This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 14 clinical features across 528 patients, 43 significant findings detected with P value < 0.05 and Q value < 0.25.
-
4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'GENDER', and 'YEAR_OF_TOBACCO_SMOKING_ONSET'.
-
7 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'PATHOLOGY_T_STAGE', 'PATHOLOGY_N_STAGE', 'GENDER', 'HISTOLOGICAL_TYPE', 'NUMBER_PACK_YEARS_SMOKED', 'NUMBER_OF_LYMPH_NODES', and 'RACE'.
-
CNMF clustering analysis on RPPA data identified 5 subtypes that correlate to 'GENDER'.
-
Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'PATHOLOGIC_STAGE', 'PATHOLOGY_N_STAGE', and 'NUMBER_OF_LYMPH_NODES'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'PATHOLOGY_T_STAGE', 'GENDER', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'PATHOLOGY_T_STAGE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', 'NUMBER_PACK_YEARS_SMOKED', and 'NUMBER_OF_LYMPH_NODES'.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'Time to Death', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RACE'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'Time to Death', 'PATHOLOGY_T_STAGE', 'GENDER', 'RADIATION_THERAPY', 'NUMBER_OF_LYMPH_NODES', and 'RACE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'RADIATION_THERAPY' and 'NUMBER_PACK_YEARS_SMOKED'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'PATHOLOGY_T_STAGE' and 'RADIATION_THERAPY'.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 14 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 43 significant findings detected.
Clinical Features |
Statistical Tests |
Copy Number Ratio CNMF subtypes |
METHLYATION CNMF |
RPPA CNMF subtypes |
RPPA cHierClus subtypes |
RNAseq CNMF subtypes |
RNAseq cHierClus subtypes |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRseq Mature CNMF subtypes |
MIRseq Mature cHierClus subtypes |
Time to Death | logrank test |
0.19 (0.311) |
0.0121 (0.0548) |
0.167 (0.293) |
0.144 (0.273) |
0.155 (0.281) |
0.00537 (0.0301) |
0.00483 (0.0282) |
0.028 (0.0979) |
0.656 (0.747) |
0.0582 (0.169) |
YEARS TO BIRTH | Kruskal-Wallis (anova) |
0.0182 (0.0708) |
1.08e-08 (1.51e-06) |
0.134 (0.265) |
0.0759 (0.193) |
0.595 (0.702) |
0.00439 (0.0279) |
0.287 (0.398) |
0.0733 (0.192) |
0.811 (0.881) |
0.739 (0.822) |
PATHOLOGIC STAGE | Fisher's exact test |
0.185 (0.311) |
0.523 (0.654) |
0.266 (0.383) |
0.029 (0.0991) |
0.0742 (0.192) |
0.0986 (0.226) |
0.134 (0.265) |
0.0591 (0.169) |
0.833 (0.89) |
0.0822 (0.2) |
PATHOLOGY T STAGE | Fisher's exact test |
0.213 (0.331) |
0.00091 (0.00986) |
0.13 (0.264) |
0.191 (0.311) |
0.0264 (0.0974) |
3e-05 (7e-04) |
0.122 (0.256) |
0.00165 (0.0154) |
0.825 (0.888) |
0.0179 (0.0708) |
PATHOLOGY N STAGE | Fisher's exact test |
0.059 (0.169) |
0.0142 (0.062) |
0.406 (0.532) |
2e-05 (0.00056) |
0.268 (0.383) |
0.123 (0.256) |
0.612 (0.714) |
0.0861 (0.204) |
0.686 (0.774) |
0.951 (0.994) |
PATHOLOGY M STAGE | Fisher's exact test |
0.337 (0.453) |
0.561 (0.683) |
1 (1.00) |
0.26 (0.379) |
0.273 (0.386) |
0.278 (0.389) |
1 (1.00) |
0.633 (0.732) |
||
GENDER | Fisher's exact test |
0.0304 (0.101) |
1e-05 (0.00035) |
0.00047 (0.00658) |
0.215 (0.331) |
4e-05 (8e-04) |
7e-05 (0.00122) |
0.00198 (0.0163) |
0.0108 (0.0521) |
0.359 (0.479) |
0.122 (0.256) |
RADIATION THERAPY | Fisher's exact test |
0.461 (0.587) |
0.0564 (0.169) |
0.205 (0.326) |
0.757 (0.834) |
0.00061 (0.00776) |
