNG 276 0.44 0.4 YES
13 PTPRC PTPRC PTPRC 306 0.42 0.42 YES
14 LCK LCK LCK 379 0.4 0.44 YES
15 PIK3CG PIK3CG PIK3CG 383 0.39 0.47 YES
16 IL10 IL10 IL10 395 0.39 0.49 YES
17 LCP2 LCP2 LCP2 416 0.38 0.51 YES
18 PDCD1 PDCD1 PDCD1 441 0.38 0.54 YES
19 TNF TNF TNF 596 0.33 0.55 YES
20 VAV3 VAV3 VAV3 600 0.33 0.57 YES
21 VAV1 VAV1 VAV1 657 0.31 0.58 YES
22 PIK3R5 PIK3R5 PIK3R5 682 0.31 0.6 YES
23 CD8B CD8B CD8B 874 0.27 0.61 YES
24 CD28 CD28 CD28 892 0.26 0.62 YES
25 MAPK11 MAPK11 MAPK11 1035 0.24 0.63 YES
26 AKT3 AKT3 AKT3 1136 0.22 0.64 YES
27 CD4 CD4 CD4 1300 0.2 0.64 YES
28 CBLC CBLC CBLC 1302 0.2 0.66 YES
29 NFATC1 NFATC1 NFATC1 1335 0.2 0.66 YES
30 LAT LAT LAT 1451 0.18 0.67 YES
31 CSF2 CSF2 CSF2 1553 0.17 0.68 YES
32 PPP3CC PPP3CC PPP3CC 1763 0.15 0.67 YES
33 PIK3CD PIK3CD PIK3CD 1780 0.15 0.68 YES
34 RASGRP1 RASGRP1 RASGRP1 1853 0.14 0.69 YES
35 FOS FOS FOS 1947 0.14 0.69 YES
36 NFKBIE NFKBIE NFKBIE 2088 0.13 0.69 YES
37 CARD11 CARD11 CARD11 2109 0.12 0.7 YES
38 NFKB1 NFKB1 NFKB1 2487 0.1 0.68 NO
39 NFKBIA NFKBIA NFKBIA 2998 0.079 0.66 NO
40 NCK1 NCK1 NCK1 3000 0.079 0.66 NO
41 NFKBIB NFKBIB NFKBIB 3170 0.073 0.66 NO
42 MALT1 MALT1 MALT1 3295 0.069 0.66 NO
43 PAK3 PAK3 PAK3 3318 0.068 0.66 NO
44 CHP CHP CHP 3341 0.067 0.66 NO
45 MAPK9 MAPK9 MAPK9 3541 0.062 0.66 NO
46 MAPK12 MAPK12 MAPK12 3601 0.06 0.66 NO
47 GRB2 GRB2 GRB2 3635 0.059 0.66 NO
48 PPP3CA PPP3CA PPP3CA 4005 0.05 0.64 NO
49 PIK3CA PIK3CA PIK3CA 4051 0.049 0.64 NO
50 IKBKG IKBKG IKBKG 4278 0.044 0.63 NO
51 PIK3CB PIK3CB PIK3CB 4307 0.044 0.63 NO
52 MAPK3 MAPK3 MAPK3 4466 0.041 0.63 NO
53 BCL10 BCL10 BCL10 4710 0.037 0.62 NO
54 MAP3K14 MAP3K14 MAP3K14 4764 0.036 0.62 NO
55 MAPK1 MAPK1 MAPK1 4876 0.034 0.61 NO
56 VAV2 VAV2 VAV2 4886 0.034 0.62 NO
57 MAP2K1 MAP2K1 MAP2K1 4951 0.033 0.61 NO
58 CBLB CBLB CBLB 5005 0.032 0.61 NO
59 MAPK13 MAPK13 MAPK13 5260 0.029 0.6 NO
60 PTPN6 PTPN6 PTPN6 5289 0.028 0.6 NO
61 RHOA RHOA RHOA 5425 0.026 0.6 NO
62 RELA RELA RELA 5705 0.022 0.58 NO
63 PRKCQ PRKCQ PRKCQ 5889 0.02 0.57 NO
64 PIK3R3 PIK3R3 PIK3R3 5924 0.02 0.57 NO
65 MAP2K7 MAP2K7 MAP2K7 5948 0.019 0.57 NO
66 AKT1 AKT1 AKT1 6039 0.018 0.57 NO
67 MAP3K8 MAP3K8 MAP3K8 6062 0.018 0.57 NO
68 CDC42 CDC42 CDC42 6201 0.016 0.56 NO
69 PAK2 PAK2 PAK2 6512 0.012 0.55 NO
70 JUN JUN JUN 6918 0.0077 0.52 NO
71 SOS2 SOS2 SOS2 7129 0.0056 0.51 NO
72 MAP2K2 MAP2K2 MAP2K2 7220 0.0045 0.51 NO
73 PPP3CB PPP3CB PPP3CB 7905 -0.0018 0.47 NO
74 MAPK14 MAPK14 MAPK14 8248 -0.0052 0.45 NO
75 CBL CBL CBL 8800 -0.01 0.42 NO
76 AKT2 AKT2 AKT2 8822 -0.011 0.42 NO
77 NRAS NRAS NRAS 8946 -0.012 0.42 NO
78 PPP3R1 PPP3R1 PPP3R1 9052 -0.013 0.41 NO
79 PDK1 PDK1 PDK1 9191 -0.014 0.41 NO
80 DLG1 DLG1 DLG1 9401 -0.016 0.4 NO
81 PAK6 PAK6 PAK6 9633 -0.018 0.38 NO
82 NFATC2 NFATC2 NFATC2 9968 -0.022 0.37 NO
83 CHUK CHUK CHUK 10051 -0.023 0.36 NO
84 IKBKB IKBKB IKBKB 10068 -0.023 0.36 NO
85 SOS1 SOS1 SOS1 10277 -0.025 0.36 NO
86 NCK2 NCK2 NCK2 10525 -0.027 0.34 NO
87 RAF1 RAF1 RAF1 10721 -0.029 0.34 NO
88 MAP3K7 MAP3K7 MAP3K7 11038 -0.032 0.32 NO
89 NFAT5 NFAT5 NFAT5 11125 -0.033 0.32 NO
90 PAK4 PAK4 PAK4 11349 -0.036 0.31 NO
91 NFATC4 NFATC4 NFATC4 11424 -0.037 0.3 NO
92 KRAS KRAS KRAS 11827 -0.042 0.29 NO
93 PAK1 PAK1 PAK1 12201 -0.046 0.27 NO
94 GSK3B GSK3B GSK3B 12514 -0.05 0.26 NO
95 TEC TEC TEC 13119 -0.059 0.23 NO
96 CDK4 CDK4 CDK4 13516 -0.066 0.21 NO
97 PIK3R2 PIK3R2 PIK3R2 13983 -0.076 0.19 NO
98 NFATC3 NFATC3 NFATC3 14097 -0.078 0.19 NO
99 PIK3R1 PIK3R1 PIK3R1 14215 -0.082 0.18 NO
100 PLCG1 PLCG1 PLCG1 14710 -0.095 0.16 NO
101 IL5 IL5 IL5 15388 -0.12 0.14 NO
102 FYN FYN FYN 16201 -0.16 0.1 NO
103 CHP2 CHP2 CHP2 16955 -0.2 0.072 NO
104 PAK7 PAK7 PAK7 17208 -0.22 0.072 NO

Figure S5.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA EGF PATHWAY.

Figure S6.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA EGF PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA FAS PATHWAY

Table S4.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CTSK CTSK CTSK 61 0.58 0.04 YES
2 CXCL9 CXCL9 CXCL9 77 0.56 0.08 YES
3 TLR8 TLR8 TLR8 152 0.51 0.11 YES
4 CCL5 CCL5 CCL5 182 0.49 0.15 YES
5 CD80 CD80 CD80 215 0.47 0.18 YES
6 CCL4 CCL4 CCL4 277 0.44 0.21 YES
7 CXCL11 CXCL11 CXCL11 307 0.42 0.24 YES
8 LY96 LY96 LY96 313 0.42 0.27 YES
9 TLR6 TLR6 TLR6 371 0.4 0.3 YES
10 PIK3CG PIK3CG PIK3CG 383 0.39 0.32 YES
11 TLR7 TLR7 TLR7 393 0.39 0.35 YES
12 CD86 CD86 CD86 396 0.39 0.38 YES
13 IL6 IL6 IL6 432 0.38 0.41 YES
14 CCL3 CCL3 CCL3 484 0.36 0.43 YES
15 CXCL10 CXCL10 CXCL10 492 0.36 0.46 YES
16 TNF TNF TNF 596 0.33 0.48 YES
17 PIK3R5 PIK3R5 PIK3R5 682 0.31 0.49 YES
18 IL1B IL1B IL1B 734 0.29 0.51 YES
19 TLR2 TLR2 TLR2 768 0.29 0.53 YES
20 TICAM2 TICAM2 TICAM2 814 0.28 0.55 YES
21 TLR4 TLR4 TLR4 835 0.28 0.57 YES
22 IL12B IL12B IL12B 921 0.26 0.58 YES
23 CD14 CD14 CD14 989 0.25 0.6 YES
24 IL12A IL12A IL12A 1019 0.24 0.61 YES
25 MAPK11 MAPK11 MAPK11 1035 0.24 0.63 YES
26 TLR1 TLR1 TLR1 1080 0.23 0.64 YES
27 AKT3 AKT3 AKT3 1136 0.22 0.66 YES
28 CD40 CD40 CD40 1247 0.21 0.67 YES
29 LBP LBP LBP 1313 0.2 0.68 YES
30 SPP1 SPP1 SPP1 1361 0.19 0.69 YES
31 IL8 IL8 IL8 1548 0.17 0.69 YES
32 PIK3CD PIK3CD PIK3CD 1780 0.15 0.69 YES
33 TICAM1 TICAM1 TICAM1 1854 0.14 0.7 YES
34 TLR3 TLR3 TLR3 1902 0.14 0.71 YES
35 FOS FOS FOS 1947 0.14 0.71 YES
36 IRF7 IRF7 IRF7 2025 0.13 0.72 YES
37 TLR5 TLR5 TLR5 2045 0.13 0.73 YES
38 IFNB1 IFNB1 IFNB1 2122 0.12 0.73 YES
39 IFNAR2 IFNAR2 IFNAR2 2478 0.1 0.72 NO
40 NFKB1 NFKB1 NFKB1 2487 0.1 0.73 NO
41 IKBKE IKBKE IKBKE 2538 0.099 0.73 NO
42 STAT1 STAT1 STAT1 2983 0.08 0.71 NO
43 NFKBIA NFKBIA NFKBIA 2998 0.079 0.72 NO
44 IRAK1 IRAK1 IRAK1 3252 0.07 0.71 NO
45 MAPK9 MAPK9 MAPK9 3541 0.062 0.7 NO
46 IRF5 IRF5 IRF5 3596 0.06 0.7 NO
47 MAPK12 MAPK12 MAPK12 3601 0.06 0.7 NO
48 MYD88 MYD88 MYD88 3631 0.059 0.71 NO
49 IRF3 IRF3 IRF3 3768 0.056 0.7 NO
50 TRAF3 TRAF3 TRAF3 3893 0.053 0.7 NO
51 PIK3CA PIK3CA PIK3CA 4051 0.049 0.7 NO
52 IKBKG IKBKG IKBKG 4278 0.044 0.69 NO
53 PIK3CB PIK3CB PIK3CB 4307 0.044 0.69 NO
54 IFNAR1 IFNAR1 IFNAR1 4430 0.042 0.69 NO
55 MAPK3 MAPK3 MAPK3 4466 0.041 0.69 NO
56 MAPK1 MAPK1 MAPK1 4876 0.034 0.67 NO
57 MAP2K1 MAP2K1 MAP2K1 4951 0.033 0.67 NO
58 MAPK13 MAPK13 MAPK13 5260 0.029 0.65 NO
59 RELA RELA RELA 5705 0.022 0.63 NO
60 RIPK1 RIPK1 RIPK1 5817 0.021 0.62 NO
61 PIK3R3 PIK3R3 PIK3R3 5924 0.02 0.62 NO
62 MAP2K7 MAP2K7 MAP2K7 5948 0.019 0.62 NO
63 MAP2K3 MAP2K3 MAP2K3 6021 0.018 0.62 NO
64 AKT1 AKT1 AKT1 6039 0.018 0.62 NO
65 MAP3K8 MAP3K8 MAP3K8 6062 0.018 0.62 NO
66 IRAK4 IRAK4 IRAK4 6363 0.014 0.6 NO
67 JUN JUN JUN 6918 0.0077 0.57 NO
68 TAB1 TAB1 TAB1 7114 0.0057 0.56 NO
69 MAP2K2 MAP2K2 MAP2K2 7220 0.0045 0.56 NO
70 TOLLIP TOLLIP TOLLIP 7230 0.0044 0.56 NO
71 TAB2 TAB2 TAB2 7473 0.0022 0.55 NO
72 FADD FADD FADD 7841 -0.0013 0.53 NO
73 RAC1 RAC1 RAC1 7911 -0.0019 0.52 NO
74 TRAF6 TRAF6 TRAF6 8046 -0.0032 0.52 NO
75 MAPK14 MAPK14 MAPK14 8248 -0.0052 0.5 NO
76 AKT2 AKT2 AKT2 8822 -0.011 0.47 NO
77 CASP8 CASP8 CASP8 8895 -0.012 0.47 NO
78 TIRAP TIRAP TIRAP 9387 -0.016 0.45 NO
79 CHUK CHUK CHUK 10051 -0.023 0.41 NO
80 IKBKB IKBKB IKBKB 10068 -0.023 0.41 NO
81 MAP3K7 MAP3K7 MAP3K7 11038 -0.032 0.36 NO
82 TLR9 TLR9 TLR9 12412 -0.049 0.29 NO
83 MAP2K4 MAP2K4 MAP2K4 12517 -0.051 0.29 NO
84 MAPK8 MAPK8 MAPK8 13477 -0.066 0.24 NO
85 PIK3R2 PIK3R2 PIK3R2 13983 -0.076 0.22 NO
86 PIK3R1 PIK3R1 PIK3R1 14215 -0.082 0.21 NO
87 MAP2K6 MAP2K6 MAP2K6 15756 -0.13 0.14 NO
88 MAPK10 MAPK10 MAPK10 15938 -0.14 0.14 NO

Figure S7.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA FAS PATHWAY.

Figure S8.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA FAS PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA FCER1 PATHWAY

Table S5.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CCL11 CCL11 CCL11 3 0.88 0.09 YES
2 CCL5 CCL5 CCL5 182 0.49 0.13 YES
3 NLRP3 NLRP3 NLRP3 384 0.39 0.16 YES
4 IL6 IL6 IL6 432 0.38 0.2 YES
5 PSTPIP1 PSTPIP1 PSTPIP1 449 0.37 0.23 YES
6 CASP5 CASP5 CASP5 485 0.36 0.27 YES
7 BIRC3 BIRC3 BIRC3 507 0.35 0.3 YES
8 MEFV MEFV MEFV 530 0.35 0.34 YES
9 CCL8 CCL8 CCL8 558 0.34 0.37 YES
10 CASP1 CASP1 CASP1 567 0.34 0.4 YES
11 TNF TNF TNF 596 0.33 0.44 YES
12 CXCL1 CXCL1 CXCL1 619 0.32 0.47 YES
13 IL1B IL1B IL1B 734 0.29 0.49 YES
14 CCL2 CCL2 CCL2 746 0.29 0.52 YES
15 IL18 IL18 IL18 779 0.28 0.55 YES
16 CCL7 CCL7 CCL7 793 0.28 0.58 YES
17 NLRC4 NLRC4 NLRC4 938 0.26 0.6 YES
18 CCL13 CCL13 CCL13 1006 0.24 0.62 YES
19 MAPK11 MAPK11 MAPK11 1035 0.24 0.64 YES
20 CXCL2 CXCL2 CXCL2 1124 0.22 0.66 YES
21 CARD9 CARD9 CARD9 1199 0.21 0.68 YES
22 TNFAIP3 TNFAIP3 TNFAIP3 1231 0.21 0.7 YES
23 NOD2 NOD2 NOD2 1289 0.2 0.71 YES
24 CARD6 CARD6 CARD6 1358 0.19 0.73 YES
25 NLRP1 NLRP1 NLRP1 1394 0.19 0.75 YES
26 PYCARD PYCARD PYCARD 1410 0.19 0.77 YES
27 IL8 IL8 IL8 1548 0.17 0.78 YES
28 RIPK2 RIPK2 RIPK2 1751 0.15 0.78 YES
29 NFKB1 NFKB1 NFKB1 2487 0.1 0.75 NO
30 NFKBIA NFKBIA NFKBIA 2998 0.079 0.73 NO
31 NFKBIB NFKBIB NFKBIB 3170 0.073 0.73 NO
32 NAIP NAIP NAIP 3272 0.07 0.73 NO
33 MAPK9 MAPK9 MAPK9 3541 0.062 0.72 NO
34 MAPK12 MAPK12 MAPK12 3601 0.06 0.73 NO
35 NOD1 NOD1 NOD1 3974 0.051 0.71 NO
36 CARD8 CARD8 CARD8 4116 0.048 0.71 NO
37 IKBKG IKBKG IKBKG 4278 0.044 0.71 NO
38 MAPK3 MAPK3 MAPK3 4466 0.041 0.7 NO
39 MAPK1 MAPK1 MAPK1 4876 0.034 0.68 NO
40 MAPK13 MAPK13 MAPK13 5260 0.029 0.66 NO
41 BIRC2 BIRC2 BIRC2 5551 0.025 0.65 NO
42 RELA RELA RELA 5705 0.022 0.64 NO
43 SUGT1 SUGT1 SUGT1 6331 0.014 0.61 NO
44 XIAP XIAP XIAP 6472 0.013 0.61 NO
45 HSP90AA1 HSP90AA1 HSP90AA1 6526 0.012 0.6 NO
46 TRIP6 TRIP6 TRIP6 6827 0.0086 0.59 NO
47 TAB1 TAB1 TAB1 7114 0.0057 0.57 NO
48 TAB3 TAB3 TAB3 7367 0.0031 0.56 NO
49 TAB2 TAB2 TAB2 7473 0.0022 0.56 NO
50 TRAF6 TRAF6 TRAF6 8046 -0.0032 0.52 NO
51 MAPK14 MAPK14 MAPK14 8248 -0.0052 0.51 NO
52 CASP8 CASP8 CASP8 8895 -0.012 0.48 NO
53 HSP90B1 HSP90B1 HSP90B1 9566 -0.018 0.45 NO
54 CHUK CHUK CHUK 10051 -0.023 0.42 NO
55 IKBKB IKBKB IKBKB 10068 -0.023 0.42 NO
56 ERBB2IP ERBB2IP ERBB2IP 11035 -0.032 0.37 NO
57 MAP3K7 MAP3K7 MAP3K7 11038 -0.032 0.38 NO
58 PYDC1 PYDC1 PYDC1 13464 -0.065 0.25 NO
59 MAPK8 MAPK8 MAPK8 13477 -0.066 0.26 NO
60 MAPK10 MAPK10 MAPK10 15938 -0.14 0.14 NO

Figure S9.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA FCER1 PATHWAY.

