Correlation between aggregated molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 13 clinical features across 412 patients, 68 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'PATHOLOGY_N_STAGE' and 'ETHNICITY'.

  • 4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'YEARS_TO_BIRTH',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'KARNOFSKY_PERFORMANCE_SCORE', and 'RACE'.

  • CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'RADIATION_THERAPY',  'KARNOFSKY_PERFORMANCE_SCORE', and 'RACE'.

  • Consensus hierarchical clustering analysis on RPPA data identified 4 subtypes that correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'PATHOLOGY_M_STAGE',  'GENDER',  'KARNOFSKY_PERFORMANCE_SCORE', and 'RACE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'KARNOFSKY_PERFORMANCE_SCORE', and 'RACE'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'GENDER',  'RADIATION_THERAPY',  'KARNOFSKY_PERFORMANCE_SCORE',  'NUMBER_OF_LYMPH_NODES', and 'RACE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE', and 'NUMBER_OF_LYMPH_NODES'.

  • 5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'GENDER',  'RADIATION_THERAPY',  'KARNOFSKY_PERFORMANCE_SCORE', and 'RACE'.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'RADIATION_THERAPY',  'KARNOFSKY_PERFORMANCE_SCORE',  'NUMBER_OF_LYMPH_NODES', and 'RACE'.

  • 6 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death',  'YEARS_TO_BIRTH',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE',  'RADIATION_THERAPY',  'KARNOFSKY_PERFORMANCE_SCORE',  'NUMBER_OF_LYMPH_NODES', and 'RACE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 13 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 68 significant findings detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.903
(0.924)
0.163
(0.235)
0.0567
(0.107)
0.0192
(0.0462)
0.00106
(0.00392)
0.00213
(0.00693)
0.0874
(0.148)
0.304
(0.396)
0.00478
(0.0145)
0.0315
(0.0671)
YEARS TO BIRTH Kruskal-Wallis (anova) 0.0626
(0.116)
0.00901
(0.026)
0.0703
(0.125)
0.0499
(0.0954)
0.534
(0.604)
0.000113
(0.000639)
0.112
(0.172)
0.000486
(0.00211)
0.000586
(0.00232)
0.000322
(0.00155)
PATHOLOGIC STAGE Fisher's exact test 0.0804
(0.14)
0.00466
(0.0144)
0.00034
(0.00158)
4e-05
(0.000274)
1e-05
(1e-04)
1e-05
(1e-04)
2e-05
(0.000162)
0.00026
(0.0013)
1e-05
(1e-04)
3e-05
(0.000229)
PATHOLOGY T STAGE Fisher's exact test 0.785
(0.837)
0.0117
(0.0305)
2e-05
(0.000162)
1e-05
(1e-04)
1e-05
(1e-04)
1e-05
(1e-04)
4e-05
(0.000274)
5e-05
(0.00031)
2e-05
(0.000162)
7e-05
(0.000414)
PATHOLOGY N STAGE Fisher's exact test 0.0104
(0.0283)
0.366
(0.454)
0.0143
(0.0358)
0.00963
(0.0272)
0.0108
(0.0286)
1e-05
(1e-04)
0.00055
(0.00231)
0.0162
(0.0398)
1e-05
(1e-04)
0.00175
(0.00599)
PATHOLOGY M STAGE Fisher's exact test 0.808
(0.847)
0.95
(0.964)
0.0916
(0.151)
0.0331
(0.0695)
0.176
(0.251)
0.305
(0.396)
0.763
(0.82)
0.0806
(0.14)
0.43
(0.508)
0.146
(0.218)
GENDER Fisher's exact test 0.861
(0.896)
0.338
(0.427)
0.112
(0.172)
0.00206
(0.00687)
0.111
(0.172)
0.0125
(0.0318)
0.1
(0.163)
0.0345
(0.0712)
0.313
(0.402)
0.509
(0.585)
RADIATION THERAPY Fisher's exact test 0.235
(0.322)
0.102
(0.164)
0.0497
(0.0954)
0.0678
(0.124)
0.475
(0.551)
0.0286
(0.062)
0.389
(0.468)
0.0275
(0.0617)
0.0199
(0.0464)
0.0204
(0.0464)
KARNOFSKY PERFORMANCE SCORE Kruskal-Wallis (anova) 0.376
(0.461)
0.00163
(0.00574)
0.0202
(0.0464)
0.0368
(0.0736)
0.0392
(0.0773)
0.00707
(0.0209)
0.194
(0.269)
0.00998
(0.0276)
0.00155
(0.00559)
0.000415
(0.00186)
NUMBER PACK YEARS SMOKED Kruskal-Wallis (anova) 0.731
(0.792)
0.606
(0.675)
0.161
(0.235)
0.523
(0.597)
0.383
(0.466)
0.714
(0.787)
0.608
(0.675)
0.731
(0.792)
0.803
(0.847)
0.402
(0.48)
NUMBER OF LYMPH NODES Kruskal-Wallis (anova) 0.11
(0.172)
0.0694
(0.125)
0.274
(0.368)
0.146
(0.218)
0.195
(0.269)
2.26e-06
(1e-04)
0.000991
(0.00379)
0.0905
(0.151)
0.000241
(0.00125)
0.0361
(0.0734)
RACE Fisher's exact test 0.189
(0.267)
0.00059
(0.00232)
1e-05
(1e-04)
1e-05
(1e-04)
1e-05
(1e-04)
1e-05
(1e-04)
0.155
(0.229)
0.00427
(0.0135)
5e-05
(0.00031)
0.00013
(0.000704)
ETHNICITY Fisher's exact test 0.028
(0.0618)
0.0876
(0.148)
0.443
(0.519)
0.352
(0.44)
0.336
(0.427)
0.271
(0.367)
0.284
(0.377)
1
(1.00)
0.875
(0.902)
0.963
(0.97)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 169 140 59 40
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.903 (logrank test), Q value = 0.92