0.00243 (0.0179) |
0.024 (0.0907) |
0.0107 (0.0521) |
0.0316 (0.103) |
0.00162 (0.0154) |
HISTOLOGICAL TYPE | Fisher's exact test |
0.0828 (0.2) |
0.0174 (0.0708) |
0.00234 (0.0179) |
0.00025 (0.00389) |
0.00467 (0.0282) |
0.238 (0.359) |
0.191 (0.311) |
0.159 (0.282) |
||
NUMBER PACK YEARS SMOKED | Kruskal-Wallis (anova) |
0.0617 (0.173) |
0.00942 (0.0507) |
0.0724 (0.192) |
0.586 (0.701) |
0.154 (0.281) |
0.00186 (0.0163) |
0.583 (0.701) |
0.182 (0.311) |
0.000916 (0.00986) |
0.556 (0.683) |
YEAR OF TOBACCO SMOKING ONSET | Kruskal-Wallis (anova) |
0.00311 (0.0218) |
0.245 (0.361) |
0.324 (0.445) |
0.223 (0.34) |
0.839 (0.89) |
0.199 (0.32) |
0.0559 (0.169) |
0.0804 (0.2) |
0.114 (0.256) |
0.118 (0.256) |
NUMBER OF LYMPH NODES | Kruskal-Wallis (anova) |
0.117 (0.256) |
5.56e-06 (0.000259) |
0.209 (0.328) |
4.76e-06 (0.000259) |
0.14 (0.269) |
0.0102 (0.0521) |
0.157 (0.281) |
0.00425 (0.0279) |
0.0929 (0.217) |
0.597 (0.702) |
RACE | Fisher's exact test |
0.149 (0.278) |
0.0182 (0.0708) |
0.073 (0.192) |
0.428 (0.555) |
0.059 (0.169) |
0.126 (0.259) |
0.0119 (0.0548) |
0.0272 (0.0976) |
0.243 (0.361) |
0.181 (0.311) |
ETHNICITY | Fisher's exact test |
0.14 (0.269) |
0.332 (0.451) |
0.697 (0.781) |
0.544 (0.674) |
0.648 (0.744) |
0.774 (0.847) |
0.438 (0.562) |
0.377 (0.498) |
0.931 (0.98) |
0.486 (0.612) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 203 | 128 | 145 | 46 |
P value = 0.19 (logrank test), Q value = 0.31
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 520 | 219 | 0.1 - 211.0 (21.1) |
subtype1 | 202 | 95 | 0.5 - 180.2 (19.1) |
subtype2 | 128 | 50 | 0.1 - 153.9 (24.9) |
subtype3 | 144 | 54 | 0.1 - 211.0 (22.2) |
subtype4 | 46 | 20 | 3.1 - 140.8 (19.0) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0182 (Kruskal-Wallis (anova)), Q value = 0.071
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 521 | 60.9 (11.9) |
subtype1 | 203 | 59.3 (12.3) |
subtype2 | 128 | 60.2 (10.5) |
subtype3 | 144 | 62.6 (12.1) |
subtype4 | 46 | 64.5 (12.0) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.185 (Fisher's exact test), Q value = 0.31
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 27 | 76 | 82 | 252 | 12 | 1 |
subtype1 | 12 | 27 | 28 | 106 | 9 | 0 |
subtype2 | 4 | 16 | 16 | 65 | 2 | 1 |
subtype3 | 9 | 25 | 25 | 62 | 1 | 0 |
subtype4 | 2 | 8 | 13 | 19 | 0 | 0 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.213 (Fisher's exact test), Q value = 0.33
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 50 | 137 | 100 | 173 |
subtype1 | 19 | 53 | 39 | 74 |
subtype2 | 10 | 28 | 29 | 42 |
subtype3 | 18 | 40 | 19 | 47 |
subtype4 | 3 | 16 | 13 | 10 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.059 (Fisher's exact test), Q value = 0.17
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 179 | 68 | 168 | 8 |
subtype1 | 65 | 25 | 79 | 5 |
subtype2 | 40 | 14 | 42 | 2 |
subtype3 | 61 | 18 | 33 | 1 |
subtype4 | 13 | 11 | 14 | 0 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.337 (Fisher's exact test), Q value = 0.45
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 190 | 1 |
subtype1 | 68 | 0 |
subtype2 | 41 | 1 |
subtype3 | 59 | 0 |
subtype4 | 22 | 0 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.0304 (Fisher's exact test), Q value = 0.1
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 140 | 382 |
subtype1 | 49 | 154 |
subtype2 | 27 | 101 |
subtype3 | 45 | 100 |