Figure S10.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA FCER1 PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA HIVNEF PATHWAY

Table S6.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CXCL10 CXCL10 CXCL10 492 0.36 0.053 YES
2 TNF TNF TNF 596 0.33 0.12 YES
3 IL12B IL12B IL12B 921 0.26 0.16 YES
4 IL12A IL12A IL12A 1019 0.24 0.21 YES
5 MAPK11 MAPK11 MAPK11 1035 0.24 0.26 YES
6 IFNE IFNE IFNE 1441 0.18 0.28 YES
7 IL8 IL8 IL8 1548 0.17 0.31 YES
8 IRF7 IRF7 IRF7 2025 0.13 0.32 YES
9 IFIH1 IFIH1 IFIH1 2054 0.13 0.34 YES
10 IFNB1 IFNB1 IFNB1 2122 0.12 0.37 YES
11 NFKB1 NFKB1 NFKB1 2487 0.1 0.37 YES
12 CYLD CYLD CYLD 2530 0.099 0.39 YES
13 IKBKE IKBKE IKBKE 2538 0.099 0.41 YES
14 ISG15 ISG15 ISG15 2611 0.095 0.43 YES
15 DHX58 DHX58 DHX58 2629 0.094 0.45 YES
16 DDX58 DDX58 DDX58 2804 0.087 0.46 YES
17 NFKBIA NFKBIA NFKBIA 2998 0.079 0.46 YES
18 CASP10 CASP10 CASP10 3077 0.076 0.48 YES
19 NFKBIB NFKBIB NFKBIB 3170 0.073 0.49 YES
20 TMEM173 TMEM173 TMEM173 3204 0.072 0.5 YES
21 TRAF2 TRAF2 TRAF2 3220 0.072 0.52 YES
22 RNF125 RNF125 RNF125 3377 0.066 0.52 YES
23 MAPK9 MAPK9 MAPK9 3541 0.062 0.53 YES
24 TRADD TRADD TRADD 3574 0.061 0.54 YES
25 MAPK12 MAPK12 MAPK12 3601 0.06 0.55 YES
26 IRF3 IRF3 IRF3 3768 0.056 0.56 YES
27 TRAF3 TRAF3 TRAF3 3893 0.053 0.56 YES
28 IKBKG IKBKG IKBKG 4278 0.044 0.55 NO
29 ATG12 ATG12 ATG12 4333 0.043 0.56 NO
30 MAPK13 MAPK13 MAPK13 5260 0.029 0.51 NO
31 RELA RELA RELA 5705 0.022 0.49 NO
32 RIPK1 RIPK1 RIPK1 5817 0.021 0.49 NO
33 TBK1 TBK1 TBK1 6705 0.01 0.45 NO
34 TANK TANK TANK 6893 0.008 0.44 NO
35 NLRX1 NLRX1 NLRX1 7687 0.000072 0.4 NO
36 FADD FADD FADD 7841 -0.0013 0.39 NO
37 AZI2 AZI2 AZI2 8045 -0.0031 0.38 NO
38 TRAF6 TRAF6 TRAF6 8046 -0.0032 0.38 NO
39 MAPK14 MAPK14 MAPK14 8248 -0.0052 0.37 NO
40 CASP8 CASP8 CASP8 8895 -0.012 0.34 NO
41 DDX3X DDX3X DDX3X 8979 -0.012 0.33 NO
42 OTUD5 OTUD5 OTUD5 9747 -0.019 0.3 NO
43 CHUK CHUK CHUK 10051 -0.023 0.29 NO
44 PIN1 PIN1 PIN1 10065 -0.023 0.29 NO
45 IKBKB IKBKB IKBKB 10068 -0.023 0.3 NO
46 MAP3K1 MAP3K1 MAP3K1 10162 -0.024 0.3 NO
47 ATG5 ATG5 ATG5 10527 -0.028 0.28 NO
48 MAVS MAVS MAVS 10612 -0.028 0.28 NO
49 DAK DAK DAK 10984 -0.032 0.27 NO
50 MAP3K7 MAP3K7 MAP3K7 11038 -0.032 0.28 NO
51 TRIM25 TRIM25 TRIM25 11629 -0.039 0.25 NO
52 SIKE1 SIKE1 SIKE1 13465 -0.066 0.17 NO
53 MAPK8 MAPK8 MAPK8 13477 -0.066 0.18 NO
54 TBKBP1 TBKBP1 TBKBP1 15409 -0.12 0.1 NO
55 MAPK10 MAPK10 MAPK10 15938 -0.14 0.11 NO
56 IFNW1 IFNW1 IFNW1 16204 -0.16 0.13 NO

Figure S11.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA HIVNEF PATHWAY.

Figure S12.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA HIVNEF PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA IL2RB PATHWAY

Table S7.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CSF2RB CSF2RB CSF2RB 247 0.45 0.049 YES
2 PIK3CG PIK3CG PIK3CG 383 0.39 0.095 YES
3 BIRC3 BIRC3 BIRC3 507 0.35 0.14 YES
4 TNF TNF TNF 596 0.33 0.18 YES
5 IL3RA IL3RA IL3RA 660 0.31 0.22 YES
6 PIK3R5 PIK3R5 PIK3R5 682 0.31 0.26 YES
7 IL1B IL1B IL1B 734 0.29 0.3 YES
8 IRAK2 IRAK2 IRAK2 941 0.25 0.32 YES
9 AKT3 AKT3 AKT3 1136 0.22 0.34 YES
10 TNFSF10 TNFSF10 TNFSF10 1406 0.19 0.35 YES
11 FAS FAS FAS 1424 0.19 0.38 YES
12 TNFRSF10A TNFRSF10A TNFRSF10A 1471 0.18 0.4 YES
13 IRAK3 IRAK3 IRAK3 1599 0.17 0.41 YES
14 TNFRSF10C TNFRSF10C TNFRSF10C 1691 0.16 0.43 YES
15 PPP3CC PPP3CC PPP3CC 1763 0.15 0.45 YES
16 PIK3CD PIK3CD PIK3CD 1780 0.15 0.47 YES
17 NFKB1 NFKB1 NFKB1 2487 0.1 0.44 YES
18 IL1RAP IL1RAP IL1RAP 2628 0.094 0.45 YES
19 BID BID BID 2632 0.094 0.46 YES
20 NFKBIA NFKBIA NFKBIA 2998 0.079 0.45 YES
21 CASP10 CASP10 CASP10 3077 0.076 0.46 YES
22 IL1A IL1A IL1A 3095 0.075 0.47 YES
23 TRAF2 TRAF2 TRAF2 3220 0.072 0.47 YES
24 IRAK1 IRAK1 IRAK1 3252 0.07 0.48 YES
25 CHP CHP CHP 3341 0.067 0.48 YES
26 CAPN1 CAPN1 CAPN1 3452 0.064 0.48 YES
27 TRADD TRADD TRADD 3574 0.061 0.49 YES
28 ENDOD1 ENDOD1 ENDOD1 3606 0.06 0.49 YES
29 MYD88 MYD88 MYD88 3631 0.059 0.5 YES
30 BAX BAX BAX 3685 0.058 0.5 YES
31 CAPN2 CAPN2 CAPN2 3942 0.052 0.5 YES
32 TNFRSF10D TNFRSF10D TNFRSF10D 3969 0.051 0.5 YES
33 PPP3CA PPP3CA PPP3CA 4005 0.05 0.51 YES
34 PIK3CA PIK3CA PIK3CA 4051 0.049 0.51 YES
35 CASP7 CASP7 CASP7 4238 0.046 0.51 YES
36 BCL2L1 BCL2L1 BCL2L1 4264 0.045 0.51 YES
37 IKBKG IKBKG IKBKG 4278 0.044 0.52 YES
38 PRKX PRKX PRKX 4302 0.044 0.52 YES
39 PIK3CB PIK3CB PIK3CB 4307 0.044 0.53 YES
40 CFLAR CFLAR CFLAR 4316 0.044 0.54 YES
41 ENDOG ENDOG ENDOG 4463 0.041 0.53 NO
42 TNFRSF1A TNFRSF1A TNFRSF1A 4643 0.038 0.53 NO
43 MAP3K14 MAP3K14 MAP3K14 4764 0.036 0.53 NO
44 TNFRSF10B TNFRSF10B TNFRSF10B 5115 0.031 0.51 NO
45 CYCS CYCS CYCS 5539 0.025 0.49 NO
46 BIRC2 BIRC2 BIRC2 5551 0.025 0.5 NO
47 TP53 TP53 TP53 5561 0.025 0.5 NO
48 RELA RELA RELA 5705 0.022 0.49 NO
49 RIPK1 RIPK1 RIPK1 5817 0.021 0.49 NO
50 PRKACB PRKACB PRKACB 5888 0.02 0.49 NO
51 PIK3R3 PIK3R3 PIK3R3 5924 0.02 0.49 NO
52 AIFM1 AIFM1 AIFM1 5964 0.019 0.49 NO
53 AKT1 AKT1 AKT1 6039 0.018 0.49 NO
54 IRAK4 IRAK4 IRAK4 6363 0.014 0.47 NO
55 BAD BAD BAD 6382 0.014 0.48 NO
56 IL1R1 IL1R1 IL1R1 6404 0.014 0.48 NO
57 CASP3 CASP3 CASP3 6441 0.013 0.48 NO
58 XIAP XIAP XIAP 6472 0.013 0.48 NO
59 PRKAR1A PRKAR1A PRKAR1A 6546 0.012 0.47 NO
60 NTRK1 NTRK1 NTRK1 7739 -0.00044 0.41 NO
61 FADD FADD FADD 7841 -0.0013 0.4 NO
62 PPP3CB PPP3CB PPP3CB 7905 -0.0018 0.4 NO
63 ATM ATM ATM 8523 -0.0077 0.37 NO
64 AKT2 AKT2 AKT2 8822 -0.011 0.35 NO
65 CASP8 CASP8 CASP8 8895 -0.012 0.35 NO
66 PPP3R1 PPP3R1 PPP3R1 9052 -0.013 0.34 NO
67 EXOG EXOG EXOG 9956 -0.022 0.3 NO
68 CHUK CHUK CHUK 10051 -0.023 0.3 NO
69 IKBKB IKBKB IKBKB 10068 -0.023 0.3 NO
70 CASP6 CASP6 CASP6 10360 -0.026 0.29 NO
71 PRKAR2A PRKAR2A PRKAR2A 11213 -0.034 0.24 NO
72 DFFB DFFB DFFB 11718 -0.04 0.22 NO
73 PRKACA PRKACA PRKACA 12018 -0.044 0.21 NO
74 DFFA DFFA DFFA 12265 -0.047 0.21 NO
75 PRKAR1B PRKAR1B PRKAR1B 13350 -0.063 0.16 NO
76 PRKAR2B PRKAR2B PRKAR2B 13793 -0.072 0.14 NO
77 APAF1 APAF1 APAF1 13868 -0.073 0.15 NO
78 PIK3R2 PIK3R2 PIK3R2 13983 -0.076 0.15 NO
79 PIK3R1 PIK3R1 PIK3R1 14215 -0.082 0.15 NO
80 CASP9 CASP9 CASP9 14538 -0.09 0.14 NO
81 NGF NGF NGF 15943 -0.14 0.089 NO
82 BCL2 BCL2 BCL2 16498 -0.17 0.083 NO
83 CHP2 CHP2 CHP2 16955 -0.2 0.086 NO

Figure S13.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA IL2RB PATHWAY.

Figure S14.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA IL2RB PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA GSK3 PATHWAY

Table S8.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 FASLG FASLG FASLG 91 0.55 0.25 YES
2 ARHGDIB ARHGDIB ARHGDIB 1186 0.21 0.29 YES
3 FAS FAS FAS 1424 0.19 0.36 YES
4 PTPN13 PTPN13 PTPN13 1499 0.18 0.44 YES
5 RIPK2 RIPK2 RIPK2 1751 0.15 0.5 YES
6 LMNA LMNA LMNA 2489 0.1 0.51 YES
7 CASP10 CASP10 CASP10 3077 0.076 0.51 YES
8 FAF1 FAF1 FAF1 4086 0.048 0.48 YES
9 RB1 RB1 RB1 4099 0.048 0.5 YES
10 CASP7 CASP7 CASP7 4238 0.046 0.51 YES
11 CFLAR CFLAR CFLAR 4316 0.044 0.53 YES
12 SPTAN1 SPTAN1 SPTAN1 6266 0.015 0.43 NO
13 CASP3 CASP3 CASP3 6441 0.013 0.43 NO
14 PAK2 PAK2 PAK2 6512 0.012 0.43 NO
15 JUN JUN JUN 6918 0.0077 0.41 NO
16 FADD FADD FADD 7841 -0.0013 0.36 NO
17 CASP8 CASP8 CASP8 8895 -0.012 0.31 NO
18 LMNB2 LMNB2 LMNB2 9173 -0.014 0.3 NO
19 DAXX DAXX DAXX 9600 -0.018 0.29 NO
20 MAP3K1 MAP3K1 MAP3K1 10162 -0.024 0.27 NO
21 CASP6 CASP6 CASP6 10360 -0.026 0.27 NO
22 PRKDC PRKDC PRKDC 10971 -0.032 0.25 NO
23 MAP3K7 MAP3K7 MAP3K7 11038 -0.032 0.26 NO
24 DFFB DFFB DFFB 11718 -0.04 0.24 NO
25 PAK1 PAK1 PAK1 12201 -0.046 0.24 NO
26 DFFA DFFA DFFA 12265 -0.047 0.26 NO
27 MAP2K4 MAP2K4 MAP2K4 12517 -0.051 0.27 NO
28 PARP1 PARP1 PARP1 12916 -0.056 0.27 NO
29 MAPK8 MAPK8 MAPK8 13477 -0.066 0.27 NO

Figure S15.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA GSK3 PATHWAY.