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 406 177 0.1 - 166.0 (17.2)
subtype1 167 71 0.1 - 163.3 (16.5)
subtype2 140 59 0.5 - 166.0 (18.1)
subtype3 59 28 1.8 - 165.7 (15.8)
subtype4 40 19 1.1 - 112.8 (21.7)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0626 (Kruskal-Wallis (anova)), Q value = 0.12

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 407 68.1 (10.6)
subtype1 169 66.4 (11.0)
subtype2 139 69.5 (9.7)
subtype3 59 69.4 (9.4)
subtype4 40 68.3 (12.8)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.0804 (Fisher's exact test), Q value = 0.14

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 129 140 135
subtype1 1 61 65 41
subtype2 1 37 42 59
subtype3 0 19 17 23
subtype4 0 12 16 12

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.785 (Fisher's exact test), Q value = 0.84

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 123 195 58
subtype1 55 74 27
subtype2 40 68 21
subtype3 17 31 6
subtype4 11 22 4

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.0104 (Fisher's exact test), Q value = 0.028

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 235 47 75 9
subtype1 117 16 20 2
subtype2 69 19 34 5
subtype3 28 6 16 1
subtype4 21 6 5 1

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.808 (Fisher's exact test), Q value = 0.85

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 192 11
subtype1 92 5
subtype2 66 4
subtype3 20 2
subtype4 14 0

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.861 (Fisher's exact test), Q value = 0.9

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 301
subtype1 42 127
subtype2 36 104
subtype3 17 42
subtype4 12 28

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.235 (Fisher's exact test), Q value = 0.32

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 364 19
subtype1 151 12
subtype2 126 3
subtype3 50 3
subtype4 37 1

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.376 (Kruskal-Wallis (anova)), Q value = 0.46

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 135 83.0 (13.7)
subtype1 50 81.6 (13.1)
subtype2 47 84.5 (14.4)
subtype3 21 84.8 (9.3)
subtype4 17 81.2 (18.0)

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.731 (Kruskal-Wallis (anova)), Q value = 0.79

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 222 39.0 (53.1)
subtype1 87 36.2 (26.7)
subtype2 77 44.6 (83.5)
subtype3 31 38.5 (21.6)
subtype4 27 32.6 (22.6)

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.11 (Kruskal-Wallis (anova)), Q value = 0.17

Table S12.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 297 2.1 (7.0)
subtype1 114 1.2 (3.4)
subtype2 109 3.0 (10.2)
subtype3 46 2.3 (5.1)
subtype4 28 1.8 (4.5)

Figure S11.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.189 (Fisher's exact test), Q value = 0.27

Table S13.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 43 22 327
subtype1 27 9 131
subtype2 11 8 112
subtype3 4 3 51
subtype4 1 2 33

Figure S12.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.028 (Fisher's exact test), Q value = 0.062

Table S14.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 9 369
subtype1 1 161
subtype2 6 120
subtype3 0 55
subtype4 2 33

Figure S13.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S15.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4
Number of samples 139 117 71 85
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.163 (logrank test), Q value = 0.24

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 410 179 0.1 - 166.0 (17.2)
subtype1 138 65 0.7 - 166.0 (15.8)
subtype2 117 43 0.4 - 130.9 (18.8)
subtype3 70 30 0.1 - 104.7 (15.5)
subtype4 85 41 0.5 - 86.3 (16.8)

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.00901 (Kruskal-Wallis (anova)), Q value = 0.026

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 411 68.1 (10.6)
subtype1 139 69.4 (9.7)
subtype2 116 69.8 (10.0)
subtype3 71 65.7 (10.9)
subtype4 85 65.5 (11.8)

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'PATHOLOGIC_STAGE'

P value = 0.00466 (Fisher's exact test), Q value = 0.014

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 131 141 136
subtype1 0 30 65 44
subtype2 1 39 34 41
subtype3 1 26 18 26
subtype4 0 36 24 25