subtype4 | 19 | 27 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.461 (Fisher's exact test), Q value = 0.59
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 162 | 301 |
subtype1 | 63 | 114 |
subtype2 | 32 | 78 |
subtype3 | 49 | 82 |
subtype4 | 18 | 27 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.0828 (Fisher's exact test), Q value = 0.2
Table S10. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 511 | 10 | 1 |
subtype1 | 202 | 1 | 0 |
subtype2 | 122 | 5 | 1 |
subtype3 | 141 | 4 | 0 |
subtype4 | 46 | 0 | 0 |
Figure S9. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.0617 (Kruskal-Wallis (anova)), Q value = 0.17
Table S11. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 293 | 45.9 (35.3) |
subtype1 | 111 | 47.5 (34.6) |
subtype2 | 82 | 49.8 (34.3) |
subtype3 | 76 | 42.7 (39.7) |
subtype4 | 24 | 35.2 (25.1) |
Figure S10. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.00311 (Kruskal-Wallis (anova)), Q value = 0.022
Table S12. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 277 | 1967.4 (12.8) |
subtype1 | 105 | 1969.6 (12.8) |
subtype2 | 73 | 1964.6 (11.6) |
subtype3 | 73 | 1965.3 (13.4) |
subtype4 | 26 | 1972.1 (12.3) |
Figure S11. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.117 (Kruskal-Wallis (anova)), Q value = 0.26
Table S13. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 408 | 2.2 (4.3) |
subtype1 | 171 | 2.6 (4.9) |
subtype2 | 97 | 2.3 (5.1) |
subtype3 | 101 | 1.6 (2.6) |
subtype4 | 39 | 1.5 (2.0) |
Figure S12. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.149 (Fisher's exact test), Q value = 0.28
Table S14. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 48 | 446 |
subtype1 | 1 | 6 | 24 | 164 |
subtype2 | 0 | 0 | 14 | 112 |
subtype3 | 1 | 4 | 8 | 129 |
subtype4 | 0 | 1 | 2 | 41 |
Figure S13. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.14 (Fisher's exact test), Q value = 0.27
Table S15. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 26 | 459 |
subtype1 | 14 | 176 |
subtype2 | 3 | 113 |
subtype3 | 5 | 130 |
subtype4 | 4 | 40 |
Figure S14. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Table S16. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Number of samples | 87 | 87 | 104 | 91 | 78 | 75 | 6 |
P value = 0.0121 (logrank test), Q value = 0.055
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 526 | 223 | 0.1 - 211.0 (21.2) |
subtype1 | 85 | 37 | 2.3 - 211.0 (18.5) |
subtype2 | 87 | 35 | 0.1 - 153.9 (24.4) |
subtype3 | 104 | 49 | 0.4 - 169.4 (20.9) |
subtype4 | 91 | 47 | 0.4 - 139.4 (20.6) |
subtype5 | 78 | 19 | 0.1 - 105.9 (23.7) |
subtype6 | 75 | 31 | 0.5 - 180.2 (19.0) |
subtype7 | 6 | 5 | 11.8 - 35.8 (16.5) |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 1.08e-08 (Kruskal-Wallis (anova)), Q value = 1.5e-06
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 527 | 60.9 (11.9) |
subtype1 | 86 | 59.8 (12.7) |
subtype2 | 87 | 58.7 (10.8) |
subtype3 | 104 | 66.2 (11.6) |
subtype4 | 91 | 64.3 (10.3) |
subtype5 | 78 | 57.6 (9.6) |
subtype6 | 75 | 56.4 (13.4) |
subtype7 | 6 | 63.7 (9.7) |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.523 (Fisher's exact test), Q value = 0.65
Table S19. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 27 | 77 | 82 | 257 | 12 | 1 |
subtype1 | 10 | 12 | 13 | 47 | 0 | 0 |
subtype2 | 3 | 16 | 13 | 42 | 3 | 1 |
subtype3 | 4 | 20 | 17 | 52 | 4 | 0 |
subtype4 | 2 | 8 | 13 | 52 | 3 | 0 |
subtype5 | 2 | 9 | 11 | 25 | 1 | 0 |
subtype6 | 5 | 12 | 14 | 36 | 1 | 0 |
