Correlation between aggregated molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 15 clinical features across 185 patients, 18 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'GENDER'.

  • 4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death',  'PATHOLOGY_T_STAGE', and 'GENDER'.

  • CNMF clustering analysis on RPPA data identified 5 subtypes that correlate to 'GENDER'.

  • Consensus hierarchical clustering analysis on RPPA data identified 5 subtypes that correlate to 'GENDER'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'PATHOLOGIC_STAGE' and 'PATHOLOGY_T_STAGE'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death',  'PATHOLOGIC_STAGE',  'PATHOLOGY_T_STAGE',  'PATHOLOGY_N_STAGE', and 'HISTOLOGICAL_TYPE'.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'HISTOLOGICAL_TYPE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'PATHOLOGIC_STAGE' and 'PATHOLOGY_T_STAGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'PATHOLOGIC_STAGE' and 'PATHOLOGY_T_STAGE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 15 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 18 significant findings detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.255
(0.552)
0.00998
(0.0989)
0.556
(0.794)
0.224
(0.552)
0.178
(0.552)
0.0106
(0.0989)
0.19
(0.552)
0.11
(0.478)
0.073
(0.438)
0.0458
(0.316)
YEARS TO BIRTH Kruskal-Wallis (anova) 0.996
(1.00)
0.222
(0.552)
0.278
(0.552)
0.615
(0.828)
0.357
(0.6)
0.174
(0.552)
0.566
(0.798)
0.577
(0.798)
0.519
(0.763)
0.27
(0.552)
PATHOLOGIC STAGE Fisher's exact test 0.0383
(0.302)
0.14
(0.539)
0.311
(0.575)
0.226
(0.552)
0.00178
(0.0445)
5e-05
(0.0065)
0.0557
(0.363)
0.0067
(0.0773)
0.0791
(0.441)
0.00367
(0.0612)
PATHOLOGY T STAGE Fisher's exact test 0.0794
(0.441)
0.00076
(0.0228)
0.259
(0.552)
0.306
(0.575)
0.00013
(0.0065)
0.0001
(0.0065)
0.0463
(0.316)
0.00075
(0.0228)
0.146
(0.539)
0.0029
(0.0591)
PATHOLOGY N STAGE Fisher's exact test 0.917
(0.969)
0.215
(0.552)
0.262
(0.552)
0.28
(0.552)
0.206
(0.552)
0.00315
(0.0591)
0.353
(0.6)
0.111
(0.478)
0.883
(0.946)
0.205
(0.552)
PATHOLOGY M STAGE Fisher's exact test 0.791
(0.912)
0.247
(0.552)
0.36
(0.6)
0.296
(0.569)
0.27
(0.552)
0.103
(0.478)
0.188
(0.552)
0.339
(0.597)
0.469
(0.704)
0.669
(0.841)
GENDER Fisher's exact test 0.0246
(0.205)
0.00653
(0.0773)
0.00435
(0.0652)
0.023
(0.203)
0.674
(0.841)
0.979
(1.00)
0.695
(0.841)
0.315
(0.577)
0.301
(0.572)
0.516
(0.763)
RADIATION THERAPY Fisher's exact test 0.388
(0.633)
0.524
(0.764)
0.102
(0.478)
0.676
(0.841)
0.329
(0.588)
0.67
(0.841)
0.183
(0.552)
0.64
(0.841)
0.232
(0.552)
0.639
(0.841)
HISTOLOGICAL TYPE Fisher's exact test 0.0668
(0.418)
0.243
(0.552)
0.17
(0.552)
0.24
(0.552)
0.108
(0.478)
0.0087
(0.0932)
0.00652
(0.0773)
0.0423
(0.316)
0.328
(0.588)
0.218
(0.552)
NUMBER PACK YEARS SMOKED Kruskal-Wallis (anova) 0.351
(0.6)
0.784
(0.911)
0.291
(0.567)
0.963
(1.00)
0.218
(0.552)
0.205
(0.552)
0.543
(0.784)
0.23
(0.552)
0.153
(0.539)
0.253
(0.552)
YEAR OF TOBACCO SMOKING ONSET Kruskal-Wallis (anova) 0.269
(0.552)
0.82
(0.932)
0.147
(0.539)
0.65
(0.841)
0.767
(0.899)
0.908
(0.966)
0.218
(0.552)
0.827
(0.933)
0.986
(1.00)
0.58
(0.798)
RESIDUAL TUMOR Fisher's exact test 0.111
(0.478)
0.572
(0.798)
0.949
(0.996)
0.434
(0.681)
0.243
(0.552)
0.146
(0.539)
0.619
(0.828)
0.755
(0.892)
0.679
(0.841)
0.46
(0.703)
NUMBER OF LYMPH NODES Kruskal-Wallis (anova) 0.154
(0.539)
0.466
(0.704)
0.436
(0.681)
0.152
(0.539)
0.69
(0.841)
0.0856
(0.459)
0.688
(0.841)
0.451
(0.697)
0.729
(0.868)
0.677
(0.841)
RACE Fisher's exact test 0.342
(0.597)
0.971
(1.00)
0.805
(0.922)
0.844
(0.936)
0.13
(0.539)
0.0989
(0.478)
0.372
(0.613)
0.418
(0.667)
0.276
(0.552)
0.231
(0.552)
ETHNICITY Fisher's exact test 1
(1.00)
0.868
(0.938)
0.855
(0.936)
1
(1.00)
0.853
(0.936)
0.399
(0.643)
0.869
(0.938)
0.608
(0.828)
0.842
(0.936)
0.723
(0.868)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 85 75 24
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.255 (logrank test), Q value = 0.55