Figure S16.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA GSK3 PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA KERATINOCYTE PATHWAY

Table S9.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 AIM2 AIM2 AIM2 126 0.52 0.088 YES
2 CCL5 CCL5 CCL5 182 0.49 0.17 YES
3 CCL4 CCL4 CCL4 277 0.44 0.25 YES
4 IL6 IL6 IL6 432 0.38 0.31 YES
5 CXCL10 CXCL10 CXCL10 492 0.36 0.37 YES
6 CCL4L2 CCL4L2 CCL4L2 552 0.34 0.43 YES
7 CASP1 CASP1 CASP1 567 0.34 0.49 YES
8 IL1B IL1B IL1B 734 0.29 0.53 YES
9 ZBP1 ZBP1 ZBP1 749 0.29 0.58 YES
10 IL18 IL18 IL18 779 0.28 0.63 YES
11 PYCARD PYCARD PYCARD 1410 0.19 0.63 YES
12 RIPK3 RIPK3 RIPK3 1412 0.19 0.67 YES
13 IRF7 IRF7 IRF7 2025 0.13 0.66 YES
14 IFNB1 IFNB1 IFNB1 2122 0.12 0.67 YES
15 NFKB1 NFKB1 NFKB1 2487 0.1 0.67 YES
16 IKBKE IKBKE IKBKE 2538 0.099 0.69 YES
17 DDX58 DDX58 DDX58 2804 0.087 0.69 YES
18 NFKBIA NFKBIA NFKBIA 2998 0.079 0.69 YES
19 TREX1 TREX1 TREX1 3073 0.076 0.7 YES
20 NFKBIB NFKBIB NFKBIB 3170 0.073 0.71 YES
21 TMEM173 TMEM173 TMEM173 3204 0.072 0.72 YES
22 IRF3 IRF3 IRF3 3768 0.056 0.7 NO
23 IKBKG IKBKG IKBKG 4278 0.044 0.68 NO
24 POLR3GL POLR3GL POLR3GL 5441 0.026 0.62 NO
25 POLR3G POLR3G POLR3G 5575 0.024 0.62 NO
26 RELA RELA RELA 5705 0.022 0.62 NO
27 POLR3D POLR3D POLR3D 5727 0.022 0.62 NO
28 RIPK1 RIPK1 RIPK1 5817 0.021 0.62 NO
29 ADAR ADAR ADAR 6245 0.016 0.6 NO
30 POLR3H POLR3H POLR3H 6391 0.014 0.59 NO
31 TBK1 TBK1 TBK1 6705 0.01 0.58 NO
32 POLR3K POLR3K POLR3K 6727 0.0097 0.58 NO
33 IL33 IL33 IL33 7271 0.004 0.55 NO
34 POLR3C POLR3C POLR3C 7858 -0.0015 0.52 NO
35 POLR1D POLR1D POLR1D 8218 -0.0049 0.5 NO
36 POLR3A POLR3A POLR3A 8426 -0.0068 0.49 NO
37 CHUK CHUK CHUK 10051 -0.023 0.41 NO
38 IKBKB IKBKB IKBKB 10068 -0.023 0.41 NO
39 MAVS MAVS MAVS 10612 -0.028 0.39 NO
40 POLR1C POLR1C POLR1C 11815 -0.041 0.33 NO
41 POLR3F POLR3F POLR3F 13515 -0.066 0.25 NO
42 POLR3B POLR3B POLR3B 15487 -0.12 0.16 NO

Figure S17.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA KERATINOCYTE PATHWAY.

Figure S18.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA KERATINOCYTE PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA PYK2 PATHWAY

Table S10.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CD247 CD247 CD247 37 0.63 0.026 YES
2 KLRK1 KLRK1 KLRK1 41 0.62 0.054 YES
3 SH2D1A SH2D1A SH2D1A 44 0.61 0.081 YES
4 PRF1 PRF1 PRF1 53 0.6 0.11 YES
5 GZMB GZMB GZMB 62 0.58 0.13 YES
6 FASLG FASLG FASLG 91 0.55 0.16 YES
7 ZAP70 ZAP70 ZAP70 114 0.53 0.18 YES
8 NCR3 NCR3 NCR3 135 0.52 0.2 YES
9 CD244 CD244 CD244 175 0.49 0.22 YES
10 KLRD1 KLRD1 KLRD1 184 0.48 0.24 YES
11 SH2D1B SH2D1B SH2D1B 203 0.47 0.26 YES
12 KLRC3 KLRC3 KLRC3 224 0.46 0.28 YES
13 KLRC1 KLRC1 KLRC1 233 0.46 0.3 YES
14 KIR2DL4 KIR2DL4 KIR2DL4 241 0.46 0.32 YES
15 CD48 CD48 CD48 270 0.44 0.34 YES
16 IFNG IFNG IFNG 276 0.44 0.36 YES
17 ITGAL ITGAL ITGAL 309 0.42 0.38 YES
18 LCK LCK LCK 379 0.4 0.39 YES
19 PIK3CG PIK3CG PIK3CG 383 0.39 0.41 YES
20 LCP2 LCP2 LCP2 416 0.38 0.42 YES
21 PRKCB PRKCB PRKCB 570 0.34 0.43 YES
22 KIR2DS4 KIR2DS4 KIR2DS4 594 0.33 0.44 YES
23 TNF TNF TNF 596 0.33 0.46 YES
24 NCR1 NCR1 NCR1 597 0.33 0.48 YES
25 VAV3 VAV3 VAV3 600 0.33 0.49 YES
26 KIR2DL1 KIR2DL1 KIR2DL1 606 0.32 0.5 YES
27 KIR3DL1 KIR3DL1 KIR3DL1 647 0.32 0.52 YES
28 VAV1 VAV1 VAV1 657 0.31 0.53 YES
29 FCGR3A FCGR3A FCGR3A 681 0.31 0.54 YES
30 PIK3R5 PIK3R5 PIK3R5 682 0.31 0.56 YES
31 HCST HCST HCST 721 0.3 0.57 YES
32 KIR3DL2 KIR3DL2 KIR3DL2 766 0.29 0.58 YES
33 RAC2 RAC2 RAC2 770 0.29 0.59 YES
34 ITGB2 ITGB2 ITGB2 772 0.29 0.6 YES
35 ICAM1 ICAM1 ICAM1 785 0.28 0.62 YES
36 FCER1G FCER1G FCER1G 787 0.28 0.63 YES
37 ULBP2 ULBP2 ULBP2 799 0.28 0.64 YES
38 KIR2DL3 KIR2DL3 KIR2DL3 806 0.28 0.65 YES
39 TYROBP TYROBP TYROBP 986 0.25 0.65 YES
40 KLRC2 KLRC2 KLRC2 1036 0.24 0.66 YES
41 NFATC1 NFATC1 NFATC1 1335 0.2 0.65 YES
42 TNFSF10 TNFSF10 TNFSF10 1406 0.19 0.66 YES
43 FAS FAS FAS 1424 0.19 0.67 YES
44 LAT LAT LAT 1451 0.18 0.67 YES
45 HLA-B HLA-B HLA-B 1467 0.18 0.68 YES
46 TNFRSF10A TNFRSF10A TNFRSF10A 1471 0.18 0.69 YES
47 HLA-G HLA-G HLA-G 1479 0.18 0.7 YES
48 CSF2 CSF2 CSF2 1553 0.17 0.7 YES
49 FCGR3B FCGR3B FCGR3B 1593 0.17 0.7 YES
50 TNFRSF10C TNFRSF10C TNFRSF10C 1691 0.16 0.71 YES
51 PPP3CC PPP3CC PPP3CC 1763 0.15 0.71 YES
52 PIK3CD PIK3CD PIK3CD 1780 0.15 0.72 YES
53 HLA-C HLA-C HLA-C 1880 0.14 0.72 YES
54 PRKCA PRKCA PRKCA 2078 0.13 0.71 YES
55 HLA-E HLA-E HLA-E 2095 0.12 0.72 YES
56 PTK2B PTK2B PTK2B 2103 0.12 0.72 YES
57 IFNB1 IFNB1 IFNB1 2122 0.12 0.73 YES
58 HLA-A HLA-A HLA-A 2138 0.12 0.73 YES
59 MICA MICA MICA 2139 0.12 0.74 YES
60 PLCG2 PLCG2 PLCG2 2457 0.1 0.72 NO
61 IFNAR2 IFNAR2 IFNAR2 2478 0.1 0.73 NO
62 BID BID BID 2632 0.094 0.72 NO
63 IFNGR1 IFNGR1 IFNGR1 2753 0.089 0.72 NO
64 ICAM2 ICAM2 ICAM2 3167 0.073 0.7 NO
65 CHP CHP CHP 3341 0.067 0.7 NO
66 GRB2 GRB2 GRB2 3635 0.059 0.68 NO
67 SH3BP2 SH3BP2 SH3BP2 3857 0.054 0.67 NO
68 TNFRSF10D TNFRSF10D TNFRSF10D 3969 0.051 0.67 NO
69 PPP3CA PPP3CA PPP3CA 4005 0.05 0.67 NO
70 PIK3CA PIK3CA PIK3CA 4051 0.049 0.67 NO
71 SHC1 SHC1 SHC1 4213 0.046 0.66 NO
72 PIK3CB PIK3CB PIK3CB 4307 0.044 0.66 NO
73 RAC3 RAC3 RAC3 4399 0.042 0.66 NO
74 ULBP1 ULBP1 ULBP1 4426 0.042 0.66 NO
75 IFNAR1 IFNAR1 IFNAR1 4430 0.042 0.66 NO
76 MAPK3 MAPK3 MAPK3 4466 0.041 0.66 NO
77 MAPK1 MAPK1 MAPK1 4876 0.034 0.64 NO
78 VAV2 VAV2 VAV2 4886 0.034 0.64 NO
79 MAP2K1 MAP2K1 MAP2K1 4951 0.033 0.64 NO
80 TNFRSF10B TNFRSF10B TNFRSF10B 5115 0.031 0.63 NO
81 HRAS HRAS HRAS 5172 0.03 0.63 NO
82 PTPN6 PTPN6 PTPN6 5289 0.028 0.62 NO
83 IFNGR2 IFNGR2 IFNGR2 5451 0.026 0.62 NO
84 PIK3R3 PIK3R3 PIK3R3 5924 0.02 0.59 NO
85 CASP3 CASP3 CASP3 6441 0.013 0.56 NO
86 SOS2 SOS2 SOS2 7129 0.0056 0.53 NO
87 MAP2K2 MAP2K2 MAP2K2 7220 0.0045 0.52 NO
88 ARAF ARAF ARAF 7303 0.0037 0.52 NO
89 BRAF BRAF BRAF 7550 0.0015 0.5 NO
90 PPP3CB PPP3CB PPP3CB 7905 -0.0018 0.48 NO
91 RAC1 RAC1 RAC1 7911 -0.0019 0.48 NO
92 NRAS NRAS NRAS 8946 -0.012 0.43 NO
93 PPP3R1 PPP3R1 PPP3R1 9052 -0.013 0.42 NO
94 NFATC2 NFATC2 NFATC2 9968 -0.022 0.38 NO
95 SYK SYK SYK 10196 -0.024 0.36 NO
96 SOS1 SOS1 SOS1 10277 -0.025 0.36 NO
97 RAF1 RAF1 RAF1 10721 -0.029 0.34 NO
98 NFAT5 NFAT5 NFAT5 11125 -0.033 0.32 NO
99 RAET1L RAET1L RAET1L 11366 -0.036 0.31 NO
100 NFATC4 NFATC4 NFATC4 11424 -0.037 0.3 NO
101 PTPN11 PTPN11 PTPN11 11477 -0.037 0.3 NO
102 KRAS KRAS KRAS 11827 -0.042 0.29 NO
103 NCR2 NCR2 NCR2 12186 -0.046 0.27 NO
104 PAK1 PAK1 PAK1 12201 -0.046 0.27 NO
105 SHC2 SHC2 SHC2 12879 -0.056 0.24 NO
106 SHC3 SHC3 SHC3 13861 -0.073 0.19 NO
107 PIK3R2 PIK3R2 PIK3R2 13983 -0.076 0.18 NO
108 NFATC3 NFATC3 NFATC3 14097 -0.078 0.18 NO
109 PIK3R1 PIK3R1 PIK3R1 14215 -0.082 0.18 NO
110 SHC4 SHC4 SHC4 14605 -0.092 0.16 NO
111 PLCG1 PLCG1 PLCG1 14710 -0.095 0.16 NO
112 RAET1E RAET1E RAET1E 14999 -0.1 0.15 NO
113 RAET1G RAET1G RAET1G 15139 -0.11 0.15 NO
114 FYN FYN FYN 16201 -0.16 0.095 NO
115 PRKCG PRKCG PRKCG 16676 -0.18 0.077 NO
116 CHP2 CHP2 CHP2 16955 -0.2 0.071 NO
117 ULBP3 ULBP3 ULBP3 17950 -0.32 0.032 NO

Figure S19.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA PYK2 PATHWAY.

Figure S20.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA PYK2 PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

Fold change

For the top enriched genes, if you want to check whether they are

Expression level

For the top enriched genes, if you want to check whether they are

An expression pattern of top(30%)/middle(30%)/low(30%) in this subtype against other subtypes is available in a heatmap

Significant gene list

For the top enriched genes, if you want to check whether they are

Subtype clus2 enriched pathways

Table 4.  Get Full Table This table shows top 10 pathways which are significantly enriched in cluster clus2. It displays only significant gene sets satisfying nom.p.val.threshold (-1), fwer.p.val.threshold (-1) , fdr.q.val.threshold (0.25) and the default table is sorted by Normalized Enrichment Score (NES). Further details on NES statistics, please visit The Broad GSEA website.

GeneSet(GS) Size(#genes) genes.ES.table ES NES NOM.p.val FDR.q.val FWER.p.val Tag.. Gene.. Signal FDR..median. glob.p.val
BIOCARTA HIVNEF PATHWAY 57 genes.ES.table 0.31 1.3 0.17 1 0.99 0.42 0.3 0.3 0.91 0.45
BIOCARTA DEATH PATHWAY 32 genes.ES.table 0.43 1.5 0.084 0.83 0.92 0.5 0.28 0.36 0.62 0.3
BIOCARTA TOLL PATHWAY 36 genes.ES.table 0.43 1.3 0.26 1 1 0.53 0.28 0.38 1 0.59
KEGG CITRATE CYCLE TCA CYCLE 29 genes.ES.table 0.47 1.6 0.092 1 0.83 0.69 0.38 0.43 0.7 0.4
KEGG FATTY ACID METABOLISM 39 genes.ES.table 0.31 1.1 0.37 1 1 0.28 0.17 0.23 1 0.61
KEGG ALANINE ASPARTATE AND GLUTAMATE METABOLISM 29 genes.ES.table 0.33 1 0.38 1 1 0.21 0.14 0.18 1 0.57
KEGG VALINE LEUCINE AND ISOLEUCINE DEGRADATION 43 genes.ES.table 0.29 1.1 0.36 1 1 0.21 0.19 0.17 1 0.67
KEGG GLUTATHIONE METABOLISM 47 genes.ES.table 0.38 1.2 0.2 1 1 0.45 0.26 0.33 1 0.64
KEGG SPHINGOLIPID METABOLISM 38 genes.ES.table 0.36 1.2 0.21 1 1 0.24 0.15 0.2 1 0.67
KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES 25 genes.ES.table 0.52 1.4 0.077 1 0.98 0.28 0.074 0.26 0.97 0.49
genes ES table in pathway: BIOCARTA HIVNEF PATHWAY