subtype7 | 1 | 0 | 1 | 3 | 0 | 0 |
Figure S17. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.00091 (Fisher's exact test), Q value = 0.0099
Table S20. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 50 | 140 | 101 | 175 |
subtype1 | 16 | 25 | 14 | 28 |
subtype2 | 9 | 20 | 16 | 34 |
subtype3 | 5 | 27 | 21 | 45 |
subtype4 | 4 | 19 | 19 | 38 |
subtype5 | 10 | 23 | 11 | 8 |
subtype6 | 5 | 26 | 17 | 20 |
subtype7 | 1 | 0 | 3 | 2 |
Figure S18. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.0142 (Fisher's exact test), Q value = 0.062
Table S21. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 180 | 68 | 172 | 8 |
subtype1 | 33 | 14 | 32 | 0 |
subtype2 | 41 | 12 | 21 | 1 |
subtype3 | 44 | 16 | 23 | 3 |
subtype4 | 23 | 8 | 39 | 3 |
subtype5 | 14 | 9 | 23 | 1 |
subtype6 | 24 | 9 | 30 | 0 |
subtype7 | 1 | 0 | 4 | 0 |
Figure S19. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.561 (Fisher's exact test), Q value = 0.68
Table S22. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 191 | 1 |
subtype1 | 44 | 0 |
subtype2 | 35 | 1 |
subtype3 | 40 | 0 |
subtype4 | 20 | 0 |
subtype5 | 21 | 0 |
subtype6 | 28 | 0 |
subtype7 | 3 | 0 |
Figure S20. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00035
Table S23. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 142 | 386 |
subtype1 | 30 | 57 |
subtype2 | 14 | 73 |
subtype3 | 44 | 60 |
subtype4 | 17 | 74 |
subtype5 | 9 | 69 |
subtype6 | 27 | 48 |
subtype7 | 1 | 5 |
Figure S21. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.0564 (Fisher's exact test), Q value = 0.17
Table S24. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 163 | 303 |
subtype1 | 35 | 45 |
subtype2 | 27 | 52 |
subtype3 | 37 | 58 |
subtype4 | 20 | 49 |
subtype5 | 16 | 55 |
subtype6 | 24 | 42 |
subtype7 | 4 | 2 |
Figure S22. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.0174 (Fisher's exact test), Q value = 0.071
Table S25. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 517 | 10 | 1 |
subtype1 | 87 | 0 | 0 |
subtype2 | 84 | 3 | 0 |
subtype3 | 104 | 0 | 0 |
subtype4 | 89 | 2 | 0 |
subtype5 | 73 | 5 | 0 |
subtype6 | 74 | 0 | 1 |
subtype7 | 6 | 0 | 0 |
Figure S23. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.00942 (Kruskal-Wallis (anova)), Q value = 0.051
Table S26. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 298 | 45.8 (35.2) |
subtype1 | 53 | 48.0 (44.0) |
subtype2 | 57 | 49.5 (26.4) |
subtype3 | 53 | 42.5 (41.9) |
subtype4 | 63 | 51.1 (30.1) |
subtype5 | 42 | 39.8 (37.0) |
subtype6 | 28 | 37.3 (25.8) |
subtype7 | 2 | 44.0 (5.7) |
Figure S24. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.245 (Kruskal-Wallis (anova)), Q value = 0.36
Table S27. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 282 | 1967.3 (12.7) |
subtype1 | 52 | 1968.0 (13.6) |
subtype2 | 51 | 1965.9 (11.4) |
subtype3 | 50 | 1964.8 (12.8) |
subtype4 | 59 | 1967.1 (12.7) |
subtype5 | 40 | 1968.8 (12.7) |
subtype6 | 28 | 1972.1 (13.1) |
subtype7 | 2 | 1955.5 (6.4) |
Figure S25. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 5.56e-06 (Kruskal-Wallis (anova)), Q value = 0.00026
Table S28. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 413 | 2.2 (4.3) |
subtype1 | 71 | 2.3 (3.3) |
subtype2 | 75 | 1.0 (2.1) |
subtype3 | 87 | 1.4 (2.2) |
subtype4 | 71 | 4.5 (8.3) |
subtype5 | 40 | 2.2 (2.8) |
subtype6 | 64 | 1.7 (2.1) |
subtype7 | 5 | 4.0 (3.5) |
Figure S26. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.0182 (Fisher's exact test), Q value = 0.071