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 182 96 0.0 - 90.1 (15.2)
subtype1 83 41 0.3 - 75.1 (15.3)
subtype2 75 43 0.0 - 66.9 (12.9)
subtype3 24 12 0.2 - 90.1 (16.6)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.996 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 184 64.9 (11.1)
subtype1 85 65.1 (10.7)
subtype2 75 64.8 (11.6)
subtype3 24 64.9 (11.0)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.0383 (Fisher's exact test), Q value = 0.3

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 30 121 5 5
subtype1 0 3 7 12 57 3 2
subtype2 0 2 2 17 49 2 3
subtype3 1 0 6 1 15 0 0

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.0794 (Fisher's exact test), Q value = 0.44

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 147 4
subtype1 4 12 65 3
subtype2 2 5 67 1
subtype3 1 7 15 0

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.917 (Fisher's exact test), Q value = 0.97

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 50 129
subtype1 23 61
subtype2 22 52
subtype3 5 16

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.791 (Fisher's exact test), Q value = 0.91

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 85 5
subtype1 42 2
subtype2 35 3
subtype3 8 0

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.0246 (Fisher's exact test), Q value = 0.21

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 83 101
subtype1 44 41
subtype2 34 41
subtype3 5 19

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.388 (Fisher's exact test), Q value = 0.63

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 122 42
subtype1 55 20
subtype2 48 19
subtype3 19 3

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'Copy Number Ratio CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.0668 (Fisher's exact test), Q value = 0.42

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 153 25 4 1
subtype1 71 10 3 1
subtype2 66 8 0 0
subtype3 16 7 1 0

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.351 (Kruskal-Wallis (anova)), Q value = 0.6

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 56 26.9 (18.1)
subtype1 27 25.5 (18.9)
subtype2 24 29.8 (17.8)
subtype3 5 20.2 (15.8)

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'Copy Number Ratio CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.269 (Kruskal-Wallis (anova)), Q value = 0.55

Table S12.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 46 1970.4 (13.1)
subtype1 23 1970.0 (14.3)
subtype2 18 1973.1 (12.2)
subtype3 5 1962.6 (7.4)

Figure S11.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'Copy Number Ratio CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.111 (Fisher's exact test), Q value = 0.48

Table S13.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 111 53 5 4
subtype1 58 18 2 1
subtype2 40 26 3 1
subtype3 13 9 0 2

Figure S12.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.154 (Kruskal-Wallis (anova)), Q value = 0.54

Table S14.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 180 3.0 (3.5)
subtype1 84 3.0 (3.5)
subtype2 74 2.5 (2.8)
subtype3 22 4.7 (4.8)

Figure S13.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.342 (Fisher's exact test), Q value = 0.6

Table S15.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 11 7 161
subtype1 4 5 74
subtype2 7 2 64
subtype3 0 0 23

Figure S14.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 1 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 136
subtype1 3 68
subtype2 2 48
subtype3 0 20

Figure S15.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S17.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4
Number of samples 45 48 50 41
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.00998 (logrank test), Q value = 0.099

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 182 95 0.0 - 90.1 (15.2)
subtype1 45 28 0.0 - 71.7 (15.6)
subtype2 48 18 0.3 - 90.1 (16.0)
subtype3 49 32 0.1 - 66.9 (15.1)
subtype4 40 17 0.3 - 49.4 (13.9)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.222 (Kruskal-Wallis (anova)), Q value = 0.55

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 184 64.8 (11.0)
subtype1 45 67.6 (10.6)
subtype2 48 64.2 (10.2)
subtype3 50 64.0 (11.6)
subtype4 41 63.1 (11.4)

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'PATHOLOGIC_STAGE'

P value = 0.14 (Fisher's exact test), Q value = 0.54

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 30 121 5 5
subtype1 0 2 4 7 29 1 1
subtype2 1 3 8 6 27 1 1
subtype3 0 0 1 12 33 1 3
subtype4 0 0 2 5 32 2 0

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.00076 (Fisher's exact test), Q value = 0.023

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 147 4
subtype1 2 4 36 2
subtype2 5 13 29 0
subtype3 0 3 47 0
subtype4 0 4 35 2

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_N_STAGE'

P value = 0.215 (Fisher's exact test), Q value = 0.55

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 50 129
subtype1 15 30
subtype2 16 29
subtype3 12 37
subtype4 7 33

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.247 (Fisher's exact test), Q value = 0.55

Table S23.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 84 5
subtype1 21 1
subtype2 20 1
subtype3 19 3
subtype4 24 0

Figure S21.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.00653 (Fisher's exact test), Q value = 0.077

Table S24.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 82 102
subtype1 11 34
subtype2 23 25
subtype3 23 27
subtype4 25 16

Figure S22.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'RADIATION_THERAPY'

P value = 0.524 (Fisher's exact test), Q value = 0.76

Table S25.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 122 42
subtype1 31 9
subtype2 31 16
subtype3 34 10
subtype4 26 7

Figure S23.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

'METHLYATION CNMF' versus 'HISTOLOGICAL_TYPE'

P value = 0.243 (Fisher's exact test), Q value = 0.55

Table S26.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 153 25 4 1
subtype1 40 5 0 0
subtype2 35 11 2 0
subtype3 42 6 1 0
subtype4 36 3 1 1

Figure S24.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'METHLYATION CNMF' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.784 (Kruskal-Wallis (anova)), Q value = 0.91