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.0117 (Fisher's exact test), Q value = 0.03

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 124 196 59
subtype1 27 82 21
subtype2 38 51 13
subtype3 25 28 13
subtype4 34 35 12

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_N_STAGE'

P value = 0.366 (Fisher's exact test), Q value = 0.45

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 238 47 76 9
subtype1 83 16 24 4
subtype2 62 16 21 3
subtype3 39 4 20 1
subtype4 54 11 11 1

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.95 (Fisher's exact test), Q value = 0.96

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 196 11
subtype1 54 4
subtype2 58 3
subtype3 46 2
subtype4 38 2

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.338 (Fisher's exact test), Q value = 0.43

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 108 304
subtype1 40 99
subtype2 34 83
subtype3 13 58
subtype4 21 64

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'RADIATION_THERAPY'

P value = 0.102 (Fisher's exact test), Q value = 0.16

Table S23.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 366 19
subtype1 126 5
subtype2 106 2
subtype3 60 5
subtype4 74 7

Figure S21.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

'METHLYATION CNMF' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.00163 (Kruskal-Wallis (anova)), Q value = 0.0057

Table S24.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 136 83.1 (13.7)
subtype1 39 87.7 (10.1)
subtype2 40 85.5 (11.1)
subtype3 24 79.2 (11.8)
subtype4 33 77.6 (18.5)

Figure S22.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'METHLYATION CNMF' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.606 (Kruskal-Wallis (anova)), Q value = 0.68

Table S25.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 224 39.0 (52.9)
subtype1 81 37.3 (27.9)
subtype2 63 34.6 (25.4)
subtype3 34 32.5 (21.5)
subtype4 46 53.1 (104.9)

Figure S23.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'METHLYATION CNMF' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.0694 (Kruskal-Wallis (anova)), Q value = 0.13

Table S26.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 297 2.1 (7.0)
subtype1 113 1.3 (2.6)
subtype2 78 1.9 (4.9)
subtype3 44 3.4 (6.9)
subtype4 62 2.8 (12.6)

Figure S24.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'METHLYATION CNMF' versus 'RACE'

P value = 0.00059 (Fisher's exact test), Q value = 0.0023

Table S27.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 44 23 327
subtype1 5 8 121
subtype2 11 7 93
subtype3 18 2 49
subtype4 10 6 64

Figure S25.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.0876 (Fisher's exact test), Q value = 0.15

Table S28.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 9 371
subtype1 2 127
subtype2 2 103
subtype3 0 67
subtype4 5 74

Figure S26.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S29.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 123 116 105
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.0567 (logrank test), Q value = 0.11

Table S30.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 342 155 0.1 - 166.0 (17.4)
subtype1 123 68 0.7 - 166.0 (16.8)
subtype2 115 36 0.1 - 97.1 (16.3)
subtype3 104 51 0.9 - 165.7 (19.0)

Figure S27.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0703 (Kruskal-Wallis (anova)), Q value = 0.13

Table S31.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 343 67.9 (10.5)
subtype1 123 69.0 (9.0)
subtype2 116 65.8 (11.6)
subtype3 104 68.8 (10.7)

Figure S28.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.00034 (Fisher's exact test), Q value = 0.0016

Table S32.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 105 119 116
subtype1 0 30 48 45
subtype2 2 53 31 29
subtype3 0 22 40 42

Figure S29.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 2e-05 (Fisher's exact test), Q value = 0.00016

Table S33.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 100 169 48
subtype1 20 73 17
subtype2 52 39 11
subtype3 28 57 20

Figure S30.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.0143 (Fisher's exact test), Q value = 0.036

Table S34.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 200 39 66 8
subtype1 66 13 30 1
subtype2 79 11 14 1
subtype3 55 15 22 6

Figure S31.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.0916 (Fisher's exact test), Q value = 0.15

Table S35.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 163 10
subtype1 41 6
subtype2 72 2
subtype3 50 2

Figure S32.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.112 (Fisher's exact test), Q value = 0.17

Table S36.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 85 259
subtype1 38 85
subtype2 27 89
subtype3 20 85

Figure S33.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.0497 (Fisher's exact test), Q value = 0.095

Table S37.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 306 13
subtype1 109 4
subtype2 98 8
subtype3 99 1

Figure S34.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RPPA CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.0202 (Kruskal-Wallis (anova)), Q value = 0.046

Table S38.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 117 83.7 (12.8)
subtype1 47 87.2 (6.5)
subtype2 39 78.7 (16.3)
subtype3 31 84.5 (13.4)

Figure S35.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'RPPA CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.161 (Kruskal-Wallis (anova)), Q value = 0.24

Table S39.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 187 39.8 (56.9)
subtype1 74 49.0 (85.1)
subtype2 60 33.1 (27.4)
subtype3 53 34.7 (18.7)

Figure S36.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RPPA CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.274 (Kruskal-Wallis (anova)), Q value = 0.37

