This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 4 different clustering approaches and 12 clinical features across 22 patients, 17 significant findings detected with P value < 0.05 and Q value < 0.25.
-
4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'Time to Death', 'TUMOR_TISSUE_SITE', 'PATHOLOGY_T_STAGE', 'GENDER', and 'HISTOLOGICAL_TYPE'.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'TUMOR_TISSUE_SITE', 'GENDER', and 'HISTOLOGICAL_TYPE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'TUMOR_TISSUE_SITE', 'PATHOLOGY_T_STAGE', 'GENDER', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
6 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death', 'TUMOR_TISSUE_SITE', 'GENDER', and 'HISTOLOGICAL_TYPE'.
Table 1. Get Full Table Overview of the association between subtypes identified by 4 different clustering approaches and 12 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 17 significant findings detected.
Clinical Features |
Statistical Tests |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRseq Mature CNMF subtypes |
MIRseq Mature cHierClus subtypes |
Time to Death | logrank test |
0.0123 (0.0455) |
0.323 (0.553) |
0.259 (0.46) |
0.0407 (0.115) |
YEARS TO BIRTH | Kruskal-Wallis (anova) |
0.782 (1.00) |
0.69 (1.00) |
0.355 (0.588) |
0.783 (1.00) |
TUMOR TISSUE SITE | Fisher's exact test |
1e-05 (6e-05) |
1e-05 (6e-05) |
1e-05 (6e-05) |
1e-05 (6e-05) |
PATHOLOGIC STAGE | Fisher's exact test |
0.15 (0.326) |
0.2 (0.399) |
0.199 (0.399) |
0.0666 (0.178) |
PATHOLOGY T STAGE | Fisher's exact test |
0.018 (0.0617) |
0.132 (0.304) |
0.0356 (0.107) |
0.242 (0.446) |
PATHOLOGY N STAGE | Fisher's exact test |
1 (1.00) |
1 (1.00) |
0.595 (0.892) |
1 (1.00) |
GENDER | Fisher's exact test |
0.00014 (0.000747) |
0.00364 (0.0173) |
0.00397 (0.0173) |
0.00681 (0.0272) |
RADIATION THERAPY | Fisher's exact test |
0.217 (0.416) |
0.0839 (0.212) |
0.0227 (0.0725) |
0.133 (0.304) |
HISTOLOGICAL TYPE | Fisher's exact test |
1e-05 (6e-05) |
1e-05 (6e-05) |
1e-05 (6e-05) |
1e-05 (6e-05) |
NUMBER PACK YEARS SMOKED | Kruskal-Wallis (anova) | ||||
NUMBER OF LYMPH NODES | Fisher's exact test |
1 (1.00) |
0.839 (1.00) |
1 (1.00) |
0.836 (1.00) |
RACE | Fisher's exact test |
1 (1.00) |
0.462 (0.739) |
0.748 (1.00) |
0.534 (0.827) |
Table S1. Description of clustering approach #1: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 5 | 10 | 4 | 3 |
P value = 0.0123 (logrank test), Q value = 0.046
Table S2. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 22 | 3 | 2.7 - 40.1 (21.9) |
subtype1 | 5 | 0 | 9.9 - 32.9 (20.1) |
subtype2 | 10 | 1 | 10.2 - 35.0 (26.0) |
subtype3 | 4 | 0 | 10.4 - 35.9 (22.2) |
subtype4 | 3 | 2 | 2.7 - 40.1 (7.3) |
Figure S1. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.782 (Kruskal-Wallis (anova)), Q value = 1
Table S3. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 22 | 63.9 (9.5) |
subtype1 | 5 | 64.8 (12.9) |
subtype2 | 10 | 62.4 (9.4) |
subtype3 | 4 | 65.5 (9.3) |
subtype4 | 3 | 65.0 (8.0) |
Figure S2. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S4. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | BLADDER | BREAST | COLON | ENDOMETRIAL | KIDNEY | LUNG |
---|---|---|---|---|---|---|
ALL | 3 | 5 | 4 | 3 | 4 | 3 |
subtype1 | 0 | 0 | 4 | 0 | 0 | 1 |
subtype2 | 0 | 5 | 0 | 3 | 0 | 2 |
subtype3 | 0 | 0 | 0 | 0 | 4 | 0 |
subtype4 | 3 | 0 | 0 | 0 | 0 | 0 |
Figure S3. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.15 (Fisher's exact test), Q value = 0.33
Table S5. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 1 |
subtype1 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 |
subtype2 | 0 | 1 | 1 | 0 | 3 | 1 | 0 | 1 | 0 | 0 |
subtype3 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Figure S4. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'