Table S11.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PIPOX PIPOX PIPOX 120 0.36 0.087 YES
2 DDO DDO DDO 393 0.26 0.14 YES
3 PEX11G PEX11G PEX11G 808 0.19 0.16 YES
4 ACSL5 ACSL5 ACSL5 814 0.19 0.21 YES
5 MPV17L MPV17L MPV17L 1126 0.15 0.24 YES
6 PEX11A PEX11A PEX11A 1712 0.12 0.23 YES
7 ACSL6 ACSL6 ACSL6 1806 0.11 0.26 YES
8 PEX6 PEX6 PEX6 2160 0.095 0.26 YES
9 CAT CAT CAT 2200 0.094 0.28 YES
10 EPHX2 EPHX2 EPHX2 2395 0.087 0.3 YES
11 MLYCD MLYCD MLYCD 2410 0.086 0.32 YES
12 GSTK1 GSTK1 GSTK1 2564 0.082 0.33 YES
13 PECR PECR PECR 2617 0.08 0.35 YES
14 IDH2 IDH2 IDH2 2961 0.072 0.35 YES
15 PAOX PAOX PAOX 3034 0.07 0.36 YES
16 DHRS4 DHRS4 DHRS4 3072 0.069 0.38 YES
17 ACAA1 ACAA1 ACAA1 3105 0.068 0.4 YES
18 PEX16 PEX16 PEX16 3152 0.067 0.41 YES
19 SCP2 SCP2 SCP2 3391 0.062 0.41 YES
20 CRAT CRAT CRAT 3424 0.061 0.43 YES
21 HAO2 HAO2 HAO2 3449 0.06 0.44 YES
22 NUDT12 NUDT12 NUDT12 3538 0.059 0.45 YES
23 PMVK PMVK PMVK 3817 0.054 0.45 YES
24 IDH1 IDH1 IDH1 3826 0.054 0.46 YES
25 SLC27A2 SLC27A2 SLC27A2 4252 0.046 0.45 YES
26 SOD1 SOD1 SOD1 4273 0.046 0.46 YES
27 ABCD1 ABCD1 ABCD1 4693 0.04 0.45 YES
28 PXMP4 PXMP4 PXMP4 4701 0.04 0.46 YES
29 PEX12 PEX12 PEX12 4803 0.038 0.46 YES
30 PEX2 PEX2 PEX2 4933 0.037 0.47 YES
31 PRDX5 PRDX5 PRDX5 4991 0.036 0.47 YES
32 PEX26 PEX26 PEX26 5029 0.036 0.48 YES
33 PEX11B PEX11B PEX11B 5276 0.032 0.48 YES
34 AMACR AMACR AMACR 5277 0.032 0.48 YES
35 ACOX1 ACOX1 ACOX1 5399 0.031 0.49 YES
36 HMGCL HMGCL HMGCL 5501 0.03 0.49 YES
37 PEX10 PEX10 PEX10 5593 0.029 0.49 YES
38 SOD2 SOD2 SOD2 6178 0.022 0.46 NO
39 ACOX3 ACOX3 ACOX3 6228 0.022 0.47 NO
40 PEX7 PEX7 PEX7 6437 0.02 0.46 NO
41 HACL1 HACL1 HACL1 6463 0.02 0.47 NO
42 NUDT19 NUDT19 NUDT19 7394 0.011 0.42 NO
43 AGPS AGPS AGPS 7453 0.01 0.42 NO
44 PRDX1 PRDX1 PRDX1 7574 0.0092 0.41 NO
45 PEX1 PEX1 PEX1 8093 0.0048 0.39 NO
46 MVK MVK MVK 8437 0.002 0.37 NO
47 CROT CROT CROT 8457 0.0018 0.37 NO
48 EHHADH EHHADH EHHADH 8654 0.0003 0.36 NO
49 HSD17B4 HSD17B4 HSD17B4 8878 -0.0016 0.35 NO
50 ACSL3 ACSL3 ACSL3 9015 -0.0026 0.34 NO
51 GNPAT GNPAT GNPAT 9068 -0.0032 0.34 NO
52 AGXT AGXT AGXT 9397 -0.006 0.32 NO
53 PEX13 PEX13 PEX13 9430 -0.0063 0.32 NO
54 SLC25A17 SLC25A17 SLC25A17 9601 -0.0078 0.31 NO
55 ACOT8 ACOT8 ACOT8 9627 -0.008 0.31 NO
56 PEX19 PEX19 PEX19 9768 -0.0093 0.31 NO
57 ABCD3 ABCD3 ABCD3 10025 -0.012 0.3 NO
58 PXMP2 PXMP2 PXMP2 10192 -0.013 0.29 NO
59 PEX5 PEX5 PEX5 10469 -0.016 0.28 NO
60 DECR2 DECR2 DECR2 10479 -0.016 0.28 NO
61 PEX14 PEX14 PEX14 10654 -0.017 0.28 NO
62 ACSL1 ACSL1 ACSL1 11086 -0.021 0.26 NO
63 FAR1 FAR1 FAR1 11372 -0.024 0.25 NO
64 ABCD4 ABCD4 ABCD4 11465 -0.025 0.26 NO
65 ACSL4 ACSL4 ACSL4 11547 -0.026 0.26 NO
66 MPV17 MPV17 MPV17 11614 -0.026 0.26 NO
67 XDH XDH XDH 11731 -0.027 0.26 NO
68 ABCD2 ABCD2 ABCD2 12136 -0.032 0.25 NO
69 PHYH PHYH PHYH 12392 -0.035 0.24 NO
70 NOS2 NOS2 NOS2 12465 -0.036 0.25 NO
71 PECI PECI PECI 12768 -0.039 0.24 NO
72 FAR2 FAR2 FAR2 13170 -0.045 0.23 NO
73 ECH1 ECH1 ECH1 13298 -0.047 0.24 NO
74 PEX3 PEX3 PEX3 14884 -0.078 0.17 NO
75 BAAT BAAT BAAT 15719 -0.1 0.15 NO

Figure S21.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA HIVNEF PATHWAY.

Figure S22.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA HIVNEF PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA DEATH PATHWAY

Table S12.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PCK1 PCK1 PCK1 1846 0.11 0.003 YES
2 IDH3A IDH3A IDH3A 1909 0.11 0.099 YES
3 SUCLG2 SUCLG2 SUCLG2 2898 0.073 0.12 YES
4 IDH2 IDH2 IDH2 2961 0.072 0.18 YES
5 SDHA SDHA SDHA 3309 0.063 0.22 YES
6 IDH3G IDH3G IDH3G 3606 0.058 0.26 YES
7 PDHA1 PDHA1 PDHA1 3701 0.056 0.3 YES
8 IDH1 IDH1 IDH1 3826 0.054 0.35 YES
9 MDH2 MDH2 MDH2 3913 0.052 0.39 YES
10 ACO2 ACO2 ACO2 4264 0.046 0.42 YES
11 SDHD SDHD SDHD 5294 0.032 0.39 YES
12 FH FH FH 5542 0.03 0.41 YES
13 DLD DLD DLD 6040 0.024 0.4 YES
14 OGDH OGDH OGDH 6108 0.024 0.42 YES
15 PDHB PDHB PDHB 6163 0.023 0.44 YES
16 SDHB SDHB SDHB 6273 0.022 0.45 YES
17 SUCLG1 SUCLG1 SUCLG1 6388 0.02 0.47 YES
18 PCK2 PCK2 PCK2 6790 0.016 0.46 YES
19 MDH1 MDH1 MDH1 7011 0.014 0.46 YES
20 PC PC PC 7092 0.014 0.47 YES
21 SDHC SDHC SDHC 7612 0.0088 0.45 NO
22 DLAT DLAT DLAT 7719 0.0079 0.45 NO
23 DLST DLST DLST 8756 -0.0006 0.4 NO
24 OGDHL OGDHL OGDHL 9130 -0.0037 0.38 NO
25 CS CS CS 9176 -0.0042 0.38 NO
26 IDH3B IDH3B IDH3B 10693 -0.018 0.32 NO
27 ACLY ACLY ACLY 11121 -0.022 0.31 NO
28 SUCLA2 SUCLA2 SUCLA2 12087 -0.031 0.29 NO
29 ACO1 ACO1 ACO1 14186 -0.063 0.24 NO

Figure S23.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA DEATH PATHWAY.

Figure S24.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA DEATH PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA TOLL PATHWAY

Table S13.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 IL12A IL12A IL12A 300 0.28 0.058 YES
2 RNF125 RNF125 RNF125 727 0.2 0.088 YES
3 TMEM173 TMEM173 TMEM173 912 0.18 0.12 YES
4 IKBKE IKBKE IKBKE 1278 0.14 0.14 YES
5 CASP10 CASP10 CASP10 1373 0.13 0.17 YES
6 DHX58 DHX58 DHX58 1713 0.12 0.18 YES
7 IFIH1 IFIH1 IFIH1 1724 0.12 0.22 YES
8 CXCL10 CXCL10 CXCL10 1779 0.11 0.24 YES
9 IFNW1 IFNW1 IFNW1 1829 0.11 0.27 YES
10 TRADD TRADD TRADD 1838 0.11 0.3 YES
11 TNF TNF TNF 1863 0.11 0.32 YES
12 NLRX1 NLRX1 NLRX1 1998 0.1 0.34 YES
13 IRF7 IRF7 IRF7 2003 0.1 0.37 YES
14 IFNE IFNE IFNE 2058 0.099 0.4 YES
15 TANK TANK TANK 2071 0.099 0.42 YES
16 MAPK13 MAPK13 MAPK13 2602 0.08 0.41 YES
17 IFNB1 IFNB1 IFNB1 2635 0.08 0.43 YES
18 CASP8 CASP8 CASP8 2689 0.078 0.45 YES
19 IKBKB IKBKB IKBKB 3037 0.07 0.45 YES
20 ISG15 ISG15 ISG15 3181 0.066 0.46 YES
21 DDX58 DDX58 DDX58 3710 0.056 0.45 NO
22 TRAF6 TRAF6 TRAF6 4266 0.046 0.43 NO
23 IKBKG IKBKG IKBKG 4484 0.043 0.43 NO
24 IL8 IL8 IL8 4590 0.042 0.43 NO
25 NFKBIA NFKBIA NFKBIA 4633 0.041 0.44 NO
26 DAK DAK DAK 4643 0.041 0.45 NO
27 RELA RELA RELA 5018 0.036 0.44 NO
28 FADD FADD FADD 5095 0.035 0.45 NO
29 NFKB1 NFKB1 NFKB1 5198 0.033 0.45 NO
30 TRIM25 TRIM25 TRIM25 5216 0.033 0.46 NO
31 MAP3K1 MAP3K1 MAP3K1 6256 0.022 0.41 NO
32 MAVS MAVS MAVS 6561 0.019 0.4 NO
33 MAPK9 MAPK9 MAPK9 7059 0.014 0.37 NO
34 PIN1 PIN1 PIN1 7094 0.014 0.38 NO
35 TRAF2 TRAF2 TRAF2 7185 0.013 0.37 NO
36 CYLD CYLD CYLD 7579 0.0091 0.36 NO
37 RIPK1 RIPK1 RIPK1 7924 0.0062 0.34 NO
38 DDX3X DDX3X DDX3X 7935 0.0062 0.34 NO
39 TRAF3 TRAF3 TRAF3 8434 0.002 0.31 NO
40 MAPK14 MAPK14 MAPK14 8682 9e-05 0.3 NO
41 IL12B IL12B IL12B 8748 -0.00052 0.3 NO
42 TBK1 TBK1 TBK1 9045 -0.0028 0.28 NO
43 OTUD5 OTUD5 OTUD5 9187 -0.0043 0.28 NO
44 AZI2 AZI2 AZI2 10568 -0.016 0.2 NO
45 ATG12 ATG12 ATG12 11281 -0.023 0.17 NO
46 IRF3 IRF3 IRF3 11783 -0.028 0.15 NO
47 MAPK8 MAPK8 MAPK8 12039 -0.031 0.15 NO
48 MAPK11 MAPK11 MAPK11 12382 -0.035 0.14 NO
49 SIKE1 SIKE1 SIKE1 12783 -0.039 0.13 NO
50 CHUK CHUK CHUK 13238 -0.046 0.11 NO
51 ATG5 ATG5 ATG5 14025 -0.06 0.087 NO
52 MAP3K7 MAP3K7 MAP3K7 15526 -0.096 0.032 NO
53 MAPK12 MAPK12 MAPK12 15689 -0.1 0.05 NO
54 TBKBP1 TBKBP1 TBKBP1 15980 -0.11 0.064 NO
55 NFKBIB NFKBIB NFKBIB 16129 -0.12 0.088 NO
56 MAPK10 MAPK10 MAPK10 16928 -0.16 0.087 NO

Figure S25.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA TOLL PATHWAY.

Figure S26.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA TOLL PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG CITRATE CYCLE TCA CYCLE

Table S14.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 TNFRSF10A TNFRSF10A TNFRSF10A 959 0.17 0.045 YES
2 BIRC3 BIRC3 BIRC3 1237 0.14 0.11 YES
3 CASP10 CASP10 CASP10 1373 0.13 0.18 YES
4 TNFSF10 TNFSF10 TNFSF10 1645 0.12 0.24 YES
5 TRADD TRADD TRADD 1838 0.11 0.29 YES
6 TNFRSF25 TNFRSF25 TNFRSF25 2525 0.083 0.3 YES
7 CASP8 CASP8 CASP8 2689 0.078 0.34 YES
8 CASP7 CASP7 CASP7 3058 0.069 0.36 YES
9 CFLAR CFLAR CFLAR 3970 0.051 0.34 YES
10 LMNA LMNA LMNA 4018 0.05 0.36 YES
11 XIAP XIAP XIAP 4055 0.049 0.39 YES
12 MAP3K14 MAP3K14 MAP3K14 4543 0.042 0.39 YES
13 NFKBIA NFKBIA NFKBIA 4633 0.041 0.4 YES
14 RELA RELA RELA 5018 0.036 0.4 YES
15 FADD FADD FADD 5095 0.035 0.42 YES
16 NFKB1 NFKB1 NFKB1 5198 0.033 0.43 YES
17 DFFB DFFB DFFB 5566 0.029 0.43 NO
18 CYCS CYCS CYCS 6250 0.022 0.41 NO
19 BCL2 BCL2 BCL2 6937 0.015 0.38 NO
20 TRAF2 TRAF2 TRAF2 7185 0.013 0.37 NO
21 RIPK1 RIPK1 RIPK1 7924 0.0062 0.34 NO
22 TNFSF12 TNFSF12 TNFSF12 8552 0.001 0.3 NO
23 TNFRSF10B TNFRSF10B TNFRSF10B 8663 0.00025 0.3 NO
24 CASP6 CASP6 CASP6 9066 -0.0031 0.28 NO
25 CASP9 CASP9 CASP9 10415 -0.015 0.21 NO
26 BIRC2 BIRC2 BIRC2 11442 -0.025 0.17 NO
27 CASP3 CASP3 CASP3 11880 -0.029 0.16 NO
28 SPTAN1 SPTAN1 SPTAN1 12436 -0.035 0.15 NO
29 DFFA DFFA DFFA 12677 -0.038 0.16 NO
30 CHUK CHUK CHUK 13238 -0.046 0.16 NO
31 APAF1 APAF1 APAF1 14178 -0.062 0.14 NO
32 GAS2 GAS2 GAS2 16955 -0.16 0.085 NO

Figure S27.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG CITRATE CYCLE TCA CYCLE.

Figure S28.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG CITRATE CYCLE TCA CYCLE, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG FATTY ACID METABOLISM

Table S15.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 B3GALT5 B3GALT5 B3GALT5 100 0.38 0.13 YES
2 FUT2 FUT2 FUT2 220 0.31 0.23 YES
3 FUT3 FUT3 FUT3 281 0.28 0.33 YES
4 ABO ABO ABO 669 0.21 0.38 YES
5 B3GNT3 B3GNT3 B3GNT3 832 0.18 0.44 YES
6 FUT6 FUT6 FUT6 1066 0.16 0.49 YES
7 FUT5 FUT5 FUT5 1377 0.13 0.52 YES
8 B4GALT1 B4GALT1 B4GALT1 2964 0.072 0.46 NO
9 ST3GAL6 ST3GAL6 ST3GAL6 3196 0.066 0.47 NO
10 ST3GAL4 ST3GAL4 ST3GAL4 3869 0.053 0.45 NO
11 B3GNT5 B3GNT5 B3GNT5 4523 0.042 0.43 NO
12 GCNT2 GCNT2 GCNT2 4617 0.041 0.44 NO
13 FUT7 FUT7 FUT7 4629 0.041 0.45 NO
14 B4GALT2 B4GALT2 B4GALT2 8410 0.0022 0.25 NO
15 B4GALT3 B4GALT3 B4GALT3 9212 -0.0044 0.21 NO
16 B3GNT2 B3GNT2 B3GNT2 9763 -0.0092 0.18 NO
17 B3GNT1 B3GNT1 B3GNT1 12262 -0.033 0.059 NO
18 FUT4 FUT4 FUT4 13619 -0.052 0.004 NO
19 B4GALT4 B4GALT4 B4GALT4 13778 -0.055 0.015 NO
20 FUT1 FUT1 FUT1 14093 -0.061 0.02 NO
21 B3GNT4 B3GNT4 B3GNT4 14648 -0.073 0.016 NO
22 ST3GAL3 ST3GAL3 ST3GAL3 15129 -0.084 0.02 NO
23 B3GALT2 B3GALT2 B3GALT2 15215 -0.086 0.046 NO
24 ST8SIA1 ST8SIA1 ST8SIA1 17126 -0.17 0.0048 NO
25 B3GALT1 B3GALT1 B3GALT1 17446 -0.2 0.059 NO

Figure S29.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG FATTY ACID METABOLISM.