Table S40.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 253 2.2 (7.5)
subtype1 96 2.2 (4.7)
subtype2 69 2.6 (12.2)
subtype3 88 1.9 (4.5)

Figure S37.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'RPPA CNMF subtypes' versus 'RACE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S41.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 40 20 268
subtype1 5 6 106
subtype2 32 8 71
subtype3 3 6 91

Figure S38.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'RACE'

'RPPA CNMF subtypes' versus 'ETHNICITY'

P value = 0.443 (Fisher's exact test), Q value = 0.52

Table S42.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 305
subtype1 4 112
subtype2 1 103
subtype3 3 90

Figure S39.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S43.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 90 122 100 32
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.0192 (logrank test), Q value = 0.046

Table S44.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 342 155 0.1 - 166.0 (17.4)
subtype1 90 52 1.1 - 166.0 (16.7)
subtype2 121 38 0.1 - 97.1 (17.6)
subtype3 99 52 1.2 - 165.7 (16.3)
subtype4 32 13 0.7 - 125.5 (19.8)

Figure S40.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0499 (Kruskal-Wallis (anova)), Q value = 0.095

Table S45.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 343 67.9 (10.5)
subtype1 90 69.4 (8.6)
subtype2 121 66.1 (11.5)
subtype3 100 69.3 (10.9)
subtype4 32 65.7 (9.1)

Figure S41.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 4e-05 (Fisher's exact test), Q value = 0.00027

Table S46.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 105 119 116
subtype1 0 14 36 40
subtype2 2 55 34 29
subtype3 0 22 39 39
subtype4 0 14 10 8

Figure S42.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S47.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 100 169 48
subtype1 15 56 18
subtype2 58 40 14
subtype3 22 59 15
subtype4 5 14 1

Figure S43.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.00963 (Fisher's exact test), Q value = 0.027

Table S48.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 200 39 66 8
subtype1 44 10 28 2
subtype2 82 10 17 1
subtype3 55 18 17 4
subtype4 19 1 4 1

Figure S44.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.0331 (Fisher's exact test), Q value = 0.07

Table S49.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 163 10
subtype1 34 3
subtype2 77 2
subtype3 42 2
subtype4 10 3

Figure S45.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.00206 (Fisher's exact test), Q value = 0.0069

Table S50.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 85 259
subtype1 33 57
subtype2 22 100
subtype3 18 82
subtype4 12 20

Figure S46.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.0678 (Fisher's exact test), Q value = 0.12

Table S51.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 306 13
subtype1 79 2
subtype2 108 7
subtype3 92 1
subtype4 27 3

Figure S47.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RPPA cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.0368 (Kruskal-Wallis (anova)), Q value = 0.074

Table S52.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 117 83.7 (12.8)
subtype1 24 87.1 (6.9)
subtype2 41 78.8 (16.0)
subtype3 34 85.3 (12.6)
subtype4 18 87.2 (6.7)

Figure S48.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'RPPA cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.523 (Kruskal-Wallis (anova)), Q value = 0.6

Table S53.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 187 39.8 (56.9)
subtype1 55 40.5 (30.5)
subtype2 61 34.3 (26.1)
subtype3 52 48.3 (98.4)
subtype4 19 32.2 (23.2)

Figure S49.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RPPA cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.146 (Kruskal-Wallis (anova)), Q value = 0.22

Table S54.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 253 2.2 (7.5)
subtype1 77 2.5 (5.0)
subtype2 75 2.7 (11.8)
subtype3 82 1.8 (4.5)
subtype4 19 1.1 (2.8)

Figure S50.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'RPPA cHierClus subtypes' versus 'RACE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S55.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 40 20 268
subtype1 3 3 79
subtype2 32 7 77
subtype3 5 7 84
subtype4 0 3 28

Figure S51.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'RACE'

'RPPA cHierClus subtypes' versus 'ETHNICITY'

P value = 0.352 (Fisher's exact test), Q value = 0.44

Table S56.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 305
subtype1 3 80
subtype2 1 106
subtype3 4 87
subtype4 0 32

Figure S52.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S57.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 116 182 110
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.00106 (logrank test), Q value = 0.0039

Table S58.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 406 177 0.1 - 166.0 (17.0)
subtype1 115 63 0.7 - 166.0 (17.9)
subtype2 181 55 0.1 - 112.4 (17.4)
subtype3 110 59 1.8 - 165.7 (15.5)

Figure S53.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.534 (Kruskal-Wallis (anova)), Q value = 0.6

Table S59.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 407 68.1 (10.6)
subtype1 116 68.8 (8.9)
subtype2 181 67.4 (11.4)
subtype3 110 68.5 (10.9)

Figure S54.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S60.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 130 140 134
subtype1 0 18 49 49
subtype2 2 79 50 49
subtype3 0 33 41 36

Figure S55.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S61.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 123 194 58
subtype1 17 77 18
subtype2 75 63 24
subtype3 31 54 16