Table S27.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 57 26.8 (17.9)
subtype1 17 26.3 (12.9)
subtype2 10 24.6 (24.6)
subtype3 14 26.0 (17.1)
subtype4 16 29.6 (19.9)

Figure S25.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'METHLYATION CNMF' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.82 (Kruskal-Wallis (anova)), Q value = 0.93

Table S28.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 16 1969.8 (12.2)
subtype2 7 1975.4 (16.9)
subtype3 10 1970.5 (13.3)
subtype4 14 1969.6 (13.1)

Figure S26.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'METHLYATION CNMF' versus 'RESIDUAL_TUMOR'

P value = 0.572 (Fisher's exact test), Q value = 0.8

Table S29.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 111 53 5 4
subtype1 24 16 1 2
subtype2 32 12 0 0
subtype3 29 13 2 2
subtype4 26 12 2 0

Figure S27.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'METHLYATION CNMF' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.466 (Kruskal-Wallis (anova)), Q value = 0.7

Table S30.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 180 3.0 (3.5)
subtype1 44 3.2 (3.6)
subtype2 46 2.7 (3.8)
subtype3 50 2.9 (3.4)
subtype4 40 3.2 (3.1)

Figure S28.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'METHLYATION CNMF' versus 'RACE'

P value = 0.971 (Fisher's exact test), Q value = 1

Table S31.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 11 7 162
subtype1 3 2 39
subtype2 2 2 43
subtype3 4 1 45
subtype4 2 2 35

Figure S29.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.868 (Fisher's exact test), Q value = 0.94

Table S32.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 137
subtype1 1 31
subtype2 1 37
subtype3 1 38
subtype4 2 31

Figure S30.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S33.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 40 25 20 15 23
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.556 (logrank test), Q value = 0.79

Table S34.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 123 68 0.0 - 71.7 (14.9)
subtype1 40 22 0.9 - 71.7 (14.3)
subtype2 25 16 2.5 - 66.9 (15.3)
subtype3 20 10 0.1 - 68.5 (14.3)
subtype4 15 6 0.0 - 45.5 (17.8)
subtype5 23 14 3.1 - 43.8 (12.0)

Figure S31.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.278 (Kruskal-Wallis (anova)), Q value = 0.55

Table S35.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 123 65.3 (11.5)
subtype1 40 64.9 (11.0)
subtype2 25 67.0 (12.0)
subtype3 20 60.5 (10.8)
subtype4 15 68.1 (9.4)
subtype5 23 66.8 (13.1)

Figure S32.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.311 (Fisher's exact test), Q value = 0.58

Table S36.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 5 8 19 83 5 2
subtype1 1 5 7 27 0 0
subtype2 1 0 4 16 3 1
subtype3 1 2 4 12 0 0
subtype4 1 0 0 12 1 1
subtype5 1 1 4 16 1 0

Figure S33.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.259 (Fisher's exact test), Q value = 0.55

Table S37.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 6 11 101 4
subtype1 1 7 32 0
subtype2 1 0 22 2
subtype3 2 2 15 0
subtype4 1 1 12 1
subtype5 1 1 20 1

Figure S34.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.262 (Fisher's exact test), Q value = 0.55

Table S38.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 32 90
subtype1 13 27
subtype2 6 19
subtype3 7 12
subtype4 1 14
subtype5 5 18

Figure S35.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.36 (Fisher's exact test), Q value = 0.6

Table S39.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 60 2
subtype1 21 0
subtype2 11 1
subtype3 8 0
subtype4 8 1
subtype5 12 0

Figure S36.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.00435 (Fisher's exact test), Q value = 0.065

Table S40.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 57 66
subtype1 14 26
subtype2 20 5
subtype3 7 13
subtype4 6 9
subtype5 10 13

Figure S37.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.102 (Fisher's exact test), Q value = 0.48

Table S41.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 82 28
subtype1 24 10
subtype2 16 8
subtype3 11 6
subtype4 11 3
subtype5 20 1

Figure S38.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RPPA CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.17 (Fisher's exact test), Q value = 0.55

Table S42.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA
ALL 108 12 2
subtype1 36 3 1
subtype2 20 3 1
subtype3 18 2 0
subtype4 11 4 0
subtype5 23 0 0

Figure S39.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'RPPA CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.291 (Kruskal-Wallis (anova)), Q value = 0.57

Table S43.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 39 26.0 (16.7)
subtype1 15 31.7 (12.0)
subtype2 8 25.1 (21.3)
subtype3 7 20.1 (21.6)
subtype4 6 17.8 (15.3)
subtype5 3 30.0 (10.0)

Figure S40.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RPPA CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.147 (Kruskal-Wallis (anova)), Q value = 0.54

Table S44.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 32 1970.9 (13.4)
subtype1 11 1968.0 (11.5)
subtype2 9 1966.3 (12.0)
subtype3 6 1978.2 (16.0)
subtype4 4 1980.5 (6.6)
subtype5 2 1966.0 (25.5)

Figure S41.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RPPA CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.949 (Fisher's exact test), Q value = 1

Table S45.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 72 39 2 2
subtype1 22 14 1 1
subtype2 12 9 0 0
subtype3 15 5 0 0
subtype4 10 4 0 0
subtype5 13 7 1 1

Figure S42.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'RPPA CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.436 (Kruskal-Wallis (anova)), Q value = 0.68

Table S46.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 122 2.9 (3.2)
subtype1 40 2.2 (2.5)
subtype2 25 3.5 (3.9)
subtype3 19 2.5 (2.6)
subtype4 15 3.8 (4.2)
subtype5 23 3.3 (3.4)