P value = 0.018 (Fisher's exact test), Q value = 0.062
Table S6. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3+T4 |
---|---|---|---|
ALL | 5 | 7 | 7 |
subtype1 | 0 | 1 | 4 |
subtype2 | 1 | 5 | 1 |
subtype3 | 3 | 1 | 0 |
subtype4 | 1 | 0 | 2 |
Figure S5. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S7. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1+N2 |
---|---|---|
ALL | 10 | 4 |
subtype1 | 4 | 1 |
subtype2 | 4 | 2 |
subtype3 | 1 | 0 |
subtype4 | 1 | 1 |
Figure S6. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'

P value = 0.00014 (Fisher's exact test), Q value = 0.00075
Table S8. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 12 | 10 |
subtype1 | 1 | 4 |
subtype2 | 10 | 0 |
subtype3 | 0 | 4 |
subtype4 | 1 | 2 |
Figure S7. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.217 (Fisher's exact test), Q value = 0.42
Table S9. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 13 | 5 |
subtype1 | 5 | 0 |
subtype2 | 5 | 5 |
subtype3 | 2 | 0 |
subtype4 | 1 | 0 |
Figure S8. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S10. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA | INFILTRATING DUCTAL CARCINOMA | INFILTRATING LOBULAR CARCINOMA | KIDNEY CLEAR CELL RENAL CARCINOMA | LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) | LUNG MUCINOUS ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | MUSCLE INVASIVE UROTHELIAL CARCINOMA (PT2 OR ABOVE) | SEROUS ENDOMETRIAL ADENOCARCINOMA |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 1 | 4 | 2 | 1 | 1 | 2 | 2 |
subtype1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype2 | 0 | 0 | 4 | 1 | 0 | 2 | 0 | 1 | 0 | 2 |
subtype3 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
Figure S9. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 1 (Fisher's exact test), Q value = 1
Table S11. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'
nPatients | 0 | 2 |
---|---|---|
ALL | 9 | 3 |
subtype1 | 3 | 1 |
subtype2 | 4 | 1 |
subtype3 | 0 | 0 |
subtype4 | 2 | 1 |
Figure S10. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

P value = 1 (Fisher's exact test), Q value = 1
Table S12. Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #12: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 3 | 19 |
subtype1 | 1 | 4 |
subtype2 | 2 | 8 |
subtype3 | 0 | 4 |
subtype4 | 0 | 3 |
Figure S11. Get High-res Image Clustering Approach #1: 'MIRSEQ CNMF' versus Clinical Feature #12: 'RACE'

Table S13. Description of clustering approach #2: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 5 | 5 | 3 | 5 | 4 |
P value = 0.323 (logrank test), Q value = 0.55
Table S14. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 22 | 3 | 2.7 - 40.1 (21.9) |
subtype1 | 5 | 0 | 9.9 - 32.9 (20.1) |
subtype2 | 5 | 2 | 2.7 - 40.1 (23.2) |
subtype3 | 3 | 0 | 20.6 - 33.1 (31.4) |
subtype4 | 5 | 1 | 10.2 - 35.0 (24.1) |
subtype5 | 4 | 0 | 10.4 - 35.9 (22.2) |
Figure S12. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.69 (Kruskal-Wallis (anova)), Q value = 1
Table S15. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 22 | 63.9 (9.5) |
subtype1 | 5 | 64.8 (12.9) |
subtype2 | 5 | 66.8 (6.4) |
subtype3 | 3 | 58.7 (11.2) |
subtype4 | 5 | 61.8 (9.8) |
subtype5 | 4 | 65.5 (9.3) |
Figure S13. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S16. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | BLADDER | BREAST | COLON | ENDOMETRIAL | KIDNEY | LUNG |
---|---|---|---|---|---|---|
ALL | 3 | 5 | 4 | 3 | 4 | 3 |
subtype1 | 0 | 0 | 4 | 0 | 0 | 1 |
subtype2 | 3 | 0 | 0 | 0 | 0 | 2 |
subtype3 | 0 | 3 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 2 | 0 | 3 | 0 | 0 |
subtype5 | 0 | 0 | 0 | 0 | 4 | 0 |
Figure S14. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.2 (Fisher's exact test), Q value = 0.4
Table S17. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 1 |
subtype1 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 |
subtype2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
subtype3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 |
subtype4 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
subtype5 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S15. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'