Figure S56.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.0108 (Fisher's exact test), Q value = 0.029

Table S62.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 236 46 75 9
subtype1 61 16 30 2
subtype2 112 11 32 4
subtype3 63 19 13 3

Figure S57.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.176 (Fisher's exact test), Q value = 0.25

Table S63.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 196 11
subtype1 39 5
subtype2 109 4
subtype3 48 2

Figure S58.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.111 (Fisher's exact test), Q value = 0.17

Table S64.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 301
subtype1 29 87
subtype2 41 141
subtype3 37 73

Figure S59.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.475 (Fisher's exact test), Q value = 0.55

Table S65.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 362 19
subtype1 102 5
subtype2 160 11
subtype3 100 3

Figure S60.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RNAseq CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.0392 (Kruskal-Wallis (anova)), Q value = 0.077

Table S66.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 134 83.0 (13.8)
subtype1 35 87.1 (8.9)
subtype2 63 80.5 (15.0)
subtype3 36 83.3 (14.7)

Figure S61.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'RNAseq CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.383 (Kruskal-Wallis (anova)), Q value = 0.47

Table S67.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 222 39.2 (53.1)
subtype1 73 37.3 (27.6)
subtype2 92 34.7 (26.7)
subtype3 57 48.8 (94.2)

Figure S62.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RNAseq CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.195 (Kruskal-Wallis (anova)), Q value = 0.27

Table S68.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 293 2.1 (7.0)
subtype1 99 2.2 (4.4)
subtype2 112 2.7 (10.3)
subtype3 82 1.1 (2.9)

Figure S63.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S69.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 44 23 324
subtype1 3 5 107
subtype2 38 10 127
subtype3 3 8 90

Figure S64.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.336 (Fisher's exact test), Q value = 0.43

Table S70.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 368
subtype1 2 110
subtype2 2 164
subtype3 4 94

Figure S65.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S71.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 119 113 176
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.00213 (logrank test), Q value = 0.0069

Table S72.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 406 177 0.1 - 166.0 (17.0)
subtype1 118 59 1.1 - 130.9 (18.0)
subtype2 112 27 0.1 - 94.9 (16.6)
subtype3 176 91 0.5 - 166.0 (15.7)

Figure S66.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000113 (Kruskal-Wallis (anova)), Q value = 0.00064

Table S73.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 407 68.1 (10.6)
subtype1 119 71.3 (9.5)
subtype2 112 65.1 (10.8)
subtype3 176 67.8 (10.7)

Figure S67.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S74.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 130 140 134
subtype1 0 17 40 62
subtype2 2 65 27 17
subtype3 0 48 73 55

Figure S68.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S75.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 123 194 58
subtype1 21 68 25
subtype2 59 29 10
subtype3 43 97 23

Figure S69.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S76.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 236 46 75 9
subtype1 52 17 40 4
subtype2 80 5 10 1
subtype3 104 24 25 4

Figure S70.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.305 (Fisher's exact test), Q value = 0.4

Table S77.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 196 11
subtype1 49 4
subtype2 78 2
subtype3 69 5

Figure S71.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.0125 (Fisher's exact test), Q value = 0.032

Table S78.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 301
subtype1 31 88
subtype2 19 94
subtype3 57 119

Figure S72.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.0286 (Fisher's exact test), Q value = 0.062

Table S79.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 362 19
subtype1 104 3
subtype2 100 11
subtype3 158 5

Figure S73.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.00707 (Kruskal-Wallis (anova)), Q value = 0.021

Table S80.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 134 83.0 (13.8)
subtype1 32 85.0 (12.2)
subtype2 43 78.4 (15.6)
subtype3 59 85.3 (12.5)

Figure S74.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'RNAseq cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.714 (Kruskal-Wallis (anova)), Q value = 0.79

Table S81.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 222 39.2 (53.1)
subtype1 58 39.0 (31.3)
subtype2 65 34.3 (25.0)
subtype3 99 42.4 (73.3)

Figure S75.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RNAseq cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 2.26e-06 (Kruskal-Wallis (anova)), Q value = 1e-04

Table S82.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 293 2.1 (7.0)
subtype1 97 2.7 (4.7)
subtype2 60 2.8 (13.2)
subtype3 136 1.4 (3.9)

Figure S76.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S83.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 44 23 324
subtype1 6 8 103
subtype2 32 4 72
subtype3 6 11 149

Figure S77.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.271 (Fisher's exact test), Q value = 0.37

Table S84.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 368
subtype1 1 107
subtype2 1 105
subtype3 6 156

Figure S78.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S85.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 121 97 191
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0874 (logrank test), Q value = 0.15

Table S86.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 407 177 0.1 - 166.0 (17.2)
subtype1 121 62 1.9 - 166.0 (15.8)
subtype2 96 39 1.2 - 130.9 (16.6)
subtype3 190 76 0.1 - 165.7 (18.7)