Figure S43.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'RPPA CNMF subtypes' versus 'RACE'

P value = 0.805 (Fisher's exact test), Q value = 0.92

Table S47.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 113
subtype1 1 3 35
subtype2 1 0 21
subtype3 0 0 20
subtype4 0 0 15
subtype5 0 1 22

Figure S44.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'RACE'

'RPPA CNMF subtypes' versus 'ETHNICITY'

P value = 0.855 (Fisher's exact test), Q value = 0.94

Table S48.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 95
subtype1 2 29
subtype2 0 17
subtype3 0 17
subtype4 0 12
subtype5 1 20

Figure S45.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S49.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 48 25 16 16 18
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.224 (logrank test), Q value = 0.55

Table S50.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 123 68 0.0 - 71.7 (14.9)
subtype1 48 29 2.0 - 71.7 (13.4)
subtype2 25 15 2.5 - 66.9 (15.3)
subtype3 16 7 0.3 - 59.0 (14.1)
subtype4 16 5 0.0 - 68.5 (18.7)
subtype5 18 12 0.1 - 43.8 (12.3)

Figure S46.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.615 (Kruskal-Wallis (anova)), Q value = 0.83

Table S51.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 123 65.3 (11.5)
subtype1 48 65.3 (12.0)
subtype2 25 67.8 (11.6)
subtype3 16 63.0 (10.1)
subtype4 16 66.6 (7.7)
subtype5 18 63.1 (14.1)

Figure S47.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.226 (Fisher's exact test), Q value = 0.55

Table S52.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 5 8 19 83 5 2
subtype1 3 4 8 33 0 0
subtype2 1 0 4 15 4 1
subtype3 0 2 4 9 0 0
subtype4 1 1 1 11 1 1
subtype5 0 1 2 15 0 0

Figure S48.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.306 (Fisher's exact test), Q value = 0.57

Table S53.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 6 11 101 4
subtype1 3 6 39 0
subtype2 1 0 21 3
subtype3 0 1 14 0
subtype4 1 2 12 1
subtype5 1 2 15 0

Figure S49.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.28 (Fisher's exact test), Q value = 0.55

Table S54.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 32 90
subtype1 15 33
subtype2 7 18
subtype3 6 10
subtype4 2 13
subtype5 2 16

Figure S50.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.296 (Fisher's exact test), Q value = 0.57

Table S55.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 60 2
subtype1 24 0
subtype2 13 1
subtype3 6 0
subtype4 7 1
subtype5 10 0

Figure S51.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.023 (Fisher's exact test), Q value = 0.2

Table S56.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 57 66
subtype1 21 27
subtype2 18 7
subtype3 4 12
subtype4 5 11
subtype5 9 9

Figure S52.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RPPA cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.676 (Fisher's exact test), Q value = 0.84

Table S57.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 82 28
subtype1 31 11
subtype2 16 8
subtype3 11 3
subtype4 10 4
subtype5 14 2

Figure S53.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RPPA cHierClus subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.24 (Fisher's exact test), Q value = 0.55

Table S58.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA
ALL 108 12 2
subtype1 42 5 1
subtype2 22 2 0
subtype3 15 1 0
subtype4 11 4 1
subtype5 18 0 0

Figure S54.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'RPPA cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.963 (Kruskal-Wallis (anova)), Q value = 1

Table S59.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 39 26.0 (16.7)
subtype1 18 27.8 (14.7)
subtype2 8 25.1 (21.3)
subtype3 6 24.7 (22.1)
subtype4 4 21.5 (16.5)
subtype5 3 26.7 (11.5)

Figure S55.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RPPA cHierClus subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.65 (Kruskal-Wallis (anova)), Q value = 0.84

Table S60.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 32 1970.9 (13.4)
subtype1 13 1971.2 (13.1)
subtype2 8 1964.8 (11.8)
subtype3 5 1974.8 (15.8)
subtype4 3 1977.7 (4.0)
subtype5 3 1972.7 (22.2)

Figure S56.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RPPA cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.434 (Fisher's exact test), Q value = 0.68

Table S61.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 72 39 2 2
subtype1 25 18 1 1
subtype2 13 8 0 0
subtype3 13 2 0 1
subtype4 12 4 0 0
subtype5 9 7 1 0

Figure S57.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'RPPA cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.152 (Kruskal-Wallis (anova)), Q value = 0.54

Table S62.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 122 2.9 (3.2)
subtype1 48 2.0 (2.0)
subtype2 25 3.3 (3.7)
subtype3 16 2.5 (2.9)
subtype4 15 4.3 (4.6)
subtype5 18 4.1 (3.7)

Figure S58.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'RPPA cHierClus subtypes' versus 'RACE'

P value = 0.844 (Fisher's exact test), Q value = 0.94

Table S63.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 113
subtype1 1 3 44
subtype2 1 0 21
subtype3 0 0 16
subtype4 0 0 16
subtype5 0 1 16

Figure S59.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'RACE'

'RPPA cHierClus subtypes' versus 'ETHNICITY'

P value = 1 (Fisher's exact test), Q value = 1

Table S64.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 95
subtype1 2 36
subtype2 0 17
subtype3 0 12
subtype4 0 14
subtype5 1 16

Figure S60.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S65.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 83 49 46
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.178 (logrank test), Q value = 0.55

Table S66.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 176 89 0.0 - 90.1 (15.0)
subtype1 82 46 0.1 - 71.7 (14.2)
subtype2 49 24 0.0 - 75.1 (15.7)
subtype3 45 19 0.3 - 90.1 (14.9)