Table S29. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 48 | 452 |
subtype1 | 1 | 3 | 5 | 73 |
subtype2 | 0 | 0 | 13 | 70 |
subtype3 | 0 | 4 | 9 | 90 |
subtype4 | 0 | 1 | 15 | 74 |
subtype5 | 0 | 0 | 3 | 75 |
subtype6 | 1 | 3 | 3 | 65 |
subtype7 | 0 | 0 | 0 | 5 |
Figure S27. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'RACE'

P value = 0.332 (Fisher's exact test), Q value = 0.45
Table S30. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 26 | 465 |
subtype1 | 3 | 78 |
subtype2 | 2 | 74 |
subtype3 | 4 | 96 |
subtype4 | 5 | 79 |
subtype5 | 4 | 69 |
subtype6 | 7 | 64 |
subtype7 | 1 | 5 |
Figure S28. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'ETHNICITY'

Table S31. Description of clustering approach #3: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 51 | 30 | 33 | 29 | 69 |
P value = 0.167 (logrank test), Q value = 0.29
Table S32. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 212 | 128 | 0.1 - 211.0 (23.1) |
subtype1 | 51 | 33 | 2.5 - 172.7 (19.0) |
subtype2 | 30 | 21 | 3.5 - 139.4 (22.9) |
subtype3 | 33 | 16 | 3.5 - 129.2 (35.9) |
subtype4 | 29 | 14 | 4.0 - 156.5 (26.4) |
subtype5 | 69 | 44 | 0.1 - 211.0 (19.8) |
Figure S29. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.134 (Kruskal-Wallis (anova)), Q value = 0.26
Table S33. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 212 | 62.1 (12.2) |
subtype1 | 51 | 59.8 (12.6) |
subtype2 | 30 | 61.2 (9.1) |
subtype3 | 33 | 63.8 (9.8) |
subtype4 | 29 | 64.1 (14.4) |
subtype5 | 69 | 62.6 (13.2) |
Figure S30. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.266 (Fisher's exact test), Q value = 0.38
Table S34. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|
ALL | 9 | 39 | 31 | 117 | 4 |
subtype1 | 1 | 16 | 7 | 25 | 1 |
subtype2 | 0 | 2 | 3 | 19 | 0 |
subtype3 | 2 | 3 | 8 | 18 | 1 |
subtype4 | 2 | 7 | 5 | 13 | 0 |
subtype5 | 4 | 11 | 8 | 42 | 2 |
Figure S31. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.13 (Fisher's exact test), Q value = 0.26
Table S35. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 13 | 59 | 53 | 79 |
subtype1 | 2 | 20 | 11 | 17 |
subtype2 | 1 | 4 | 7 | 13 |
subtype3 | 2 | 4 | 13 | 13 |
subtype4 | 2 | 12 | 3 | 11 |
subtype5 | 6 | 19 | 19 | 25 |
Figure S32. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.406 (Fisher's exact test), Q value = 0.53
Table S36. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 72 | 21 | 79 | 4 |
subtype1 | 21 | 3 | 16 | 1 |
subtype2 | 6 | 2 | 15 | 0 |
subtype3 | 12 | 4 | 13 | 1 |
subtype4 | 14 | 4 | 7 | 0 |
subtype5 | 19 | 8 | 28 | 2 |
Figure S33. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.00047 (Fisher's exact test), Q value = 0.0066
Table S37. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 62 | 150 |
subtype1 | 11 | 40 |
subtype2 | 7 | 23 |
subtype3 | 2 | 31 |
subtype4 | 13 | 16 |
subtype5 | 29 | 40 |
Figure S34. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.205 (Fisher's exact test), Q value = 0.33
Table S38. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 73 | 87 |
subtype1 | 18 | 24 |
subtype2 | 7 | 18 |
subtype3 | 9 | 13 |
subtype4 | 13 | 10 |
subtype5 | 26 | 22 |
Figure S35. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.0724 (Kruskal-Wallis (anova)), Q value = 0.19
Table S39. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 110 | 49.5 (37.5) |
subtype1 | 24 | 47.6 (28.3) |
subtype2 | 15 | 43.3 (22.7) |