Figure S79.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.112 (Kruskal-Wallis (anova)), Q value = 0.17

Table S87.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 408 68.1 (10.6)
subtype1 121 69.2 (9.7)
subtype2 96 68.8 (11.0)
subtype3 191 67.0 (10.9)

Figure S80.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'PATHOLOGIC_STAGE'

P value = 2e-05 (Fisher's exact test), Q value = 0.00016

Table S88.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 131 139 135
subtype1 0 23 47 51
subtype2 1 24 31 40
subtype3 1 84 61 44

Figure S81.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 4e-05 (Fisher's exact test), Q value = 0.00027

Table S89.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 124 194 58
subtype1 21 79 15
subtype2 29 47 16
subtype3 74 68 27

Figure S82.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_N_STAGE'

P value = 0.00055 (Fisher's exact test), Q value = 0.0023

Table S90.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 236 46 76 9
subtype1 61 15 35 1
subtype2 49 14 21 4
subtype3 126 17 20 4

Figure S83.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.763 (Fisher's exact test), Q value = 0.82

Table S91.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 195 11
subtype1 44 3
subtype2 41 3
subtype3 110 5

Figure S84.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.1 (Fisher's exact test), Q value = 0.16

Table S92.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 302
subtype1 40 81
subtype2 20 77
subtype3 47 144

Figure S85.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'RADIATION_THERAPY'

P value = 0.389 (Fisher's exact test), Q value = 0.47

Table S93.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 363 19
subtype1 105 4
subtype2 92 3
subtype3 166 12

Figure S86.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRSEQ CNMF' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.194 (Kruskal-Wallis (anova)), Q value = 0.27

Table S94.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 135 83.0 (13.7)
subtype1 32 85.0 (12.4)
subtype2 27 84.4 (14.8)
subtype3 76 81.7 (13.9)

Figure S87.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'MIRSEQ CNMF' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.608 (Kruskal-Wallis (anova)), Q value = 0.68

Table S95.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 221 39.1 (53.2)
subtype1 67 49.1 (89.4)
subtype2 51 35.7 (27.4)
subtype3 103 34.4 (21.7)

Figure S88.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRSEQ CNMF' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.000991 (Kruskal-Wallis (anova)), Q value = 0.0038

Table S96.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 295 2.1 (7.0)
subtype1 96 2.4 (5.2)
subtype2 77 3.4 (11.6)
subtype3 122 1.0 (3.4)

Figure S89.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.155 (Fisher's exact test), Q value = 0.23

Table S97.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 44 23 324
subtype1 7 7 106
subtype2 10 5 78
subtype3 27 11 140

Figure S90.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.284 (Fisher's exact test), Q value = 0.38

Table S98.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 9 368
subtype1 1 116
subtype2 4 85
subtype3 4 167

Figure S91.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S99.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5
Number of samples 89 100 95 71 54
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.304 (logrank test), Q value = 0.4

Table S100.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 407 177 0.1 - 166.0 (17.2)
subtype1 89 48 1.1 - 166.0 (17.6)
subtype2 99 43 1.2 - 130.9 (17.2)
subtype3 94 34 0.1 - 104.7 (17.9)
subtype4 71 28 0.4 - 110.6 (18.0)
subtype5 54 24 2.1 - 163.3 (16.2)

Figure S92.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.000486 (Kruskal-Wallis (anova)), Q value = 0.0021

Table S101.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 408 68.1 (10.6)
subtype1 89 68.0 (11.2)
subtype2 99 70.2 (9.9)
subtype3 95 64.2 (10.7)
subtype4 71 68.5 (10.4)
subtype5 54 70.4 (9.5)

Figure S93.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGIC_STAGE'

P value = 0.00026 (Fisher's exact test), Q value = 0.0013

Table S102.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 131 139 135
subtype1 0 22 39 28
subtype2 1 25 32 41
subtype3 1 48 22 23
subtype4 0 26 27 18
subtype5 0 10 19 25

Figure S94.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_T_STAGE'

P value = 5e-05 (Fisher's exact test), Q value = 0.00031

Table S103.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 124 194 58
subtype1 18 51 12
subtype2 28 49 17
subtype3 49 25 12
subtype4 18 35 9
subtype5 11 34 8

Figure S95.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_N_STAGE'

P value = 0.0162 (Fisher's exact test), Q value = 0.04

Table S104.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 236 46 76 9
subtype1 49 15 11 2
subtype2 53 14 23 4
subtype3 59 6 14 1
subtype4 47 6 8 2
subtype5 28 5 20 0

Figure S96.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_M_STAGE'

P value = 0.0806 (Fisher's exact test), Q value = 0.14

Table S105.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 195 11
subtype1 39 0
subtype2 42 1
subtype3 60 3
subtype4 36 5
subtype5 18 2

Figure S97.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.0345 (Fisher's exact test), Q value = 0.071

Table S106.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 302
subtype1 30 59
subtype2 21 79
subtype3 20 75
subtype4 15 56
subtype5 21 33