Figure S30.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG FATTY ACID METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG ALANINE ASPARTATE AND GLUTAMATE METABOLISM

Table S16.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 BIRC3 BIRC3 BIRC3 1237 0.14 -0.0038 YES
2 PRKCD PRKCD PRKCD 1647 0.12 0.026 YES
3 TRADD TRADD TRADD 1838 0.11 0.064 YES
4 TNF TNF TNF 1863 0.11 0.11 YES
5 CASP8 CASP8 CASP8 2689 0.078 0.099 YES
6 CASP7 CASP7 CASP7 3058 0.069 0.11 YES
7 CRADD CRADD CRADD 3076 0.069 0.14 YES
8 FAS FAS FAS 3197 0.066 0.16 YES
9 CFLAR CFLAR CFLAR 3970 0.051 0.14 YES
10 LMNA LMNA LMNA 4018 0.05 0.16 YES
11 XIAP XIAP XIAP 4055 0.049 0.18 YES
12 TRAF1 TRAF1 TRAF1 4102 0.049 0.2 YES
13 TNFRSF1B TNFRSF1B TNFRSF1B 4188 0.047 0.21 YES
14 MAP3K14 MAP3K14 MAP3K14 4543 0.042 0.21 YES
15 ARHGDIB ARHGDIB ARHGDIB 4614 0.041 0.23 YES
16 NFKBIA NFKBIA NFKBIA 4633 0.041 0.24 YES
17 PTK2 PTK2 PTK2 4961 0.036 0.24 YES
18 BID BID BID 5011 0.036 0.26 YES
19 RELA RELA RELA 5018 0.036 0.27 YES
20 FADD FADD FADD 5095 0.035 0.28 YES
21 NFKB1 NFKB1 NFKB1 5198 0.033 0.29 YES
22 GSN GSN GSN 5231 0.033 0.3 YES
23 TNFRSF1A TNFRSF1A TNFRSF1A 5482 0.03 0.3 YES
24 DFFB DFFB DFFB 5566 0.029 0.31 YES
25 CYCS CYCS CYCS 6250 0.022 0.28 NO
26 MAP3K1 MAP3K1 MAP3K1 6256 0.022 0.29 NO
27 PSEN2 PSEN2 PSEN2 6549 0.019 0.28 NO
28 BCL2 BCL2 BCL2 6937 0.015 0.27 NO
29 TRAF2 TRAF2 TRAF2 7185 0.013 0.26 NO
30 RIPK1 RIPK1 RIPK1 7924 0.0062 0.23 NO
31 CASP2 CASP2 CASP2 8123 0.0046 0.22 NO
32 NUMA1 NUMA1 NUMA1 8442 0.0019 0.2 NO
33 MDM2 MDM2 MDM2 8796 -0.00093 0.18 NO
34 CASP6 CASP6 CASP6 9066 -0.0031 0.17 NO
35 DAXX DAXX DAXX 9355 -0.0056 0.16 NO
36 BAG4 BAG4 BAG4 10036 -0.012 0.12 NO
37 CASP9 CASP9 CASP9 10415 -0.015 0.11 NO
38 PARP1 PARP1 PARP1 11241 -0.022 0.075 NO
39 ACTG1 ACTG1 ACTG1 11418 -0.024 0.076 NO
40 BIRC2 BIRC2 BIRC2 11442 -0.025 0.086 NO
41 PRKDC PRKDC PRKDC 11617 -0.026 0.088 NO
42 PSEN1 PSEN1 PSEN1 11635 -0.026 0.098 NO
43 CASP3 CASP3 CASP3 11880 -0.029 0.098 NO
44 MAPK8 MAPK8 MAPK8 12039 -0.031 0.1 NO
45 MAP2K7 MAP2K7 MAP2K7 12157 -0.032 0.11 NO
46 RASA1 RASA1 RASA1 12381 -0.035 0.11 NO
47 SPTAN1 SPTAN1 SPTAN1 12436 -0.035 0.13 NO
48 MAP3K5 MAP3K5 MAP3K5 12499 -0.036 0.14 NO
49 DFFA DFFA DFFA 12677 -0.038 0.14 NO
50 CDK11A CDK11A CDK11A 12730 -0.039 0.16 NO
51 PAK2 PAK2 PAK2 12906 -0.041 0.17 NO
52 CHUK CHUK CHUK 13238 -0.046 0.17 NO
53 CDK11B CDK11B CDK11B 13254 -0.046 0.19 NO
54 LMNB2 LMNB2 LMNB2 13567 -0.051 0.19 NO
55 LMNB1 LMNB1 LMNB1 13729 -0.054 0.21 NO
56 RB1 RB1 RB1 13742 -0.054 0.23 NO
57 APAF1 APAF1 APAF1 14178 -0.062 0.24 NO

Figure S31.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG ALANINE ASPARTATE AND GLUTAMATE METABOLISM.

Figure S32.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG ALANINE ASPARTATE AND GLUTAMATE METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG VALINE LEUCINE AND ISOLEUCINE DEGRADATION

Table S17.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 TLR3 TLR3 TLR3 821 0.18 0.056 YES
2 TLR7 TLR7 TLR7 1566 0.12 0.082 YES
3 TLR6 TLR6 TLR6 1642 0.12 0.14 YES
4 TLR10 TLR10 TLR10 1811 0.11 0.19 YES
5 TIRAP TIRAP TIRAP 2048 0.1 0.23 YES
6 MYD88 MYD88 MYD88 2792 0.075 0.24 YES
7 IRAK1 IRAK1 IRAK1 2968 0.072 0.26 YES
8 IKBKB IKBKB IKBKB 3037 0.07 0.3 YES
9 FOS FOS FOS 3920 0.052 0.28 YES
10 ELK1 ELK1 ELK1 3998 0.05 0.3 YES
11 TRAF6 TRAF6 TRAF6 4266 0.046 0.31 YES
12 MAP2K3 MAP2K3 MAP2K3 4435 0.044 0.33 YES
13 IKBKG IKBKG IKBKG 4484 0.043 0.35 YES
14 MAP3K14 MAP3K14 MAP3K14 4543 0.042 0.37 YES
15 NFKBIA NFKBIA NFKBIA 4633 0.041 0.38 YES
16 TLR4 TLR4 TLR4 4841 0.038 0.39 YES
17 RELA RELA RELA 5018 0.036 0.4 YES
18 TLR2 TLR2 TLR2 5143 0.034 0.41 YES
19 NFKB1 NFKB1 NFKB1 5198 0.033 0.43 YES
20 MAP3K1 MAP3K1 MAP3K1 6256 0.022 0.38 NO
21 CD14 CD14 CD14 7002 0.014 0.35 NO
22 ECSIT ECSIT ECSIT 7732 0.0077 0.32 NO
23 TOLLIP TOLLIP TOLLIP 8262 0.0033 0.29 NO
24 TAB1 TAB1 TAB1 8578 0.00077 0.27 NO
25 MAPK14 MAPK14 MAPK14 8682 9e-05 0.27 NO
26 EIF2AK2 EIF2AK2 EIF2AK2 9942 -0.011 0.2 NO
27 TLR9 TLR9 TLR9 10334 -0.014 0.19 NO
28 MAPK8 MAPK8 MAPK8 12039 -0.031 0.12 NO
29 JUN JUN JUN 12088 -0.031 0.13 NO
30 CHUK CHUK CHUK 13238 -0.046 0.093 NO
31 LY96 LY96 LY96 13466 -0.05 0.11 NO
32 PGLYRP1 PGLYRP1 PGLYRP1 13467 -0.05 0.13 NO
33 MAP2K6 MAP2K6 MAP2K6 13501 -0.05 0.16 NO
34 MAP2K4 MAP2K4 MAP2K4 13739 -0.054 0.18 NO
35 TAB2 TAB2 TAB2 13949 -0.058 0.2 NO
36 MAP3K7 MAP3K7 MAP3K7 15526 -0.096 0.16 NO

Figure S33.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG VALINE LEUCINE AND ISOLEUCINE DEGRADATION.

Figure S34.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG VALINE LEUCINE AND ISOLEUCINE DEGRADATION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG GLUTATHIONE METABOLISM

Table S18.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 GSTA3 GSTA3 GSTA3 160 0.34 0.096 YES
2 OPLAH OPLAH OPLAH 705 0.2 0.13 YES
3 GPX2 GPX2 GPX2 816 0.19 0.18 YES
4 GGT1 GGT1 GGT1 1076 0.16 0.22 YES
5 GSTM5 GSTM5 GSTM5 1132 0.15 0.26 YES
6 ANPEP ANPEP ANPEP 1812 0.11 0.26 YES
7 GGT6 GGT6 GGT6 2412 0.086 0.25 YES
8 MGST2 MGST2 MGST2 2502 0.084 0.27 YES
9 GSTK1 GSTK1 GSTK1 2564 0.082 0.3 YES
10 IDH2 IDH2 IDH2 2961 0.072 0.3 YES
11 GSTT1 GSTT1 GSTT1 3320 0.063 0.3 YES
12 GSR GSR GSR 3531 0.059 0.3 YES
13 GSTZ1 GSTZ1 GSTZ1 3615 0.057 0.32 YES
14 LAP3 LAP3 LAP3 3802 0.054 0.32 YES
15 IDH1 IDH1 IDH1 3826 0.054 0.34 YES
16 GGCT GGCT GGCT 3833 0.053 0.36 YES
17 GSTA1 GSTA1 GSTA1 4104 0.049 0.36 YES
18 RRM2B RRM2B RRM2B 4234 0.046 0.36 YES
19 GCLM GCLM GCLM 4340 0.045 0.37 YES
20 GSTA5 GSTA5 GSTA5 4568 0.042 0.37 YES
21 GSTP1 GSTP1 GSTP1 4740 0.039 0.38 YES
22 GPX1 GPX1 GPX1 5770 0.027 0.33 NO
23 GSTO2 GSTO2 GSTO2 5871 0.026 0.33 NO
24 SMS SMS SMS 6811 0.016 0.28 NO
25 MGST3 MGST3 MGST3 6940 0.015 0.28 NO
26 GSS GSS GSS 7489 0.0099 0.26 NO
27 GSTO1 GSTO1 GSTO1 7581 0.0091 0.25 NO
28 GSTM1 GSTM1 GSTM1 8151 0.0044 0.22 NO
29 GPX4 GPX4 GPX4 8458 0.0018 0.21 NO
30 TXNDC12 TXNDC12 TXNDC12 9316 -0.0053 0.16 NO
31 G6PD G6PD G6PD 10744 -0.018 0.092 NO
32 GSTM4 GSTM4 GSTM4 11258 -0.023 0.072 NO
33 GSTA4 GSTA4 GSTA4 11450 -0.025 0.069 NO
34 RRM1 RRM1 RRM1 11846 -0.029 0.057 NO
35 SRM SRM SRM 12281 -0.033 0.044 NO
36 GGT7 GGT7 GGT7 13001 -0.042 0.018 NO
37 GPX3 GPX3 GPX3 13536 -0.051 0.0048 NO
38 ODC1 ODC1 ODC1 14085 -0.061 -0.006 NO
39 GSTM2 GSTM2 GSTM2 14152 -0.062 0.0096 NO
40 GSTA2 GSTA2 GSTA2 14437 -0.068 0.015 NO
41 RRM2 RRM2 RRM2 14768 -0.075 0.021 NO
42 MGST1 MGST1 MGST1 14851 -0.077 0.04 NO
43 GCLC GCLC GCLC 14972 -0.08 0.059 NO
44 GGT5 GGT5 GGT5 15195 -0.086 0.073 NO
45 GPX7 GPX7 GPX7 15359 -0.09 0.093 NO
46 GSTM3 GSTM3 GSTM3 16077 -0.12 0.09 NO
47 GSTT2 GSTT2 GSTT2 16503 -0.14 0.11 NO

Figure S35.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG GLUTATHIONE METABOLISM.

Figure S36.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG GLUTATHIONE METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG SPHINGOLIPID METABOLISM

Table S19.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PPAP2C PPAP2C PPAP2C 304 0.28 0.088 YES
2 NEU4 NEU4 NEU4 376 0.26 0.18 YES
3 DEGS2 DEGS2 DEGS2 650 0.21 0.24 YES
4 SMPD3 SMPD3 SMPD3 1036 0.16 0.28 YES
5 ACER2 ACER2 ACER2 1390 0.13 0.32 YES
6 SGMS1 SGMS1 SGMS1 2033 0.1 0.32 YES
7 SGMS2 SGMS2 SGMS2 2453 0.085 0.33 YES
8 UGCG UGCG UGCG 2814 0.075 0.34 YES
9 ACER1 ACER1 ACER1 2825 0.075 0.36 YES
10 SMPD2 SMPD2 SMPD2 3897 0.052 0.32 NO
11 GLA GLA GLA 4526 0.042 0.31 NO
12 ARSA ARSA ARSA 5873 0.026 0.24 NO
13 GLB1 GLB1 GLB1 6122 0.023 0.24 NO
14 UGT8 UGT8 UGT8 6407 0.02 0.23 NO
15 SPTLC1 SPTLC1 SPTLC1 6840 0.016 0.22 NO
16 SPTLC2 SPTLC2 SPTLC2 7694 0.0081 0.17 NO
17 SGPP1 SGPP1 SGPP1 7754 0.0076 0.17 NO
18 KDSR KDSR KDSR 8061 0.0052 0.16 NO
19 ASAH1 ASAH1 ASAH1 8188 0.0039 0.15 NO
20 SGPP2 SGPP2 SGPP2 8422 0.0021 0.14 NO
21 NEU2 NEU2 NEU2 9209 -0.0044 0.098 NO
22 NEU3 NEU3 NEU3 10052 -0.012 0.057 NO
23 SMPD1 SMPD1 SMPD1 10306 -0.014 0.049 NO
24 ASAH2 ASAH2 ASAH2 10875 -0.019 0.026 NO
25 DEGS1 DEGS1 DEGS1 11196 -0.022 0.016 NO
26 SGPL1 SGPL1 SGPL1 11624 -0.026 0.0033 NO
27 NEU1 NEU1 NEU1 11979 -0.03 -0.0045 NO
28 ACER3 ACER3 ACER3 12097 -0.031 0.00092 NO
29 GBA GBA GBA 12983 -0.042 -0.031 NO
30 GALC GALC GALC 13033 -0.043 -0.018 NO
31 SMPD4 SMPD4 SMPD4 13110 -0.044 -0.005 NO
32 CERK CERK CERK 13361 -0.048 -0.00055 NO
33 PPAP2B PPAP2B PPAP2B 13876 -0.057 -0.0071 NO
34 GAL3ST1 GAL3ST1 GAL3ST1 14074 -0.06 0.0049 NO
35 PPAP2A PPAP2A PPAP2A 14793 -0.076 -0.0055 NO
36 SPHK2 SPHK2 SPHK2 15559 -0.097 -0.01 NO
37 B4GALT6 B4GALT6 B4GALT6 17208 -0.18 -0.032 NO
38 SPHK1 SPHK1 SPHK1 18051 -0.28 0.026 NO

Figure S37.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG SPHINGOLIPID METABOLISM.

Figure S38.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG SPHINGOLIPID METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES

Table S20.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ABCA13 ABCA13 ABCA13 270 0.29 0.057 YES
2 ABCA10 ABCA10 ABCA10 545 0.22 0.097 YES
3 ABCG2 ABCG2 ABCG2 616 0.21 0.15 YES
4 ABCC2 ABCC2 ABCC2 624 0.21 0.2 YES
5 ABCG8 ABCG8 ABCG8 763 0.19 0.24 YES
6 ABCG5 ABCG5 ABCG5 791 0.19 0.28 YES
7 ABCA7 ABCA7 ABCA7 876 0.18 0.32 YES
8 ABCB11 ABCB11 ABCB11 961 0.17 0.36 YES
9 ABCA12 ABCA12 ABCA12 1058 0.16 0.39 YES
10 TAP2 TAP2 TAP2 1290 0.14 0.42 YES
11 TAP1 TAP1 TAP1 1848 0.11 0.41 NO
12 ABCC4 ABCC4 ABCC4 2566 0.082 0.39 NO
13 ABCB9 ABCB9 ABCB9 2662 0.079 0.41 NO
14 ABCA5 ABCA5 ABCA5 2886 0.074 0.41 NO
15 ABCB10 ABCB10 ABCB10 3506 0.059 0.4 NO
16 ABCG1 ABCG1 ABCG1 3929 0.052 0.38 NO
17 ABCA2 ABCA2 ABCA2 4293 0.046 0.38 NO
18 ABCD1 ABCD1 ABCD1 4693 0.04 0.36 NO
19 ABCB6 ABCB6 ABCB6 4836 0.038 0.37 NO
20 ABCC6 ABCC6 ABCC6 5036 0.036 0.36 NO
21 ABCA9 ABCA9 ABCA9 5699 0.028 0.34 NO
22 ABCG4 ABCG4 ABCG4 5734 0.027 0.34 NO
23 ABCB7 ABCB7 ABCB7 5942 0.025 0.34 NO
24 ABCB1 ABCB1 ABCB1 6075 0.024 0.33 NO
25 ABCC3 ABCC3 ABCC3 6175 0.022 0.33 NO
26 ABCC10 ABCC10 ABCC10 9754 -0.0091 0.14 NO
27 ABCD3 ABCD3 ABCD3 10025 -0.012 0.13 NO
28 ABCB8 ABCB8 ABCB8 10510 -0.016 0.11 NO
29 ABCD4 ABCD4 ABCD4 11465 -0.025 0.063 NO
30 ABCA1 ABCA1 ABCA1 11943 -0.03 0.045 NO
31 ABCD2 ABCD2 ABCD2 12136 -0.032 0.042 NO
32 ABCC12 ABCC12 ABCC12 12529 -0.036 0.03 NO
33 ABCC5 ABCC5 ABCC5 12687 -0.038 0.031 NO
34 ABCC11 ABCC11 ABCC11 12776 -0.039 0.036 NO
35 ABCA4 ABCA4 ABCA4 12777 -0.039 0.046 NO
36 ABCC1 ABCC1 ABCC1 13380 -0.048 0.025 NO
37 ABCA3 ABCA3 ABCA3 14261 -0.064 -0.0068 NO
38 CFTR CFTR CFTR 14858 -0.077 -0.02 NO
39 ABCB4 ABCB4 ABCB4 16097 -0.12 -0.058 NO
40 ABCA6 ABCA6 ABCA6 16910 -0.16 -0.063 NO
41 ABCC9 ABCC9 ABCC9 17022 -0.16 -0.029 NO
42 ABCB5 ABCB5 ABCB5 17650 -0.22 -0.0081 NO
43 ABCC8 ABCC8 ABCC8 17707 -0.23 0.045 NO

Figure S39.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES.