P value = 0.132 (Fisher's exact test), Q value = 0.3
Table S18. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3+T4 |
---|---|---|---|
ALL | 5 | 7 | 7 |
subtype1 | 0 | 1 | 4 |
subtype2 | 2 | 1 | 2 |
subtype3 | 0 | 2 | 1 |
subtype4 | 0 | 2 | 0 |
subtype5 | 3 | 1 | 0 |
Figure S16. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S19. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1+N2 |
---|---|---|
ALL | 10 | 4 |
subtype1 | 4 | 1 |
subtype2 | 2 | 1 |
subtype3 | 2 | 1 |
subtype4 | 1 | 1 |
subtype5 | 1 | 0 |
Figure S17. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'

P value = 0.00364 (Fisher's exact test), Q value = 0.017
Table S20. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 12 | 10 |
subtype1 | 1 | 4 |
subtype2 | 3 | 2 |
subtype3 | 3 | 0 |
subtype4 | 5 | 0 |
subtype5 | 0 | 4 |
Figure S18. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

P value = 0.0839 (Fisher's exact test), Q value = 0.21
Table S21. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 13 | 5 |
subtype1 | 5 | 0 |
subtype2 | 3 | 0 |
subtype3 | 1 | 2 |
subtype4 | 2 | 3 |
subtype5 | 2 | 0 |
Figure S19. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S22. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA | INFILTRATING DUCTAL CARCINOMA | INFILTRATING LOBULAR CARCINOMA | KIDNEY CLEAR CELL RENAL CARCINOMA | LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) | LUNG MUCINOUS ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | MUSCLE INVASIVE UROTHELIAL CARCINOMA (PT2 OR ABOVE) | SEROUS ENDOMETRIAL ADENOCARCINOMA |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 1 | 4 | 2 | 1 | 1 | 2 | 2 |
subtype1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 |
subtype3 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
subtype5 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
Figure S20. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.839 (Fisher's exact test), Q value = 1
Table S23. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'
nPatients | 0 | 2 |
---|---|---|
ALL | 9 | 3 |
subtype1 | 3 | 1 |
subtype2 | 2 | 1 |
subtype3 | 3 | 0 |
subtype4 | 1 | 1 |
subtype5 | 0 | 0 |
Figure S21. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

P value = 0.462 (Fisher's exact test), Q value = 0.74
Table S24. Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 3 | 19 |
subtype1 | 1 | 4 |
subtype2 | 0 | 5 |
subtype3 | 0 | 3 |
subtype4 | 2 | 3 |
subtype5 | 0 | 4 |
Figure S22. Get High-res Image Clustering Approach #2: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'RACE'

Table S25. Description of clustering approach #3: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 7 | 7 | 8 |
P value = 0.259 (logrank test), Q value = 0.46
Table S26. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 22 | 3 | 2.7 - 40.1 (21.9) |
subtype1 | 7 | 0 | 9.9 - 35.9 (23.2) |
subtype2 | 7 | 2 | 2.7 - 40.1 (20.1) |
subtype3 | 8 | 1 | 10.2 - 35.0 (27.7) |
Figure S23. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.355 (Kruskal-Wallis (anova)), Q value = 0.59
Table S27. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 22 | 63.9 (9.5) |
subtype1 | 7 | 66.4 (7.1) |
subtype2 | 7 | 65.0 (11.5) |
subtype3 | 8 | 60.6 (9.7) |
Figure S24. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S28. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | BLADDER | BREAST | COLON | ENDOMETRIAL | KIDNEY | LUNG |
---|---|---|---|---|---|---|
ALL | 3 | 5 | 4 | 3 | 4 | 3 |
subtype1 | 0 | 0 | 0 | 0 | 4 | 3 |
subtype2 | 3 | 0 | 4 | 0 | 0 | 0 |
subtype3 | 0 | 5 | 0 | 3 | 0 | 0 |
Figure S25. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.199 (Fisher's exact test), Q value = 0.4
Table S29. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 1 |
subtype1 | 3 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
subtype2 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 1 |
subtype3 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 0 | 0 |
Figure S26. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'