Figure S98.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RADIATION_THERAPY'

P value = 0.0275 (Fisher's exact test), Q value = 0.062

Table S107.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 363 19
subtype1 79 4
subtype2 95 2
subtype3 78 10
subtype4 65 3
subtype5 46 0

Figure S99.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.00998 (Kruskal-Wallis (anova)), Q value = 0.028

Table S108.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 135 83.0 (13.7)
subtype1 27 84.1 (14.7)
subtype2 28 86.8 (9.4)
subtype3 37 76.5 (17.2)
subtype4 27 84.8 (9.8)
subtype5 16 86.9 (10.8)

Figure S100.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.731 (Kruskal-Wallis (anova)), Q value = 0.79

Table S109.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 221 39.1 (53.2)
subtype1 46 52.6 (105.2)
subtype2 55 34.1 (23.3)
subtype3 53 34.4 (22.1)
subtype4 36 33.4 (24.2)
subtype5 31 43.0 (35.2)

Figure S101.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.0905 (Kruskal-Wallis (anova)), Q value = 0.15

Table S110.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 295 2.1 (7.0)
subtype1 65 1.1 (2.2)
subtype2 82 3.3 (11.3)
subtype3 52 1.9 (6.1)
subtype4 48 1.5 (5.1)
subtype5 48 2.2 (3.6)

Figure S102.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.00427 (Fisher's exact test), Q value = 0.014

Table S111.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 44 23 324
subtype1 4 4 76
subtype2 8 6 84
subtype3 22 5 64
subtype4 8 5 51
subtype5 2 3 49

Figure S103.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 1 (Fisher's exact test), Q value = 1

Table S112.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 9 368
subtype1 2 80
subtype2 2 91
subtype3 2 85
subtype4 2 60
subtype5 1 52

Figure S104.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S113.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 99 43 136 120
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.00478 (logrank test), Q value = 0.014

Table S114.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 396 175 0.4 - 166.0 (17.2)
subtype1 99 44 0.7 - 165.7 (16.7)
subtype2 42 27 1.5 - 130.9 (13.7)
subtype3 135 45 0.4 - 110.6 (18.1)
subtype4 120 59 1.1 - 166.0 (16.7)

Figure S105.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000586 (Kruskal-Wallis (anova)), Q value = 0.0023

Table S115.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 397 68.2 (10.6)
subtype1 99 67.9 (11.0)
subtype2 42 71.8 (8.2)
subtype3 136 65.4 (10.9)
subtype4 120 70.2 (9.7)

Figure S106.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S116.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 124 135 135
subtype1 0 32 36 31
subtype2 1 4 13 24
subtype3 1 65 41 28
subtype4 0 23 45 52

Figure S107.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 2e-05 (Fisher's exact test), Q value = 0.00016

Table S117.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 120 190 58
subtype1 27 52 11
subtype2 9 23 11
subtype3 60 41 19
subtype4 24 74 17

Figure S108.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 1e-04

Table S118.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 229 46 76 9
subtype1 59 16 11 3
subtype2 16 7 14 3
subtype3 92 9 14 2
subtype4 62 14 37 1

Figure S109.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.43 (Fisher's exact test), Q value = 0.51

Table S119.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 188 11
subtype1 38 2
subtype2 15 1
subtype3 86 3
subtype4 49 5

Figure S110.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.313 (Fisher's exact test), Q value = 0.4

Table S120.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 291
subtype1 29 70
subtype2 10 33
subtype3 30 106
subtype4 38 82

Figure S111.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.0199 (Fisher's exact test), Q value = 0.046

Table S121.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 354 19
subtype1 90 3
subtype2 43 0
subtype3 115 13
subtype4 106 3

Figure S112.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRseq Mature CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.00155 (Kruskal-Wallis (anova)), Q value = 0.0056

Table S122.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 130 83.1 (13.9)
subtype1 31 84.8 (13.1)
subtype2 13 86.9 (11.8)
subtype3 48 77.5 (16.3)
subtype4 38 87.4 (9.2)

Figure S113.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'MIRseq Mature CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.803 (Kruskal-Wallis (anova)), Q value = 0.85

Table S123.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 216 39.6 (53.7)
subtype1 54 37.8 (22.8)
subtype2 29 37.6 (24.8)
subtype3 73 34.7 (24.0)
subtype4 60 48.1 (94.5)

Figure S114.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRseq Mature CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.000241 (Kruskal-Wallis (anova)), Q value = 0.0013

Table S124.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 291 2.1 (7.1)
subtype1 74 0.9 (1.8)
subtype2 38 3.4 (5.6)
subtype3 81 2.2 (11.3)
subtype4 98 2.5 (5.2)

Figure S115.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 5e-05 (Fisher's exact test), Q value = 0.00031

Table S125.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 41 22 317
subtype1 3 7 83
subtype2 1 3 38
subtype3 29 6 90
subtype4 8 6 106