Figure S61.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.357 (Kruskal-Wallis (anova)), Q value = 0.6

Table S67.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 178 64.6 (10.9)
subtype1 83 65.0 (10.8)
subtype2 49 65.7 (10.7)
subtype3 46 62.6 (11.5)

Figure S62.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.00178 (Fisher's exact test), Q value = 0.044

Table S68.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 28 119 4 4
subtype1 0 2 2 19 55 2 3
subtype2 0 1 3 6 39 0 0
subtype3 1 2 10 3 25 2 1

Figure S63.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.00013 (Fisher's exact test), Q value = 0.0065

Table S69.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 142 3
subtype1 2 3 77 1
subtype2 1 10 38 0
subtype3 4 11 27 2

Figure S64.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.206 (Fisher's exact test), Q value = 0.55

Table S70.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 49 124
subtype1 23 58
subtype2 10 39
subtype3 16 27

Figure S65.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.27 (Fisher's exact test), Q value = 0.55

Table S71.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 80 4
subtype1 32 3
subtype2 30 0
subtype3 18 1

Figure S66.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.674 (Fisher's exact test), Q value = 0.84

Table S72.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 80 98
subtype1 37 46
subtype2 20 29
subtype3 23 23

Figure S67.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.329 (Fisher's exact test), Q value = 0.59

Table S73.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 116 42
subtype1 56 16
subtype2 30 16
subtype3 30 10

Figure S68.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RNAseq CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.108 (Fisher's exact test), Q value = 0.48

Table S74.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 147 25 4 1
subtype1 69 10 3 0
subtype2 44 4 1 0
subtype3 34 11 0 1

Figure S69.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'RNAseq CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.218 (Kruskal-Wallis (anova)), Q value = 0.55

Table S75.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 57 26.8 (17.9)
subtype1 29 29.7 (15.3)
subtype2 18 23.5 (19.6)
subtype3 10 24.6 (22.2)

Figure S70.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RNAseq CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.767 (Kruskal-Wallis (anova)), Q value = 0.9

Table S76.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 23 1969.1 (13.0)
subtype2 13 1973.1 (13.5)
subtype3 11 1971.4 (14.0)

Figure S71.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RNAseq CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.243 (Fisher's exact test), Q value = 0.55

Table S77.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 106 53 5 4
subtype1 45 25 4 3
subtype2 27 18 0 1
subtype3 34 10 1 0

Figure S72.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'RNAseq CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.69 (Kruskal-Wallis (anova)), Q value = 0.84

Table S78.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 174 3.0 (3.4)
subtype1 81 2.8 (3.1)
subtype2 49 3.1 (3.4)
subtype3 44 3.2 (4.2)

Figure S73.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.13 (Fisher's exact test), Q value = 0.54

Table S79.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 11 6 157
subtype1 9 3 70
subtype2 2 2 44
subtype3 0 1 43

Figure S74.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.853 (Fisher's exact test), Q value = 0.94

Table S80.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 131
subtype1 2 62
subtype2 1 33
subtype3 2 36

Figure S75.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S81.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 75 75 28
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0106 (logrank test), Q value = 0.099

Table S82.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 176 89 0.0 - 90.1 (15.0)
subtype1 74 40 0.0 - 75.1 (14.1)
subtype2 75 40 0.2 - 71.7 (14.1)
subtype3 27 9 0.3 - 90.1 (21.9)

Figure S76.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.174 (Kruskal-Wallis (anova)), Q value = 0.55

Table S83.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 178 64.6 (10.9)
subtype1 75 64.9 (11.0)
subtype2 75 65.7 (10.6)
subtype3 28 60.8 (11.3)

Figure S77.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 5e-05 (Fisher's exact test), Q value = 0.0065

Table S84.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 28 119 4 4
subtype1 0 1 3 9 61 1 0
subtype2 0 3 3 17 47 2 3
subtype3 1 1 9 2 11 1 1

Figure S78.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 1e-04 (Fisher's exact test), Q value = 0.0065

Table S85.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 142 3
subtype1 1 12 61 1
subtype2 3 3 68 1
subtype3 3 9 13 1

Figure S79.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.00315 (Fisher's exact test), Q value = 0.059

Table S86.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 49 124
subtype1 13 62
subtype2 23 50
subtype3 13 12

Figure S80.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.103 (Fisher's exact test), Q value = 0.48

Table S87.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 80 4
subtype1 39 0
subtype2 31 3
subtype3 10 1

Figure S81.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.979 (Fisher's exact test), Q value = 1

Table S88.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 80 98
subtype1 34 41
subtype2 33 42
subtype3 13 15

Figure S82.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.67 (Fisher's exact test), Q value = 0.84

Table S89.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 116 42
subtype1 46 19
subtype2 53 16
subtype3 17 7

Figure S83.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'RNAseq cHierClus subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.0087 (Fisher's exact test), Q value = 0.093

Table S90.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 147 25 4 1
subtype1 68 6 1 0
subtype2 61 9 3 1
subtype3 18 10 0 0

Figure S84.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'RNAseq cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.205 (Kruskal-Wallis (anova)), Q value = 0.55

Table S91.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 57 26.8 (17.9)
subtype1 31 22.9 (17.5)
subtype2 22 32.1 (18.3)
subtype3 4 28.6 (15.0)

Figure S85.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'RNAseq cHierClus subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.908 (Kruskal-Wallis (anova)), Q value = 0.97