Figure S40.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

Fold change

For the top enriched genes, if you want to check whether they are

Expression level

For the top enriched genes, if you want to check whether they are

An expression pattern of top(30%)/middle(30%)/low(30%) in this subtype against other subtypes is available in a heatmap

Significant gene list

For the top enriched genes, if you want to check whether they are

Subtype clus3 enriched pathways

Table 5.  Get Full Table This table shows top 10 pathways which are significantly enriched in cluster clus3. It displays only significant gene sets satisfying nom.p.val.threshold (-1), fwer.p.val.threshold (-1) , fdr.q.val.threshold (0.25) and the default table is sorted by Normalized Enrichment Score (NES). Further details on NES statistics, please visit The Broad GSEA website.

GeneSet(GS) Size(#genes) genes.ES.table ES NES NOM.p.val FDR.q.val FWER.p.val Tag.. Gene.. Signal FDR..median. glob.p.val
BIOCARTA ALK PATHWAY 33 genes.ES.table 0.49 1.4 0.11 0.89 0.98 0.36 0.24 0.28 0.71 0.32
BIOCARTA BIOPEPTIDES PATHWAY 40 genes.ES.table 0.37 1.3 0.16 0.89 1 0.2 0.12 0.18 0.76 0.32
BIOCARTA CARM ER PATHWAY 34 genes.ES.table 0.33 1.2 0.22 0.83 1 0.56 0.4 0.33 0.74 0.29
BIOCARTA MPR PATHWAY 32 genes.ES.table 0.4 1.4 0.12 1 0.97 0.25 0.22 0.2 0.96 0.48
BIOCARTA INTEGRIN PATHWAY 37 genes.ES.table 0.33 1.3 0.21 0.87 1 0.081 0.066 0.076 0.77 0.32
BIOCARTA WNT PATHWAY 25 genes.ES.table 0.42 1.4 0.14 1 0.97 0.44 0.33 0.29 0.84 0.4
KEGG RNA DEGRADATION 56 genes.ES.table 0.29 1.4 0.15 0.99 0.98 0.61 0.5 0.3 0.8 0.38
KEGG SPLICEOSOME 125 genes.ES.table 0.27 1.3 0.19 0.96 0.99 0.62 0.5 0.31 0.81 0.38
KEGG CARDIAC MUSCLE CONTRACTION 66 genes.ES.table 0.51 1.5 0.023 1 0.9 0.36 0.19 0.3 1 0.82
KEGG WNT SIGNALING PATHWAY 146 genes.ES.table 0.37 1.3 0.12 0.93 0.99 0.21 0.15 0.18 0.79 0.36
genes ES table in pathway: BIOCARTA ALK PATHWAY

Table S21.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CACNA2D2 CACNA2D2 CACNA2D2 28 0.63 0.061 YES
2 MYH6 MYH6 MYH6 41 0.6 0.12 YES
3 ATP1A2 ATP1A2 ATP1A2 98 0.54 0.17 YES
4 ATP1B2 ATP1B2 ATP1B2 149 0.5 0.22 YES
5 MYH7 MYH7 MYH7 245 0.45 0.26 YES
6 COX6A2 COX6A2 COX6A2 498 0.37 0.28 YES
7 ACTC1 ACTC1 ACTC1 717 0.33 0.3 YES
8 COX4I2 COX4I2 COX4I2 800 0.32 0.33 YES
9 CACNB4 CACNB4 CACNB4 807 0.32 0.36 YES
10 CACNA1D CACNA1D CACNA1D 931 0.3 0.38 YES
11 CACNA1S CACNA1S CACNA1S 941 0.3 0.41 YES
12 RYR2 RYR2 RYR2 947 0.3 0.44 YES
13 FXYD2 FXYD2 FXYD2 1186 0.27 0.45 YES
14 CACNG5 CACNG5 CACNG5 1437 0.25 0.46 YES
15 MYL3 MYL3 MYL3 1700 0.23 0.47 YES
16 COX6B2 COX6B2 COX6B2 1871 0.22 0.48 YES
17 ATP1A4 ATP1A4 ATP1A4 1920 0.21 0.5 YES
18 TNNT2 TNNT2 TNNT2 2399 0.18 0.49 YES
19 CACNA1C CACNA1C CACNA1C 3008 0.15 0.48 YES
20 CACNB3 CACNB3 CACNB3 3321 0.14 0.47 YES
21 CACNG6 CACNG6 CACNG6 3412 0.13 0.48 YES
22 COX8C COX8C COX8C 3428 0.13 0.49 YES
23 TNNC1 TNNC1 TNNC1 3483 0.13 0.5 YES
24 CACNB2 CACNB2 CACNB2 3519 0.13 0.51 YES
25 CACNA2D1 CACNA2D1 CACNA2D1 3862 0.12 0.51 NO
26 CACNG8 CACNG8 CACNG8 5502 0.076 0.42 NO
27 ATP1B1 ATP1B1 ATP1B1 5917 0.067 0.41 NO
28 COX7A2L COX7A2L COX7A2L 7154 0.047 0.35 NO
29 CACNB1 CACNB1 CACNB1 8456 0.03 0.28 NO
30 ATP1B3 ATP1B3 ATP1B3 10795 -0.00052 0.15 NO
31 SLC8A1 SLC8A1 SLC8A1 10873 -0.0016 0.15 NO
32 COX6B1 COX6B1 COX6B1 10943 -0.0027 0.15 NO
33 CACNA2D3 CACNA2D3 CACNA2D3 11355 -0.008 0.12 NO
34 COX7C COX7C COX7C 11485 -0.01 0.12 NO
35 TPM3 TPM3 TPM3 11922 -0.016 0.096 NO
36 ATP2A2 ATP2A2 ATP2A2 12052 -0.018 0.091 NO
37 COX7A2 COX7A2 COX7A2 12362 -0.023 0.076 NO
38 ATP1A1 ATP1A1 ATP1A1 12476 -0.024 0.073 NO
39 COX5B COX5B COX5B 12714 -0.028 0.063 NO
40 UQCRFS1 UQCRFS1 UQCRFS1 12831 -0.03 0.059 NO
41 TNNI3 TNNI3 TNNI3 12867 -0.03 0.06 NO
42 SLC9A1 SLC9A1 SLC9A1 12922 -0.032 0.061 NO
43 COX6A1 COX6A1 COX6A1 12994 -0.032 0.06 NO
44 TPM4 TPM4 TPM4 13098 -0.034 0.058 NO
45 UQCRC1 UQCRC1 UQCRC1 13149 -0.035 0.059 NO
46 COX4I1 COX4I1 COX4I1 13156 -0.035 0.062 NO
47 TPM1 TPM1 TPM1 13596 -0.044 0.042 NO
48 CACNG4 CACNG4 CACNG4 13606 -0.044 0.046 NO
49 CACNA1F CACNA1F CACNA1F 14320 -0.06 0.014 NO
50 SLC9A6 SLC9A6 SLC9A6 14595 -0.068 0.0054 NO
51 UQCR10 UQCR10 UQCR10 14848 -0.075 -0.00086 NO
52 UQCR11 UQCR11 UQCR11 14895 -0.077 0.0042 NO
53 TPM2 TPM2 TPM2 15024 -0.081 0.0053 NO
54 COX8A COX8A COX8A 15075 -0.083 0.011 NO
55 UQCRQ UQCRQ UQCRQ 15077 -0.083 0.019 NO
56 COX5A COX5A COX5A 15171 -0.086 0.022 NO
57 UQCRHL UQCRHL UQCRHL 15175 -0.086 0.031 NO
58 UQCRH UQCRH UQCRH 15419 -0.094 0.027 NO
59 COX7A1 COX7A1 COX7A1 15482 -0.097 0.033 NO
60 UQCRB UQCRB UQCRB 16107 -0.13 0.012 NO
61 COX7B COX7B COX7B 16279 -0.14 0.016 NO
62 CYC1 CYC1 CYC1 16620 -0.16 0.013 NO
63 COX6C COX6C COX6C 17060 -0.2 0.0091 NO
64 CACNG1 CACNG1 CACNG1 17087 -0.2 0.028 NO
65 CACNA2D4 CACNA2D4 CACNA2D4 17342 -0.23 0.037 NO
66 ATP1A3 ATP1A3 ATP1A3 17645 -0.28 0.048 NO

Figure S41.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA ALK PATHWAY.

Figure S42.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA ALK PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA BIOPEPTIDES PATHWAY

Table S22.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 TCF7L1 TCF7L1 TCF7L1 115 0.52 0.054 YES
2 WNT2B WNT2B WNT2B 253 0.44 0.098 YES
3 PTCH2 PTCH2 PTCH2 337 0.41 0.14 YES
4 FZD2 FZD2 FZD2 388 0.4 0.18 YES
5 GLI1 GLI1 GLI1 412 0.39 0.23 YES
6 GLI2 GLI2 GLI2 460 0.38 0.27 YES
7 WNT11 WNT11 WNT11 687 0.34 0.3 YES
8 WNT8B WNT8B WNT8B 790 0.32 0.33 YES
9 WNT6 WNT6 WNT6 816 0.32 0.36 YES
10 WNT5B WNT5B WNT5B 876 0.31 0.4 YES
11 SMO SMO SMO 1091 0.28 0.42 YES
12 WNT10B WNT10B WNT10B 1238 0.27 0.44 YES
13 LEF1 LEF1 LEF1 1284 0.26 0.47 YES
14 WNT5A WNT5A WNT5A 1557 0.24 0.48 YES
15 FZD10 FZD10 FZD10 1993 0.21 0.48 YES
16 WNT3 WNT3 WNT3 2064 0.2 0.5 YES
17 FZD7 FZD7 FZD7 2276 0.19 0.51 YES
18 WNT4 WNT4 WNT4 2563 0.17 0.52 YES
19 FZD9 FZD9 FZD9 2716 0.16 0.53 YES
20 SHH SHH SHH 2905 0.16 0.54 YES
21 WNT8A WNT8A WNT8A 3066 0.15 0.55 YES
22 WNT16 WNT16 WNT16 3236 0.14 0.55 YES
23 PTCH1 PTCH1 PTCH1 3436 0.13 0.56 YES
24 APC2 APC2 APC2 3622 0.12 0.56 YES
25 STK36 STK36 STK36 3659 0.12 0.57 YES
26 FZD5 FZD5 FZD5 3693 0.12 0.59 YES
27 WNT1 WNT1 WNT1 4037 0.11 0.58 NO
28 DVL2 DVL2 DVL2 4165 0.11 0.59 NO
29 WNT9B WNT9B WNT9B 4994 0.086 0.55 NO
30 GLI3 GLI3 GLI3 5005 0.086 0.56 NO
31 SUFU SUFU SUFU 5165 0.083 0.56 NO
32 GSK3B GSK3B GSK3B 5265 0.081 0.57 NO
33 AXIN2 AXIN2 AXIN2 5648 0.073 0.55 NO
34 WNT10A WNT10A WNT10A 6173 0.062 0.53 NO
35 TCF7L2 TCF7L2 TCF7L2 6536 0.056 0.52 NO
36 CTNNB1 CTNNB1 CTNNB1 7349 0.044 0.48 NO
37 DVL3 DVL3 DVL3 7357 0.044 0.48 NO
38 TCF7 TCF7 TCF7 7359 0.044 0.49 NO
39 FZD3 FZD3 FZD3 8293 0.032 0.44 NO
40 WNT2 WNT2 WNT2 9222 0.02 0.4 NO
41 BMP4 BMP4 BMP4 9257 0.019 0.4 NO
42 DVL1 DVL1 DVL1 9331 0.018 0.39 NO
43 WNT9A WNT9A WNT9A 9746 0.013 0.37 NO
44 AXIN1 AXIN1 AXIN1 9811 0.012 0.37 NO
45 APC APC APC 10709 0.00083 0.32 NO
46 TP53 TP53 TP53 10964 -0.003 0.31 NO
47 BMP2 BMP2 BMP2 13314 -0.038 0.19 NO
48 HHIP HHIP HHIP 14032 -0.054 0.15 NO
49 FZD8 FZD8 FZD8 14661 -0.07 0.13 NO
50 FZD1 FZD1 FZD1 14699 -0.071 0.13 NO
51 FZD4 FZD4 FZD4 15163 -0.086 0.12 NO
52 WNT7A WNT7A WNT7A 15270 -0.089 0.12 NO
53 FZD6 FZD6 FZD6 16029 -0.12 0.097 NO
54 WNT7B WNT7B WNT7B 17923 -0.33 0.033 NO

Figure S43.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA BIOPEPTIDES PATHWAY.

Figure S44.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA BIOPEPTIDES PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA CARM ER PATHWAY

Table S23.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 WNT2B WNT2B WNT2B 253 0.44 0.041 YES
2 PTCH2 PTCH2 PTCH2 337 0.41 0.087 YES
3 GLI1 GLI1 GLI1 412 0.39 0.13 YES
4 GLI2 GLI2 GLI2 460 0.38 0.18 YES
5 BMP7 BMP7 BMP7 515 0.37 0.22 YES
6 WNT11 WNT11 WNT11 687 0.34 0.25 YES
7 BMP6 BMP6 BMP6 697 0.34 0.29 YES
8 WNT8B WNT8B WNT8B 790 0.32 0.33 YES
9 WNT6 WNT6 WNT6 816 0.32 0.36 YES
10 WNT5B WNT5B WNT5B 876 0.31 0.4 YES
11 SMO SMO SMO 1091 0.28 0.42 YES
12 WNT10B WNT10B WNT10B 1238 0.27 0.45 YES
13 ZIC2 ZIC2 ZIC2 1487 0.25 0.46 YES
14 WNT5A WNT5A WNT5A 1557 0.24 0.49 YES
15 WNT3 WNT3 WNT3 2064 0.2 0.49 YES
16 WNT4 WNT4 WNT4 2563 0.17 0.48 YES
17 SHH SHH SHH 2905 0.16 0.48 YES
18 WNT8A WNT8A WNT8A 3066 0.15 0.49 YES
19 IHH IHH IHH 3095 0.15 0.51 YES
20 WNT16 WNT16 WNT16 3236 0.14 0.52 YES
21 LRP2 LRP2 LRP2 3264 0.14 0.53 YES
22 CSNK1A1L CSNK1A1L CSNK1A1L 3380 0.13 0.54 YES
23 PTCH1 PTCH1 PTCH1 3436 0.13 0.56 YES
24 STK36 STK36 STK36 3659 0.12 0.56 YES
25 PRKACB PRKACB PRKACB 3998 0.11 0.56 YES
26 WNT1 WNT1 WNT1 4037 0.11 0.57 YES
27 RAB23 RAB23 RAB23 4389 0.1 0.56 YES
28 BTRC BTRC BTRC 4395 0.1 0.57 YES
29 WNT9B WNT9B WNT9B 4994 0.086 0.55 YES
30 GLI3 GLI3 GLI3 5005 0.086 0.56 YES
31 BMP8A BMP8A BMP8A 5007 0.086 0.57 YES
32 SUFU SUFU SUFU 5165 0.083 0.57 YES
33 GSK3B GSK3B GSK3B 5265 0.081 0.58 YES
34 WNT10A WNT10A WNT10A 6173 0.062 0.54 NO
35 CSNK1E CSNK1E CSNK1E 6524 0.056 0.52 NO
36 PRKACA PRKACA PRKACA 7798 0.038 0.46 NO
37 BMP8B BMP8B BMP8B 8626 0.027 0.42 NO
38 WNT2 WNT2 WNT2 9222 0.02 0.39 NO
39 BMP4 BMP4 BMP4 9257 0.019 0.39 NO
40 WNT9A WNT9A WNT9A 9746 0.013 0.37 NO
41 CSNK1G2 CSNK1G2 CSNK1G2 10042 0.0093 0.35 NO
42 FBXW11 FBXW11 FBXW11 10333 0.0057 0.34 NO
43 CSNK1G3 CSNK1G3 CSNK1G3 10354 0.0053 0.34 NO
44 CSNK1G1 CSNK1G1 CSNK1G1 10590 0.0023 0.32 NO
45 CSNK1D CSNK1D CSNK1D 12027 -0.018 0.25 NO
46 BMP2 BMP2 BMP2 13314 -0.038 0.18 NO
47 DHH DHH DHH 13794 -0.048 0.16 NO
48 HHIP HHIP HHIP 14032 -0.054 0.16 NO
49 CSNK1A1 CSNK1A1 CSNK1A1 14058 -0.054 0.16 NO
50 WNT7A WNT7A WNT7A 15270 -0.089 0.11 NO
51 GAS1 GAS1 GAS1 15615 -0.1 0.1 NO
52 PRKX PRKX PRKX 16080 -0.12 0.092 NO
53 WNT7B WNT7B WNT7B 17923 -0.33 0.033 NO

Figure S45.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA CARM ER PATHWAY.