Figure S116.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.875 (Fisher's exact test), Q value = 0.9

Table S126.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 9 357
subtype1 3 87
subtype2 0 40
subtype3 3 117
subtype4 3 113

Figure S117.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'ETHNICITY'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S127.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 75 47 95 66 31 84
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.0315 (logrank test), Q value = 0.067

Table S128.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 396 175 0.4 - 166.0 (17.2)
subtype1 75 34 1.9 - 163.3 (15.8)
subtype2 46 25 1.5 - 130.9 (15.6)
subtype3 95 30 0.4 - 110.6 (19.0)
subtype4 66 40 1.1 - 166.0 (18.0)
subtype5 30 6 0.7 - 88.9 (16.1)
subtype6 84 40 1.2 - 165.7 (16.5)

Figure S118.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000322 (Kruskal-Wallis (anova)), Q value = 0.0016

Table S129.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 397 68.2 (10.6)
subtype1 75 69.0 (9.7)
subtype2 46 71.3 (9.7)
subtype3 95 65.2 (10.5)
subtype4 66 71.2 (9.2)
subtype5 31 63.9 (11.1)
subtype6 84 68.2 (11.6)

Figure S119.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 3e-05 (Fisher's exact test), Q value = 0.00023

Table S130.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 2 124 135 135
subtype1 0 18 28 29
subtype2 1 9 14 22
subtype3 0 43 25 26
subtype4 0 12 27 27
subtype5 1 20 7 3
subtype6 0 22 34 28

Figure S120.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 7e-05 (Fisher's exact test), Q value = 0.00041

Table S131.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T0+T1+T2 T3 T4
ALL 120 190 58
subtype1 17 44 10
subtype2 12 24 10
subtype3 36 30 11
subtype4 13 40 11
subtype5 21 5 4
subtype6 21 47 12

Figure S121.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.00175 (Fisher's exact test), Q value = 0.006

Table S132.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients N0 N1 N2 N3
ALL 229 46 76 9
subtype1 40 6 23 0
subtype2 21 7 13 3
subtype3 56 6 14 2
subtype4 37 11 15 1
subtype5 25 1 1 0
subtype6 50 15 10 3

Figure S122.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.146 (Fisher's exact test), Q value = 0.22

Table S133.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 188 11
subtype1 31 2
subtype2 20 0
subtype3 52 6
subtype4 27 3
subtype5 26 0
subtype6 32 0

Figure S123.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.509 (Fisher's exact test), Q value = 0.59

Table S134.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 107 291
subtype1 25 50
subtype2 12 35
subtype3 22 73
subtype4 19 47
subtype5 5 26
subtype6 24 60

Figure S124.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.0204 (Fisher's exact test), Q value = 0.046

Table S135.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 354 19
subtype1 67 1
subtype2 44 1
subtype3 82 9
subtype4 60 3
subtype5 26 4
subtype6 75 1

Figure S125.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRseq Mature cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.000415 (Kruskal-Wallis (anova)), Q value = 0.0019

Table S136.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 130 83.1 (13.9)
subtype1 22 85.9 (10.1)
subtype2 13 86.2 (11.9)
subtype3 37 81.6 (15.4)
subtype4 19 88.9 (7.4)
subtype5 11 66.4 (16.3)
subtype6 28 83.9 (13.4)

Figure S126.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'KARNOFSKY_PERFORMANCE_SCORE'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.402 (Kruskal-Wallis (anova)), Q value = 0.48

Table S137.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 216 39.6 (53.7)
subtype1 40 39.4 (33.4)
subtype2 27 34.5 (20.6)
subtype3 51 34.3 (29.3)
subtype4 33 60.2 (122.0)
subtype5 17 39.9 (19.8)
subtype6 48 33.9 (21.3)

Figure S127.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.0361 (Kruskal-Wallis (anova)), Q value = 0.073

Table S138.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 291 2.1 (7.1)
subtype1 57 1.9 (3.4)
subtype2 38 3.4 (5.6)
subtype3 59 2.5 (12.6)
subtype4 56 1.9 (4.8)
subtype5 14 2.4 (8.5)
subtype6 67 1.4 (4.1)

Figure S128.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.00013 (Fisher's exact test), Q value = 7e-04

Table S139.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 41 22 317
subtype1 5 3 67
subtype2 3 3 39
subtype3 13 6 69
subtype4 3 4 55
subtype5 13 2 14
subtype6 4 4 73

Figure S129.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.963 (Fisher's exact test), Q value = 0.97

Table S140.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 9 357
subtype1 1 72
subtype2 1 41
subtype3 3 80
subtype4 2 59
subtype5 0 28
subtype6 2 77

Figure S130.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/BLCA-TP/20125359/BLCA-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/BLCA-TP/19775034/BLCA-TP.merged_data.txt

  • Number of patients = 412

  • Number of clustering approaches = 10

  • Number of selected clinical features = 13

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)