Table S92.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 26 1971.5 (12.8)
subtype2 16 1969.8 (13.7)
subtype3 5 1970.0 (16.0)

Figure S86.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'RNAseq cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.146 (Fisher's exact test), Q value = 0.54

Table S93.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 106 53 5 4
subtype1 42 27 0 2
subtype2 42 21 4 2
subtype3 22 5 1 0

Figure S87.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'RNAseq cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.0856 (Kruskal-Wallis (anova)), Q value = 0.46

Table S94.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 174 3.0 (3.4)
subtype1 75 3.3 (3.5)
subtype2 73 2.8 (3.2)
subtype3 26 2.5 (4.2)

Figure S88.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.0989 (Fisher's exact test), Q value = 0.48

Table S95.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 11 6 157
subtype1 2 3 69
subtype2 9 2 62
subtype3 0 1 26

Figure S89.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.399 (Fisher's exact test), Q value = 0.64

Table S96.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 131
subtype1 2 56
subtype2 1 53
subtype3 2 22

Figure S90.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S97.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4
Number of samples 69 41 35 33
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.19 (logrank test), Q value = 0.55

Table S98.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 176 89 0.0 - 90.1 (15.0)
subtype1 68 38 0.2 - 66.9 (15.4)
subtype2 41 18 0.0 - 75.1 (15.3)
subtype3 35 20 1.1 - 71.7 (12.0)
subtype4 32 13 0.3 - 90.1 (15.4)

Figure S91.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.566 (Kruskal-Wallis (anova)), Q value = 0.8

Table S99.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 178 64.6 (10.9)
subtype1 69 65.0 (11.4)
subtype2 41 65.4 (9.6)
subtype3 35 65.3 (10.7)
subtype4 33 62.1 (11.9)

Figure S92.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'PATHOLOGIC_STAGE'

P value = 0.0557 (Fisher's exact test), Q value = 0.36

Table S100.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 28 119 4 4
subtype1 0 1 3 15 45 2 3
subtype2 0 1 2 7 30 1 0
subtype3 0 1 2 4 27 1 0
subtype4 1 2 8 2 17 0 1

Figure S93.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.0463 (Fisher's exact test), Q value = 0.32

Table S101.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 142 3
subtype1 1 6 61 1
subtype2 1 7 32 1
subtype3 1 3 30 1
subtype4 4 8 19 0

Figure S94.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_N_STAGE'

P value = 0.353 (Fisher's exact test), Q value = 0.6

Table S102.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 49 124
subtype1 20 48
subtype2 10 31
subtype3 7 27
subtype4 12 18

Figure S95.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.188 (Fisher's exact test), Q value = 0.55

Table S103.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 80 4
subtype1 25 3
subtype2 25 0
subtype3 18 0
subtype4 12 1

Figure S96.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.695 (Fisher's exact test), Q value = 0.84

Table S104.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 80 98
subtype1 29 40
subtype2 20 21
subtype3 18 17
subtype4 13 20

Figure S97.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'RADIATION_THERAPY'

P value = 0.183 (Fisher's exact test), Q value = 0.55

Table S105.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 116 42
subtype1 43 20
subtype2 26 10
subtype3 25 3
subtype4 22 9

Figure S98.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRSEQ CNMF' versus 'HISTOLOGICAL_TYPE'

P value = 0.00652 (Fisher's exact test), Q value = 0.077

Table S106.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 147 25 4 1
subtype1 56 11 1 0
subtype2 39 1 1 0
subtype3 29 3 2 1
subtype4 23 10 0 0

Figure S99.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'MIRSEQ CNMF' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.543 (Kruskal-Wallis (anova)), Q value = 0.78

Table S107.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 57 26.8 (17.9)
subtype1 25 29.2 (15.4)
subtype2 15 23.5 (21.7)
subtype3 11 24.6 (14.2)
subtype4 6 29.6 (25.8)

Figure S100.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRSEQ CNMF' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.218 (Kruskal-Wallis (anova)), Q value = 0.55

Table S108.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 19 1967.4 (11.3)
subtype2 12 1973.9 (13.8)
subtype3 10 1968.0 (14.1)
subtype4 6 1979.5 (13.7)

Figure S101.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRSEQ CNMF' versus 'RESIDUAL_TUMOR'

P value = 0.619 (Fisher's exact test), Q value = 0.83

Table S109.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 106 53 5 4
subtype1 37 22 3 2
subtype2 23 15 0 0
subtype3 22 10 1 1
subtype4 24 6 1 1

Figure S102.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'MIRSEQ CNMF' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.688 (Kruskal-Wallis (anova)), Q value = 0.84

Table S110.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 174 3.0 (3.4)
subtype1 68 2.7 (3.1)
subtype2 41 3.4 (3.7)
subtype3 34 2.8 (2.7)
subtype4 31 3.2 (4.5)

Figure S103.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.372 (Fisher's exact test), Q value = 0.61

Table S111.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 11 6 157
subtype1 8 2 58
subtype2 2 2 36
subtype3 1 1 32
subtype4 0 1 31

Figure S104.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.869 (Fisher's exact test), Q value = 0.94

Table S112.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 131
subtype1 1 48
subtype2 1 30
subtype3 2 27
subtype4 1 26

Figure S105.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S113.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 102 43 33
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.11 (logrank test), Q value = 0.48

Table S114.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 176 89 0.0 - 90.1 (15.0)
subtype1 101 56 0.1 - 71.7 (15.1)
subtype2 43 20 0.0 - 75.1 (12.5)
subtype3 32 13 0.3 - 90.1 (16.2)