subtype3 | 22 | 61.6 (32.0) |
subtype4 | 16 | 51.5 (70.0) |
subtype5 | 33 | 44.6 (29.7) |
Figure S36. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.324 (Kruskal-Wallis (anova)), Q value = 0.45
Table S40. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 117 | 1964.9 (12.3) |
subtype1 | 28 | 1968.0 (11.8) |
subtype2 | 16 | 1966.6 (10.1) |
subtype3 | 20 | 1961.7 (9.6) |
subtype4 | 17 | 1964.5 (17.5) |
subtype5 | 36 | 1963.6 (12.1) |
Figure S37. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.209 (Kruskal-Wallis (anova)), Q value = 0.33
Table S41. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 170 | 2.9 (5.1) |
subtype1 | 39 | 2.7 (4.3) |
subtype2 | 24 | 3.6 (4.6) |
subtype3 | 29 | 2.4 (5.6) |
subtype4 | 24 | 1.4 (1.8) |
subtype5 | 54 | 3.6 (6.4) |
Figure S38. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.073 (Fisher's exact test), Q value = 0.19
Table S42. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 3 | 19 | 185 |
subtype1 | 1 | 0 | 7 | 42 |
subtype2 | 0 | 1 | 4 | 25 |
subtype3 | 0 | 1 | 5 | 26 |
subtype4 | 0 | 0 | 0 | 29 |
subtype5 | 0 | 1 | 3 | 63 |
Figure S39. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.697 (Fisher's exact test), Q value = 0.78
Table S43. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 13 | 190 |
subtype1 | 4 | 44 |
subtype2 | 3 | 25 |
subtype3 | 1 | 30 |
subtype4 | 2 | 27 |
subtype5 | 3 | 64 |
Figure S40. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Table S44. Description of clustering approach #4: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 78 | 85 | 49 |
P value = 0.144 (logrank test), Q value = 0.27
Table S45. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 212 | 128 | 0.1 - 211.0 (23.1) |
subtype1 | 78 | 46 | 2.5 - 172.7 (22.6) |
subtype2 | 85 | 59 | 0.1 - 211.0 (21.5) |
subtype3 | 49 | 23 | 2.1 - 111.2 (31.4) |
Figure S41. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0759 (Kruskal-Wallis (anova)), Q value = 0.19
Table S46. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 212 | 62.1 (12.2) |
subtype1 | 78 | 61.2 (13.2) |
subtype2 | 85 | 64.3 (11.8) |
subtype3 | 49 | 59.9 (10.8) |
Figure S42. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.029 (Fisher's exact test), Q value = 0.099
Table S47. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|
ALL | 9 | 39 | 31 | 117 | 4 |
subtype1 | 3 | 18 | 12 | 41 | 1 |
subtype2 | 2 | 11 | 7 | 57 | 2 |
subtype3 | 4 | 10 | 12 | 19 | 1 |
Figure S43. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.191 (Fisher's exact test), Q value = 0.31
Table S48. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 13 | 59 | 53 | 79 |
subtype1 | 5 | 26 | 12 | 33 |
subtype2 | 4 | 19 | 27 | 31 |
subtype3 | 4 | 14 | 14 | 15 |
Figure S44. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 2e-05 (Fisher's exact test), Q value = 0.00056
Table S49. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 72 | 21 | 79 | 4 |
subtype1 | 29 | 9 | 26 | 1 |
subtype2 | 15 | 5 | 45 | 2 |
subtype3 | 28 | 7 | 8 | 1 |
Figure S45. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.215 (Fisher's exact test), Q value = 0.33
Table S50. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 62 | 150 |
subtype1 | 22 | 56 |
subtype2 | 21 | 64 |
subtype3 | 19 | 30 |
Figure S46. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.757 (Fisher's exact test), Q value = 0.83
Table S51. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 73 | 87 |