Figure S46.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA CARM ER PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA MPR PATHWAY

Table S24.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CLDN19 CLDN19 CLDN19 33 0.62 0.041 YES
2 MYH6 MYH6 MYH6 41 0.6 0.082 YES
3 RAB3B RAB3B RAB3B 60 0.57 0.12 YES
4 CTNNA3 CTNNA3 CTNNA3 214 0.46 0.14 YES
5 MYH7 MYH7 MYH7 245 0.45 0.17 YES
6 CLDN6 CLDN6 CLDN6 364 0.4 0.19 YES
7 ACTN2 ACTN2 ACTN2 440 0.38 0.22 YES
8 MYL7 MYL7 MYL7 544 0.36 0.24 YES
9 MYH15 MYH15 MYH15 796 0.32 0.24 YES
10 CLDN9 CLDN9 CLDN9 799 0.32 0.26 YES
11 CLDN2 CLDN2 CLDN2 834 0.31 0.28 YES
12 ACTN3 ACTN3 ACTN3 1064 0.28 0.29 YES
13 IGSF5 IGSF5 IGSF5 1166 0.28 0.3 YES
14 CTNNA2 CTNNA2 CTNNA2 1370 0.26 0.31 YES
15 MYH7B MYH7B MYH7B 1524 0.24 0.32 YES
16 PRKCG PRKCG PRKCG 1550 0.24 0.34 YES
17 PARD6G PARD6G PARD6G 1649 0.23 0.35 YES
18 MPDZ MPDZ MPDZ 1687 0.23 0.36 YES
19 GNAI1 GNAI1 GNAI1 2126 0.2 0.35 NO
20 CLDN18 CLDN18 CLDN18 2196 0.19 0.36 NO
21 CLDN15 CLDN15 CLDN15 2810 0.16 0.34 NO
22 LLGL1 LLGL1 LLGL1 2857 0.16 0.34 NO
23 MAGI1 MAGI1 MAGI1 2990 0.15 0.35 NO
24 MYH10 MYH10 MYH10 3258 0.14 0.34 NO
25 AMOTL1 AMOTL1 AMOTL1 3291 0.14 0.35 NO
26 MYH3 MYH3 MYH3 3757 0.12 0.33 NO
27 SRC SRC SRC 3783 0.12 0.34 NO
28 MAGI2 MAGI2 MAGI2 3938 0.11 0.34 NO
29 EPB41 EPB41 EPB41 4146 0.11 0.34 NO
30 CDK4 CDK4 CDK4 4169 0.11 0.34 NO
31 KRAS KRAS KRAS 4250 0.1 0.34 NO
32 EPB41L2 EPB41L2 EPB41L2 4354 0.1 0.35 NO
33 JAM3 JAM3 JAM3 4850 0.09 0.33 NO
34 CLDN8 CLDN8 CLDN8 5493 0.076 0.3 NO
35 CSNK2A1 CSNK2A1 CSNK2A1 5589 0.074 0.3 NO
36 CLDN11 CLDN11 CLDN11 5739 0.071 0.29 NO
37 NRAS NRAS NRAS 6145 0.063 0.28 NO
38 PARD6A PARD6A PARD6A 6459 0.058 0.26 NO
39 MLLT4 MLLT4 MLLT4 6479 0.057 0.26 NO
40 CLDN5 CLDN5 CLDN5 6629 0.055 0.26 NO
41 TJP1 TJP1 TJP1 6660 0.054 0.26 NO
42 CSNK2A2 CSNK2A2 CSNK2A2 6671 0.054 0.27 NO
43 PRKCE PRKCE PRKCE 6756 0.053 0.26 NO
44 TJAP1 TJAP1 TJAP1 6792 0.052 0.27 NO
45 AKT2 AKT2 AKT2 6946 0.05 0.26 NO
46 PPP2R2D PPP2R2D PPP2R2D 7021 0.049 0.26 NO
47 CTNNB1 CTNNB1 CTNNB1 7349 0.044 0.25 NO
48 YES1 YES1 YES1 7418 0.043 0.24 NO
49 PRKCZ PRKCZ PRKCZ 7428 0.043 0.25 NO
50 ZAK ZAK ZAK 7568 0.041 0.24 NO
51 SYMPK SYMPK SYMPK 7954 0.036 0.22 NO
52 MPP5 MPP5 MPP5 8086 0.034 0.22 NO
53 PPP2R2C PPP2R2C PPP2R2C 8336 0.031 0.21 NO
54 PPP2CB PPP2CB PPP2CB 8360 0.031 0.21 NO
55 EXOC4 EXOC4 EXOC4 8499 0.029 0.2 NO
56 PPP2R1A PPP2R1A PPP2R1A 8608 0.027 0.2 NO
57 RRAS2 RRAS2 RRAS2 8673 0.027 0.2 NO
58 PPP2R2A PPP2R2A PPP2R2A 9565 0.016 0.15 NO
59 SPTAN1 SPTAN1 SPTAN1 9769 0.013 0.14 NO
60 PARD3 PARD3 PARD3 9877 0.012 0.14 NO
61 CASK CASK CASK 10054 0.0091 0.13 NO
62 PRKCQ PRKCQ PRKCQ 10226 0.007 0.12 NO
63 MAGI3 MAGI3 MAGI3 10319 0.0059 0.11 NO
64 CLDN20 CLDN20 CLDN20 10364 0.0052 0.11 NO
65 PARD6B PARD6B PARD6B 10603 0.0021 0.098 NO
66 ASH1L ASH1L ASH1L 10646 0.0015 0.096 NO
67 CSNK2B CSNK2B CSNK2B 10648 0.0015 0.096 NO
68 PTEN PTEN PTEN 10899 -0.002 0.083 NO
69 RAB13 RAB13 RAB13 11038 -0.0039 0.076 NO
70 CDC42 CDC42 CDC42 11199 -0.006 0.067 NO
71 MYLPF MYLPF MYLPF 11245 -0.0066 0.066 NO
72 GNAI3 GNAI3 GNAI3 11275 -0.007 0.064 NO
73 MRAS MRAS MRAS 11292 -0.0071 0.064 NO
74 PPP2R1B PPP2R1B PPP2R1B 11330 -0.0077 0.062 NO
75 CSDA CSDA CSDA 11394 -0.0086 0.06 NO
76 CLDN14 CLDN14 CLDN14 12152 -0.02 0.02 NO
77 ACTG1 ACTG1 ACTG1 12222 -0.02 0.018 NO
78 VAPA VAPA VAPA 12436 -0.024 0.0076 NO
79 ACTN4 ACTN4 ACTN4 12514 -0.025 0.0052 NO
80 CTNNA1 CTNNA1 CTNNA1 12559 -0.026 0.0045 NO
81 F11R F11R F11R 12706 -0.028 -0.0015 NO
82 PPP2CA PPP2CA PPP2CA 12713 -0.028 0.00015 NO
83 OCLN OCLN OCLN 12749 -0.029 0.00022 NO
84 CGN CGN CGN 12833 -0.03 -0.0022 NO
85 MYL9 MYL9 MYL9 13032 -0.033 -0.011 NO
86 ACTB ACTB ACTB 13084 -0.034 -0.011 NO
87 RHOA RHOA RHOA 13096 -0.034 -0.0094 NO
88 ACTN1 ACTN1 ACTN1 13126 -0.035 -0.0086 NO
89 MYL12B MYL12B MYL12B 13265 -0.038 -0.014 NO
90 JAM2 JAM2 JAM2 13605 -0.044 -0.029 NO
91 AKT1 AKT1 AKT1 13743 -0.047 -0.033 NO
92 EXOC3 EXOC3 EXOC3 13764 -0.048 -0.031 NO
93 GNAI2 GNAI2 GNAI2 13779 -0.048 -0.028 NO
94 EPB41L1 EPB41L1 EPB41L1 13952 -0.052 -0.034 NO
95 MYH13 MYH13 MYH13 14034 -0.054 -0.035 NO
96 AKT3 AKT3 AKT3 14171 -0.057 -0.038 NO
97 INADL INADL INADL 14252 -0.058 -0.039 NO
98 MYH11 MYH11 MYH11 14254 -0.059 -0.035 NO
99 MYH9 MYH9 MYH9 14358 -0.062 -0.036 NO
100 CLDN4 CLDN4 CLDN4 14664 -0.07 -0.048 NO
101 CLDN1 CLDN1 CLDN1 14863 -0.076 -0.053 NO
102 CTTN CTTN CTTN 15045 -0.082 -0.058 NO
103 LLGL2 LLGL2 LLGL2 15182 -0.087 -0.059 NO
104 MYL12A MYL12A MYL12A 15199 -0.087 -0.054 NO
105 MYL5 MYL5 MYL5 15368 -0.092 -0.057 NO
106 PRKCD PRKCD PRKCD 15502 -0.098 -0.057 NO
107 PRKCA PRKCA PRKCA 15680 -0.11 -0.06 NO
108 PRKCI PRKCI PRKCI 15696 -0.11 -0.053 NO
109 CLDN3 CLDN3 CLDN3 15742 -0.11 -0.048 NO
110 CLDN23 CLDN23 CLDN23 15990 -0.12 -0.053 NO
111 TJP2 TJP2 TJP2 16044 -0.12 -0.048 NO
112 MYH14 MYH14 MYH14 16070 -0.12 -0.041 NO
113 CRB3 CRB3 CRB3 16177 -0.13 -0.038 NO
114 PPP2R2B PPP2R2B PPP2R2B 16456 -0.15 -0.043 NO
115 RRAS RRAS RRAS 16512 -0.15 -0.035 NO
116 CLDN7 CLDN7 CLDN7 16527 -0.15 -0.026 NO
117 PRKCH PRKCH PRKCH 16773 -0.17 -0.027 NO
118 TJP3 TJP3 TJP3 17388 -0.24 -0.044 NO
119 HCLS1 HCLS1 HCLS1 17576 -0.27 -0.036 NO
120 CLDN16 CLDN16 CLDN16 17663 -0.28 -0.021 NO
121 PRKCB PRKCB PRKCB 17679 -0.29 -0.0021 NO
122 EPB41L3 EPB41L3 EPB41L3 17749 -0.3 0.015 NO
123 CLDN10 CLDN10 CLDN10 18188 -0.41 0.019 NO

Figure S47.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA MPR PATHWAY.

Figure S48.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA MPR PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA INTEGRIN PATHWAY

Table S25.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 TCF7L1 TCF7L1 TCF7L1 115 0.52 0.2 YES
2 RXRG RXRG RXRG 123 0.52 0.39 YES
3 LEF1 LEF1 LEF1 1284 0.26 0.43 YES
4 NTRK1 NTRK1 NTRK1 2888 0.16 0.41 NO
5 KRAS KRAS KRAS 4250 0.1 0.37 NO
6 NRAS NRAS NRAS 6145 0.063 0.3 NO
7 TPR TPR TPR 6160 0.063 0.32 NO
8 TCF7L2 TCF7L2 TCF7L2 6536 0.056 0.32 NO
9 CTNNB1 CTNNB1 CTNNB1 7349 0.044 0.29 NO
10 TCF7 TCF7 TCF7 7359 0.044 0.31 NO
11 TFG TFG TFG 7580 0.041 0.31 NO
12 RET RET RET 8363 0.031 0.28 NO
13 RXRB RXRB RXRB 9109 0.021 0.25 NO
14 CCND1 CCND1 CCND1 9337 0.018 0.24 NO
15 BRAF BRAF BRAF 9879 0.012 0.22 NO
16 TP53 TP53 TP53 10964 -0.003 0.16 NO
17 RXRA RXRA RXRA 11329 -0.0076 0.15 NO
18 MAP2K2 MAP2K2 MAP2K2 11541 -0.011 0.14 NO
19 TPM3 TPM3 TPM3 11922 -0.016 0.12 NO
20 MAP2K1 MAP2K1 MAP2K1 12234 -0.021 0.12 NO
21 NCOA4 NCOA4 NCOA4 12601 -0.026 0.11 NO
22 MAPK1 MAPK1 MAPK1 12606 -0.026 0.12 NO
23 CDH1 CDH1 CDH1 12797 -0.03 0.12 NO
24 PAX8 PAX8 PAX8 13766 -0.048 0.083 NO
25 CCDC6 CCDC6 CCDC6 14408 -0.063 0.073 NO
26 MAPK3 MAPK3 MAPK3 14995 -0.08 0.072 NO
27 MYC MYC MYC 15792 -0.11 0.072 NO
28 PPARG PPARG PPARG 17039 -0.2 0.081 NO

Figure S49.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA INTEGRIN PATHWAY.

Figure S50.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA INTEGRIN PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA WNT PATHWAY

Table S26.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 MYT1 MYT1 MYT1 421 0.39 0.12 YES
2 GNGT1 GNGT1 GNGT1 555 0.36 0.23 YES
3 PAQR5 PAQR5 PAQR5 1406 0.25 0.28 YES
4 GNAI1 GNAI1 GNAI1 2126 0.2 0.31 YES
5 ACTA1 ACTA1 ACTA1 2606 0.17 0.34 YES
6 PGR PGR PGR 3043 0.15 0.37 YES
7 SRC SRC SRC 3783 0.12 0.38 YES
8 PRKACB PRKACB PRKACB 3998 0.11 0.4 YES
9 PRKAR1B PRKAR1B PRKAR1B 5246 0.081 0.36 NO
10 PAQR7 PAQR7 PAQR7 5615 0.073 0.37 NO
11 PRKAR2B PRKAR2B PRKAR2B 6384 0.059 0.35 NO
12 CCNB1 CCNB1 CCNB1 6416 0.058 0.37 NO
13 GNAS GNAS GNAS 7063 0.048 0.35 NO
14 CDC25C CDC25C CDC25C 7715 0.039 0.33 NO
15 GNB1 GNB1 GNB1 9240 0.019 0.26 NO
16 CDK1 CDK1 CDK1 9422 0.017 0.25 NO
17 PRKAR2A PRKAR2A PRKAR2A 9670 0.014 0.24 NO
18 PIN1 PIN1 PIN1 9815 0.012 0.24 NO
19 ACTR2 ACTR2 ACTR2 10399 0.0048 0.21 NO
20 PRKAR1A PRKAR1A PRKAR1A 11563 -0.011 0.15 NO
21 HRAS HRAS HRAS 11995 -0.017 0.13 NO
22 ARPC1A ARPC1A ARPC1A 12359 -0.023 0.12 NO
23 MAPK1 MAPK1 MAPK1 12606 -0.026 0.12 NO
24 ARPC2 ARPC2 ARPC2 12631 -0.027 0.13 NO
25 ARPC5 ARPC5 ARPC5 12834 -0.03 0.13 NO
26 ARPC3 ARPC3 ARPC3 13113 -0.034 0.12 NO
27 ARPC4 ARPC4 ARPC4 13344 -0.039 0.12 NO
28 CAP1 CAP1 CAP1 13568 -0.043 0.13 NO
29 ACTR3 ACTR3 ACTR3 13578 -0.044 0.14 NO
30 MAPK3 MAPK3 MAPK3 14995 -0.08 0.096 NO
31 RPS6KA1 RPS6KA1 RPS6KA1 15031 -0.081 0.12 NO
32 ARPC1B ARPC1B ARPC1B 16939 -0.19 0.086 NO

Figure S51.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA WNT PATHWAY.