Figure S106.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.577 (Kruskal-Wallis (anova)), Q value = 0.8

Table S115.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 178 64.6 (10.9)
subtype1 102 64.6 (11.2)
subtype2 43 65.9 (8.8)
subtype3 33 62.7 (12.6)

Figure S107.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGIC_STAGE'

P value = 0.0067 (Fisher's exact test), Q value = 0.077

Table S116.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 28 119 4 4
subtype1 0 2 4 21 70 2 3
subtype2 0 1 3 5 33 1 0
subtype3 1 2 8 2 16 1 1

Figure S108.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_T_STAGE'

P value = 0.00075 (Fisher's exact test), Q value = 0.023

Table S117.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 142 3
subtype1 2 7 92 1
subtype2 1 9 32 1
subtype3 4 8 18 1

Figure S109.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_N_STAGE'

P value = 0.111 (Fisher's exact test), Q value = 0.48

Table S118.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 49 124
subtype1 27 73
subtype2 9 34
subtype3 13 17

Figure S110.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_M_STAGE'

P value = 0.339 (Fisher's exact test), Q value = 0.6

Table S119.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 80 4
subtype1 45 3
subtype2 25 0
subtype3 10 1

Figure S111.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.315 (Fisher's exact test), Q value = 0.58

Table S120.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 80 98
subtype1 41 61
subtype2 21 22
subtype3 18 15

Figure S112.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RADIATION_THERAPY'

P value = 0.64 (Fisher's exact test), Q value = 0.84

Table S121.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 116 42
subtype1 68 22
subtype2 27 13
subtype3 21 7

Figure S113.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRSEQ CHIERARCHICAL' versus 'HISTOLOGICAL_TYPE'

P value = 0.0423 (Fisher's exact test), Q value = 0.32

Table S122.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 147 25 4 1
subtype1 84 13 3 1
subtype2 40 2 1 0
subtype3 23 10 0 0

Figure S114.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.23 (Kruskal-Wallis (anova)), Q value = 0.55

Table S123.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 57 26.8 (17.9)
subtype1 37 29.0 (16.3)
subtype2 15 21.9 (21.4)
subtype3 5 26.0 (19.5)

Figure S115.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRSEQ CHIERARCHICAL' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.827 (Kruskal-Wallis (anova)), Q value = 0.93

Table S124.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 29 1970.4 (13.2)
subtype2 12 1969.9 (14.3)
subtype3 6 1973.8 (12.4)

Figure S116.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRSEQ CHIERARCHICAL' versus 'RESIDUAL_TUMOR'

P value = 0.755 (Fisher's exact test), Q value = 0.89

Table S125.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 106 53 5 4
subtype1 57 32 4 3
subtype2 27 13 0 0
subtype3 22 8 1 1

Figure S117.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.451 (Kruskal-Wallis (anova)), Q value = 0.7

Table S126.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 174 3.0 (3.4)
subtype1 100 2.8 (3.1)
subtype2 43 3.4 (3.7)
subtype3 31 3.0 (4.2)

Figure S118.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.418 (Fisher's exact test), Q value = 0.67

Table S127.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 11 6 157
subtype1 9 3 88
subtype2 2 2 38
subtype3 0 1 31

Figure S119.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.608 (Fisher's exact test), Q value = 0.83

Table S128.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 131
subtype1 2 72
subtype2 1 32
subtype3 2 27

Figure S120.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S129.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 69 68 37
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.073 (logrank test), Q value = 0.44

Table S130.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 172 87 0.0 - 90.1 (15.0)
subtype1 68 40 0.0 - 66.9 (13.3)
subtype2 67 32 0.3 - 75.1 (14.9)
subtype3 37 15 0.2 - 90.1 (16.1)

Figure S121.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.519 (Kruskal-Wallis (anova)), Q value = 0.76

Table S131.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 174 64.4 (10.9)
subtype1 69 64.7 (10.0)
subtype2 68 63.5 (11.2)
subtype3 37 65.2 (12.2)

Figure S122.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.0791 (Fisher's exact test), Q value = 0.44

Table S132.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 28 115 4 4
subtype1 0 1 2 17 44 2 3
subtype2 0 3 8 6 47 2 1
subtype3 1 1 5 5 24 0 0

Figure S123.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.146 (Fisher's exact test), Q value = 0.54

Table S133.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 138 3
subtype1 1 5 62 1
subtype2 4 12 49 2
subtype3 2 7 27 0

Figure S124.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.883 (Fisher's exact test), Q value = 0.95

Table S134.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 49 120
subtype1 21 47
subtype2 18 49
subtype3 10 24

Figure S125.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.469 (Fisher's exact test), Q value = 0.7

Table S135.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 77 4
subtype1 30 3
subtype2 37 1
subtype3 10 0

Figure S126.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.301 (Fisher's exact test), Q value = 0.57

Table S136.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 80 94
subtype1 35 34
subtype2 32 36
subtype3 13 24

Figure S127.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.232 (Fisher's exact test), Q value = 0.55

Table S137.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 113 41
subtype1 48 14
subtype2 44 14
subtype3 21 13

Figure S128.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRseq Mature CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.328 (Fisher's exact test), Q value = 0.59

Table S138.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 144 24 4 1
subtype1 59 7 1 1
subtype2 58 8 2 0
subtype3 27 9 1 0

Figure S129.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'MIRseq Mature CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.153 (Kruskal-Wallis (anova)), Q value = 0.54

Table S139.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 55 27.0 (18.2)
subtype1 24 27.7 (13.7)
subtype2 18 30.7 (20.3)
subtype3 13 20.5 (21.8)