P value = 0.0356 (Fisher's exact test), Q value = 0.11
Table S30. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3+T4 |
---|---|---|---|
ALL | 5 | 7 | 7 |
subtype1 | 4 | 2 | 1 |
subtype2 | 1 | 1 | 5 |
subtype3 | 0 | 4 | 1 |
Figure S27. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'

P value = 0.595 (Fisher's exact test), Q value = 0.89
Table S31. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1+N2 |
---|---|---|
ALL | 10 | 4 |
subtype1 | 3 | 0 |
subtype2 | 4 | 2 |
subtype3 | 3 | 2 |
Figure S28. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'

P value = 0.00397 (Fisher's exact test), Q value = 0.017
Table S32. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 12 | 10 |
subtype1 | 2 | 5 |
subtype2 | 2 | 5 |
subtype3 | 8 | 0 |
Figure S29. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0227 (Fisher's exact test), Q value = 0.073
Table S33. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 13 | 5 |
subtype1 | 5 | 0 |
subtype2 | 5 | 0 |
subtype3 | 3 | 5 |
Figure S30. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S34. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA | INFILTRATING DUCTAL CARCINOMA | INFILTRATING LOBULAR CARCINOMA | KIDNEY CLEAR CELL RENAL CARCINOMA | LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) | LUNG MUCINOUS ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | MUSCLE INVASIVE UROTHELIAL CARCINOMA (PT2 OR ABOVE) | SEROUS ENDOMETRIAL ADENOCARCINOMA |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 1 | 4 | 2 | 1 | 1 | 2 | 2 |
subtype1 | 0 | 0 | 0 | 0 | 4 | 2 | 1 | 0 | 0 | 0 |
subtype2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
subtype3 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 1 | 0 | 2 |
Figure S31. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 1 (Fisher's exact test), Q value = 1
Table S35. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'
nPatients | 0 | 2 |
---|---|---|
ALL | 9 | 3 |
subtype1 | 0 | 0 |
subtype2 | 5 | 2 |
subtype3 | 4 | 1 |
Figure S32. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

P value = 0.748 (Fisher's exact test), Q value = 1
Table S36. Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 3 | 19 |
subtype1 | 0 | 7 |
subtype2 | 1 | 6 |
subtype3 | 2 | 6 |
Figure S33. Get High-res Image Clustering Approach #3: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'RACE'

Table S37. Description of clustering approach #4: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 3 | 4 | 3 | 5 | 4 | 3 |
P value = 0.0407 (logrank test), Q value = 0.11
Table S38. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 22 | 3 | 2.7 - 40.1 (21.9) |
subtype1 | 3 | 0 | 9.9 - 27.8 (23.2) |
subtype2 | 4 | 0 | 19.7 - 32.9 (20.4) |
subtype3 | 3 | 0 | 20.6 - 33.1 (31.4) |
subtype4 | 5 | 1 | 10.2 - 35.0 (24.1) |
subtype5 | 4 | 0 | 10.4 - 35.9 (22.2) |
subtype6 | 3 | 2 | 2.7 - 40.1 (7.3) |
Figure S34. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.783 (Kruskal-Wallis (anova)), Q value = 1
Table S39. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 22 | 63.9 (9.5) |
subtype1 | 3 | 67.7 (4.0) |
subtype2 | 4 | 65.0 (14.9) |
subtype3 | 3 | 58.7 (11.2) |
subtype4 | 5 | 61.8 (9.8) |
subtype5 | 4 | 65.5 (9.3) |
subtype6 | 3 | 65.0 (8.0) |
Figure S35. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S40. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | BLADDER | BREAST | COLON | ENDOMETRIAL | KIDNEY | LUNG |
---|---|---|---|---|---|---|
ALL | 3 | 5 | 4 | 3 | 4 | 3 |
subtype1 | 0 | 0 | 0 | 0 | 0 | 3 |
subtype2 | 0 | 0 | 4 | 0 | 0 | 0 |
subtype3 | 0 | 3 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 2 | 0 | 3 | 0 | 0 |
subtype5 | 0 | 0 | 0 | 0 | 4 | 0 |
subtype6 | 3 | 0 | 0 | 0 | 0 | 0 |
Figure S36. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.0666 (Fisher's exact test), Q value = 0.18
Table S41. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE IA | STAGE IB | STAGE II | STAGE IIA | STAGE IIB | STAGE III | STAGE IIIA | STAGE IIIC | STAGE IV |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 5 | 1 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 1 |
subtype1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
subtype2 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 |
subtype3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 |
subtype4 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
subtype5 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype6 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Figure S37. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGIC_STAGE'