Figure S52.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA WNT PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG RNA DEGRADATION

Table S27.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 WIF1 WIF1 WIF1 787 0.32 0.13 YES
2 LEF1 LEF1 LEF1 1284 0.26 0.25 YES
3 MAP3K7 MAP3K7 MAP3K7 3982 0.11 0.16 YES
4 WNT1 WNT1 WNT1 4037 0.11 0.22 YES
5 NLK NLK NLK 4237 0.1 0.27 YES
6 BTRC BTRC BTRC 4395 0.1 0.31 YES
7 GSK3B GSK3B GSK3B 5265 0.081 0.31 YES
8 FRAT1 FRAT1 FRAT1 5496 0.076 0.34 YES
9 CREBBP CREBBP CREBBP 5526 0.075 0.38 YES
10 CSNK2A1 CSNK2A1 CSNK2A1 5589 0.074 0.42 YES
11 CTBP1 CTBP1 CTBP1 6172 0.062 0.42 YES
12 CTNNB1 CTNNB1 CTNNB1 7349 0.044 0.38 NO
13 HDAC1 HDAC1 HDAC1 7379 0.043 0.4 NO
14 DVL1 DVL1 DVL1 9331 0.018 0.3 NO
15 CCND1 CCND1 CCND1 9337 0.018 0.31 NO
16 AXIN1 AXIN1 AXIN1 9811 0.012 0.3 NO
17 SMAD4 SMAD4 SMAD4 10160 0.0078 0.28 NO
18 APC APC APC 10709 0.00083 0.25 NO
19 TAB1 TAB1 TAB1 11246 -0.0066 0.22 NO
20 CSNK1D CSNK1D CSNK1D 12027 -0.018 0.19 NO
21 TLE1 TLE1 TLE1 12684 -0.028 0.17 NO
22 PPP2CA PPP2CA PPP2CA 12713 -0.028 0.19 NO
23 CSNK1A1 CSNK1A1 CSNK1A1 14058 -0.054 0.14 NO
24 FZD1 FZD1 FZD1 14699 -0.071 0.15 NO
25 MYC MYC MYC 15792 -0.11 0.15 NO

Figure S53.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG RNA DEGRADATION.

Figure S54.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG RNA DEGRADATION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG SPLICEOSOME

Table S28.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ENO3 ENO3 ENO3 1515 0.24 0.014 YES
2 PAPOLB PAPOLB PAPOLB 2790 0.16 0.0071 YES
3 DCP1B DCP1B DCP1B 3051 0.15 0.051 YES
4 ENO2 ENO2 ENO2 3468 0.13 0.079 YES
5 PAPOLG PAPOLG PAPOLG 4489 0.098 0.063 YES
6 LSM5 LSM5 LSM5 4718 0.093 0.086 YES
7 CNOT2 CNOT2 CNOT2 5308 0.08 0.086 YES
8 XRN2 XRN2 XRN2 5350 0.08 0.12 YES
9 MPHOSPH6 MPHOSPH6 MPHOSPH6 5560 0.074 0.13 YES
10 RQCD1 RQCD1 RQCD1 5849 0.069 0.14 YES
11 DCP1A DCP1A DCP1A 5958 0.066 0.16 YES
12 CNOT7 CNOT7 CNOT7 6071 0.064 0.18 YES
13 EXOSC1 EXOSC1 EXOSC1 6120 0.063 0.2 YES
14 EXOSC9 EXOSC9 EXOSC9 6977 0.05 0.18 YES
15 EXOSC10 EXOSC10 EXOSC10 7024 0.049 0.2 YES
16 PNPT1 PNPT1 PNPT1 7040 0.048 0.21 YES
17 DIS3 DIS3 DIS3 7274 0.045 0.22 YES
18 EXOSC7 EXOSC7 EXOSC7 7532 0.041 0.22 YES
19 DCP2 DCP2 DCP2 7559 0.041 0.23 YES
20 EDC3 EDC3 EDC3 8136 0.034 0.22 YES
21 EDC4 EDC4 EDC4 8160 0.033 0.23 YES
22 LSM2 LSM2 LSM2 8235 0.032 0.24 YES
23 EXOSC6 EXOSC6 EXOSC6 8245 0.032 0.25 YES
24 LSM4 LSM4 LSM4 8254 0.032 0.26 YES
25 SKIV2L SKIV2L SKIV2L 8420 0.03 0.26 YES
26 DDX6 DDX6 DDX6 8483 0.029 0.27 YES
27 LSM1 LSM1 LSM1 8527 0.029 0.28 YES
28 EXOSC8 EXOSC8 EXOSC8 8796 0.025 0.28 YES
29 CNOT3 CNOT3 CNOT3 8801 0.025 0.29 YES
30 HSPD1 HSPD1 HSPD1 8941 0.023 0.29 YES
31 NAA38 NAA38 NAA38 9288 0.019 0.28 YES
32 PAPOLA PAPOLA PAPOLA 9300 0.019 0.28 YES
33 LSM6 LSM6 LSM6 9327 0.018 0.29 YES
34 WDR61 WDR61 WDR61 9340 0.018 0.3 YES
35 PARN PARN PARN 9585 0.016 0.29 NO
36 TTC37 TTC37 TTC37 9881 0.012 0.28 NO
37 CNOT10 CNOT10 CNOT10 9888 0.011 0.28 NO
38 C1D C1D C1D 10165 0.0077 0.27 NO
39 CNOT6 CNOT6 CNOT6 10194 0.0073 0.27 NO
40 LSM7 LSM7 LSM7 10289 0.0062 0.27 NO
41 SKIV2L2 SKIV2L2 SKIV2L2 10347 0.0054 0.27 NO
42 EXOSC2 EXOSC2 EXOSC2 10387 0.0048 0.27 NO
43 LSM3 LSM3 LSM3 10404 0.0047 0.27 NO
44 CNOT1 CNOT1 CNOT1 10505 0.0034 0.26 NO
45 EXOSC3 EXOSC3 EXOSC3 10674 0.0012 0.25 NO
46 ZCCHC7 ZCCHC7 ZCCHC7 10817 -0.0009 0.25 NO
47 PATL1 PATL1 PATL1 10970 -0.0031 0.24 NO
48 EXOSC5 EXOSC5 EXOSC5 12107 -0.019 0.19 NO
49 CNOT4 CNOT4 CNOT4 12128 -0.019 0.19 NO
50 DCPS DCPS DCPS 12648 -0.027 0.18 NO
51 ENO1 ENO1 ENO1 12733 -0.029 0.18 NO
52 PAPD7 PAPD7 PAPD7 13494 -0.042 0.16 NO
53 HSPA9 HSPA9 HSPA9 13897 -0.051 0.15 NO
54 XRN1 XRN1 XRN1 14159 -0.056 0.16 NO
55 CNOT6L CNOT6L CNOT6L 14569 -0.067 0.17 NO
56 EXOSC4 EXOSC4 EXOSC4 16066 -0.12 0.13 NO

Figure S55.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG SPLICEOSOME.

Figure S56.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG SPLICEOSOME, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG CARDIAC MUSCLE CONTRACTION

Table S29.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 BMP7 BMP7 BMP7 515 0.37 0.087 YES
2 HNF1A HNF1A HNF1A 733 0.33 0.18 YES
3 NPPB NPPB NPPB 1020 0.29 0.25 YES
4 GATA4 GATA4 GATA4 1725 0.23 0.28 YES
5 TGFB2 TGFB2 TGFB2 1798 0.22 0.35 YES
6 NOG NOG NOG 2120 0.2 0.4 YES
7 NKX2-5 NKX2-5 NKX2-5 3094 0.15 0.39 YES
8 BMPR1A BMPR1A BMPR1A 3777 0.12 0.39 YES
9 TGFB3 TGFB3 TGFB3 3871 0.12 0.42 YES
10 MAP3K7 MAP3K7 MAP3K7 3982 0.11 0.45 YES
11 WNT1 WNT1 WNT1 4037 0.11 0.48 YES
12 NPPA NPPA NPPA 4416 0.1 0.49 YES
13 GSK3B GSK3B GSK3B 5265 0.081 0.47 NO
14 SMAD5 SMAD5 SMAD5 6634 0.055 0.41 NO
15 ATF2 ATF2 ATF2 7174 0.046 0.4 NO
16 RFC1 RFC1 RFC1 7328 0.044 0.4 NO
17 CTNNB1 CTNNB1 CTNNB1 7349 0.044 0.42 NO
18 TGFBR3 TGFBR3 TGFBR3 7515 0.041 0.42 NO
19 BMPR2 BMPR2 BMPR2 7593 0.04 0.43 NO
20 TGFBR1 TGFBR1 TGFBR1 8560 0.028 0.39 NO
21 BMP4 BMP4 BMP4 9257 0.019 0.35 NO
22 DVL1 DVL1 DVL1 9331 0.018 0.36 NO
23 AXIN1 AXIN1 AXIN1 9811 0.012 0.33 NO
24 SMAD4 SMAD4 SMAD4 10160 0.0078 0.32 NO
25 APC APC APC 10709 0.00083 0.29 NO
26 CHRD CHRD CHRD 11074 -0.0044 0.27 NO
27 SMAD6 SMAD6 SMAD6 11179 -0.0057 0.27 NO
28 ACVR1 ACVR1 ACVR1 12508 -0.025 0.2 NO
29 BMP2 BMP2 BMP2 13314 -0.038 0.17 NO
30 SMAD1 SMAD1 SMAD1 14268 -0.059 0.14 NO
31 FZD1 FZD1 FZD1 14699 -0.071 0.14 NO
32 TGFBR2 TGFBR2 TGFBR2 15611 -0.1 0.12 NO
33 TGFB1 TGFB1 TGFB1 16068 -0.12 0.13 NO

Figure S57.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG CARDIAC MUSCLE CONTRACTION.

Figure S58.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG CARDIAC MUSCLE CONTRACTION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG WNT SIGNALING PATHWAY

Table S30.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PYGO1 PYGO1 PYGO1 63 0.57 0.048 YES
2 TCF7L1 TCF7L1 TCF7L1 115 0.52 0.092 YES
3 WNT2B WNT2B WNT2B 253 0.44 0.12 YES
4 CXXC4 CXXC4 CXXC4 366 0.4 0.15 YES
5 FZD2 FZD2 FZD2 388 0.4 0.19 YES
6 CCND2 CCND2 CCND2 595 0.35 0.21 YES
7 WNT11 WNT11 WNT11 687 0.34 0.23 YES
8 WIF1 WIF1 WIF1 787 0.32 0.26 YES
9 WNT6 WNT6 WNT6 816 0.32 0.28 YES
10 WNT5B WNT5B WNT5B 876 0.31 0.31 YES
11 FRZB FRZB FRZB 923 0.3 0.33 YES
12 LEF1 LEF1 LEF1 1284 0.26 0.34 YES
13 WNT5A WNT5A WNT5A 1557 0.24 0.34 YES
14 LRP6 LRP6 LRP6 1905 0.21 0.35 YES
15 WNT3 WNT3 WNT3 2064 0.2 0.36 YES
16 NKD1 NKD1 NKD1 2243 0.19 0.36 YES
17 FOXN1 FOXN1 FOXN1 2260 0.19 0.38 YES
18 FZD7 FZD7 FZD7 2276 0.19 0.4 YES
19 WNT4 WNT4 WNT4 2563 0.17 0.4 YES
20 SFRP1 SFRP1 SFRP1 2600 0.17 0.41 YES
21 KREMEN1 KREMEN1 KREMEN1 2865 0.16 0.41 YES
22 WNT8A WNT8A WNT8A 3066 0.15 0.41 YES
23 WNT16 WNT16 WNT16 3236 0.14 0.41 YES
24 DIXDC1 DIXDC1 DIXDC1 3358 0.14 0.42 YES
25 FZD5 FZD5 FZD5 3693 0.12 0.41 YES
26 RHOU RHOU RHOU 3958 0.11 0.41 YES
27 WNT1 WNT1 WNT1 4037 0.11 0.41 YES
28 DVL2 DVL2 DVL2 4165 0.11 0.42 YES
29 NLK NLK NLK 4237 0.1 0.42 YES
30 BTRC BTRC BTRC 4395 0.1 0.42 YES
31 BCL9 BCL9 BCL9 4400 0.1 0.43 YES
32 GSK3B GSK3B GSK3B 5265 0.081 0.39 NO
33 FRAT1 FRAT1 FRAT1 5496 0.076 0.39 NO
34 CSNK2A1 CSNK2A1 CSNK2A1 5589 0.074 0.39 NO
35 SENP2 SENP2 SENP2 5882 0.068 0.38 NO
36 CTBP1 CTBP1 CTBP1 6172 0.062 0.37 NO
37 WNT10A WNT10A WNT10A 6173 0.062 0.37 NO
38 CTNNB1 CTNNB1 CTNNB1 7349 0.044 0.32 NO
39 TCF7 TCF7 TCF7 7359 0.044 0.32 NO
40 GSK3A GSK3A GSK3A 7742 0.038 0.3 NO
41 DAAM1 DAAM1 DAAM1 7846 0.037 0.3 NO
42 CTNNBIP1 CTNNBIP1 CTNNBIP1 7861 0.037 0.3 NO
43 CTBP2 CTBP2 CTBP2 7985 0.036 0.3 NO
44 FZD3 FZD3 FZD3 8293 0.032 0.28 NO
45 SOX17 SOX17 SOX17 8590 0.028 0.27 NO
46 PPP2R1A PPP2R1A PPP2R1A 8608 0.027 0.27 NO
47 EP300 EP300 EP300 8888 0.024 0.26 NO
48 WNT2 WNT2 WNT2 9222 0.02 0.24 NO
49 DVL1 DVL1 DVL1 9331 0.018 0.24 NO
50 CCND1 CCND1 CCND1 9337 0.018 0.24 NO
51 JUN JUN JUN 9356 0.018 0.24 NO
52 GAPDH GAPDH GAPDH 9671 0.014 0.22 NO
53 WNT9A WNT9A WNT9A 9746 0.013 0.22 NO
54 AXIN1 AXIN1 AXIN1 9811 0.012 0.22 NO
55 LRP5 LRP5 LRP5 10005 0.0099 0.21 NO
56 FBXW2 FBXW2 FBXW2 10034 0.0094 0.21 NO
57 FBXW11 FBXW11 FBXW11 10333 0.0057 0.19 NO
58 FBXW4 FBXW4 FBXW4 10377 0.005 0.19 NO
59 CSNK1G1 CSNK1G1 CSNK1G1 10590 0.0023 0.18 NO
60 APC APC APC 10709 0.00083 0.17 NO
61 RPL13A RPL13A RPL13A 11581 -0.011 0.13 NO
62 CSNK1D CSNK1D CSNK1D 12027 -0.018 0.11 NO
63 TLE1 TLE1 TLE1 12684 -0.028 0.072 NO
64 PPP2CA PPP2CA PPP2CA 12713 -0.028 0.074 NO
65 ACTB ACTB ACTB 13084 -0.034 0.056 NO
66 TLE2 TLE2 TLE2 14035 -0.054 0.0098 NO
67 CSNK1A1 CSNK1A1 CSNK1A1 14058 -0.054 0.014 NO
68 HPRT1 HPRT1 HPRT1 14060 -0.054 0.018 NO
69 AES AES AES 14491 -0.066 0.00098 NO
70 SLC9A3R1 SLC9A3R1 SLC9A3R1 14529 -0.066 0.005 NO
71 FZD8 FZD8 FZD8 14661 -0.07 0.0041 NO
72 FZD1 FZD1 FZD1 14699 -0.071 0.0085 NO
73 CCND3 CCND3 CCND3 14744 -0.072 0.013 NO
74 PORCN PORCN PORCN 14838 -0.075 0.014 NO
75 FZD4 FZD4 FZD4 15163 -0.086 0.0045 NO
76 WNT7A WNT7A WNT7A 15270 -0.089 0.0068 NO
77 MYC MYC MYC 15792 -0.11 -0.012 NO
78 FZD6 FZD6 FZD6 16029 -0.12 -0.013 NO
79 DKK1 DKK1 DKK1 16385 -0.14 -0.02 NO
80 PITX2 PITX2 PITX2 16705 -0.17 -0.022 NO
81 B2M B2M B2M 16851 -0.18 -0.014 NO
82 SFRP4 SFRP4 SFRP4 17357 -0.24 -0.02 NO
83 WISP1 WISP1 WISP1 17728 -0.3 -0.014 NO
84 FOSL1 FOSL1 FOSL1 17759 -0.3 0.012 NO
85 WNT7B WNT7B WNT7B 17923 -0.33 0.033 NO

Figure S59.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG WNT SIGNALING PATHWAY.

Figure S60.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG WNT SIGNALING PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

Fold change

For the top enriched genes, if you want to check whether they are

Expression level

For the top enriched genes, if you want to check whether they are

An expression pattern of top(30%)/middle(30%)/low(30%) in this subtype against other subtypes is available in a heatmap

Significant gene list

For the top enriched genes, if you want to check whether they are

Methods & Data
Input
  • Gene set database = c2.cp.v3.0-2.symbols.gmt

  • Expression data file = OV-TP.uncv2.mRNAseq_RSEM_normalized_log2.txt

  • Phenotype data file = OV-TP.mergedcluster.txt

GSEA analysis

For the Gene Set Enrichment Analysis (GSEA), Broad GSEA-P-R.1.0 version is used with class2: canonical pathways geneses from MSigDB. Further details about statistics are available inThe Broad GSEA website.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Subramanian, A. et al, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles., Proc. Natl. Acad. Sci. USA 102(43) (2005)