Figure S130.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRseq Mature CNMF subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.986 (Kruskal-Wallis (anova)), Q value = 1

Table S140.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 20 1970.8 (11.1)
subtype2 16 1971.1 (15.3)
subtype3 11 1970.2 (14.5)

Figure S131.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRseq Mature CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.679 (Fisher's exact test), Q value = 0.84

Table S141.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 104 51 5 4
subtype1 38 22 3 1
subtype2 43 17 2 1
subtype3 23 12 0 2

Figure S132.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'MIRseq Mature CNMF subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.729 (Kruskal-Wallis (anova)), Q value = 0.87

Table S142.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 170 2.9 (3.4)
subtype1 68 2.9 (3.2)
subtype2 67 3.1 (3.7)
subtype3 35 2.5 (3.1)

Figure S133.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.276 (Fisher's exact test), Q value = 0.55

Table S143.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 10 6 154
subtype1 6 1 61
subtype2 4 3 58
subtype3 0 2 35

Figure S134.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.842 (Fisher's exact test), Q value = 0.94

Table S144.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 130
subtype1 1 51
subtype2 3 50
subtype3 1 29

Figure S135.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #15: 'ETHNICITY'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S145.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 86 48 40
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.0458 (logrank test), Q value = 0.32

Table S146.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 172 87 0.0 - 90.1 (15.0)
subtype1 86 48 0.2 - 71.7 (14.0)
subtype2 47 24 0.0 - 42.3 (15.3)
subtype3 39 15 0.3 - 90.1 (16.0)

Figure S136.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.27 (Kruskal-Wallis (anova)), Q value = 0.55

Table S147.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 174 64.4 (10.9)
subtype1 86 64.5 (11.6)
subtype2 48 66.1 (9.5)
subtype3 40 62.1 (10.9)

Figure S137.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.00367 (Fisher's exact test), Q value = 0.061

Table S148.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE IIA STAGE IIB STAGE III STAGE IV
ALL 1 5 15 28 115 4 4
subtype1 0 2 3 19 57 2 3
subtype2 0 1 2 7 36 1 1
subtype3 1 2 10 2 22 1 0

Figure S138.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.0029 (Fisher's exact test), Q value = 0.059

Table S149.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T1 T2 T3 T4
ALL 7 24 138 3
subtype1 2 6 77 1
subtype2 1 7 39 1
subtype3 4 11 22 1

Figure S139.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.205 (Fisher's exact test), Q value = 0.55

Table S150.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

nPatients 0 1
ALL 49 120
subtype1 23 61
subtype2 11 37
subtype3 15 22

Figure S140.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.669 (Fisher's exact test), Q value = 0.84

Table S151.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 77 4
subtype1 36 3
subtype2 25 1
subtype3 16 0

Figure S141.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.516 (Fisher's exact test), Q value = 0.76

Table S152.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 80 94
subtype1 36 50
subtype2 25 23
subtype3 19 21

Figure S142.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.639 (Fisher's exact test), Q value = 0.84

Table S153.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

nPatients NO YES
ALL 113 41
subtype1 60 19
subtype2 27 13
subtype3 26 9

Figure S143.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

'MIRseq Mature cHierClus subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.218 (Fisher's exact test), Q value = 0.55

Table S154.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

nPatients PANCREAS-ADENOCARCINOMA DUCTAL TYPE PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA PANCREAS-UNDIFFERENTIATED CARCINOMA
ALL 144 24 4 1
subtype1 71 10 3 1
subtype2 43 4 1 0
subtype3 30 10 0 0

Figure S144.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.253 (Kruskal-Wallis (anova)), Q value = 0.55

Table S155.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 55 27.0 (18.2)
subtype1 29 29.5 (17.4)
subtype2 19 22.4 (20.5)
subtype3 7 29.2 (14.6)

Figure S145.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

'MIRseq Mature cHierClus subtypes' versus 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.58 (Kruskal-Wallis (anova)), Q value = 0.8

Table S156.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

nPatients Mean (Std.Dev)
ALL 47 1970.7 (13.2)
subtype1 22 1970.5 (13.4)
subtype2 16 1973.0 (12.6)
subtype3 9 1967.2 (14.2)

Figure S146.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

'MIRseq Mature cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.46 (Fisher's exact test), Q value = 0.7

Table S157.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 104 51 5 4
subtype1 52 22 4 2
subtype2 25 19 0 1
subtype3 27 10 1 1

Figure S147.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'RESIDUAL_TUMOR'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER_OF_LYMPH_NODES'

P value = 0.677 (Kruskal-Wallis (anova)), Q value = 0.84

Table S158.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

nPatients Mean (Std.Dev)
ALL 170 2.9 (3.4)
subtype1 84 2.6 (2.9)
subtype2 48 3.2 (3.6)
subtype3 38 3.2 (4.1)

Figure S148.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'NUMBER_OF_LYMPH_NODES'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.231 (Fisher's exact test), Q value = 0.55

Table S159.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 10 6 154
subtype1 8 2 74
subtype2 2 2 43
subtype3 0 2 37

Figure S149.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.723 (Fisher's exact test), Q value = 0.87

Table S160.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #15: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 130
subtype1 2 58
subtype2 1 38
subtype3 2 34

Figure S150.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #15: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/PAAD-TP/20139891/PAAD-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/PAAD-TP/19775410/PAAD-TP.merged_data.txt

  • Number of patients = 185

  • Number of clustering approaches = 10

  • Number of selected clinical features = 15

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)