P value = 0.242 (Fisher's exact test), Q value = 0.45
Table S42. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3+T4 |
---|---|---|---|
ALL | 5 | 7 | 7 |
subtype1 | 1 | 1 | 1 |
subtype2 | 0 | 1 | 3 |
subtype3 | 0 | 2 | 1 |
subtype4 | 0 | 2 | 0 |
subtype5 | 3 | 1 | 0 |
subtype6 | 1 | 0 | 2 |
Figure S38. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_T_STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S43. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1+N2 |
---|---|---|
ALL | 10 | 4 |
subtype1 | 2 | 0 |
subtype2 | 3 | 1 |
subtype3 | 2 | 1 |
subtype4 | 1 | 1 |
subtype5 | 1 | 0 |
subtype6 | 1 | 1 |
Figure S39. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_N_STAGE'

P value = 0.00681 (Fisher's exact test), Q value = 0.027
Table S44. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 12 | 10 |
subtype1 | 2 | 1 |
subtype2 | 1 | 3 |
subtype3 | 3 | 0 |
subtype4 | 5 | 0 |
subtype5 | 0 | 4 |
subtype6 | 1 | 2 |
Figure S40. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.133 (Fisher's exact test), Q value = 0.3
Table S45. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 13 | 5 |
subtype1 | 3 | 0 |
subtype2 | 4 | 0 |
subtype3 | 1 | 2 |
subtype4 | 2 | 3 |
subtype5 | 2 | 0 |
subtype6 | 1 | 0 |
Figure S41. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 6e-05
Table S46. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | COLON ADENOCARCINOMA | COLON MUCINOUS ADENOCARCINOMA | INFILTRATING DUCTAL CARCINOMA | INFILTRATING LOBULAR CARCINOMA | KIDNEY CLEAR CELL RENAL CARCINOMA | LUNG ADENOCARCINOMA- NOT OTHERWISE SPECIFIED (NOS) | LUNG MUCINOUS ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | MUSCLE INVASIVE UROTHELIAL CARCINOMA (PT2 OR ABOVE) | SEROUS ENDOMETRIAL ADENOCARCINOMA |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 1 | 4 | 2 | 1 | 1 | 2 | 2 |
subtype1 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 |
subtype2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
subtype5 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
subtype6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
Figure S42. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.836 (Fisher's exact test), Q value = 1
Table S47. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'
nPatients | 0 | 2 |
---|---|---|
ALL | 9 | 3 |
subtype1 | 0 | 0 |
subtype2 | 3 | 1 |
subtype3 | 3 | 0 |
subtype4 | 1 | 1 |
subtype5 | 0 | 0 |
subtype6 | 2 | 1 |
Figure S43. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'NUMBER_OF_LYMPH_NODES'

P value = 0.534 (Fisher's exact test), Q value = 0.83
Table S48. Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'RACE'
nPatients | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|
ALL | 3 | 19 |
subtype1 | 0 | 3 |
subtype2 | 1 | 3 |
subtype3 | 0 | 3 |
subtype4 | 2 | 3 |
subtype5 | 0 | 4 |
subtype6 | 0 | 3 |
Figure S44. Get High-res Image Clustering Approach #4: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'RACE'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/FPPP-TP/19785501/FPPP-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/FPPP-TP/19775154/FPPP-TP.merged_data.txt
-
Number of patients = 22
-
Number of clustering approaches = 4
-
Number of selected clinical features = 12
-
Exclude small clusters that include fewer than K patients, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.