subtype1 | 30 | 33 |
subtype2 | 25 | 35 |
subtype3 | 18 | 19 |
Figure S47. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.586 (Kruskal-Wallis (anova)), Q value = 0.7
Table S52. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 110 | 49.5 (37.5) |
subtype1 | 38 | 52.6 (48.6) |
subtype2 | 45 | 52.0 (34.6) |
subtype3 | 27 | 40.9 (20.5) |
Figure S48. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.223 (Kruskal-Wallis (anova)), Q value = 0.34
Table S53. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 117 | 1964.9 (12.3) |
subtype1 | 43 | 1966.1 (14.7) |
subtype2 | 50 | 1962.6 (11.2) |
subtype3 | 24 | 1967.2 (9.4) |
Figure S49. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 4.76e-06 (Kruskal-Wallis (anova)), Q value = 0.00026
Table S54. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 170 | 2.9 (5.1) |
subtype1 | 62 | 2.5 (3.8) |
subtype2 | 70 | 4.4 (6.8) |
subtype3 | 38 | 0.7 (1.3) |
Figure S50. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.428 (Fisher's exact test), Q value = 0.55
Table S55. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 1 | 3 | 19 | 185 |
subtype1 | 1 | 0 | 10 | 66 |
subtype2 | 0 | 2 | 6 | 74 |
subtype3 | 0 | 1 | 3 | 45 |
Figure S51. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.544 (Fisher's exact test), Q value = 0.67
Table S56. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 13 | 190 |
subtype1 | 7 | 69 |
subtype2 | 4 | 75 |
subtype3 | 2 | 46 |
Figure S52. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

Table S57. Description of clustering approach #5: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 136 | 114 | 172 | 98 |
P value = 0.155 (logrank test), Q value = 0.28
Table S58. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 518 | 220 | 0.1 - 211.0 (21.4) |
subtype1 | 136 | 66 | 0.5 - 211.0 (19.0) |
subtype2 | 113 | 49 | 0.4 - 169.4 (21.0) |
subtype3 | 172 | 59 | 0.1 - 139.4 (23.2) |
subtype4 | 97 | 46 | 2.1 - 180.2 (23.1) |
Figure S53. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.595 (Kruskal-Wallis (anova)), Q value = 0.7
Table S59. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 519 | 60.9 (11.9) |
subtype1 | 136 | 61.4 (11.9) |
subtype2 | 114 | 61.5 (13.3) |
subtype3 | 172 | 60.3 (10.3) |
subtype4 | 97 | 60.4 (12.7) |
Figure S54. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0742 (Fisher's exact test), Q value = 0.19
Table S60. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 27 | 74 | 81 | 253 | 12 | 1 |
subtype1 | 5 | 17 | 17 | 74 | 8 | 0 |
subtype2 | 8 | 20 | 21 | 57 | 0 | 0 |
subtype3 | 4 | 20 | 27 | 75 | 3 | 1 |
subtype4 | 10 | 17 | 16 | 47 | 1 | 0 |
Figure S55. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.0264 (Fisher's exact test), Q value = 0.097
Table S61. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 49 | 136 | 99 | 174 |
subtype1 | 7 | 37 | 17 | 61 |
subtype2 | 11 | 30 | 29 | 38 |
subtype3 | 17 | 37 | 34 | 48 |
subtype4 | 14 | 32 | 19 | 27 |
Figure S56. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.268 (Fisher's exact test), Q value = 0.38
Table S62. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 176 | 67 | 169 | 8 |
subtype1 | 42 | 17 | 48 | 5 |
subtype2 | 49 | 15 | 32 | 0 |
subtype3 | 52 | 20 | 51 | 3 |
subtype4 | 33 | 15 | 38 | 0 |
Figure S57. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S63. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 186 | 1 |
subtype1 | 46 | 0 |
subtype2 | 50 | 0 |
subtype3 | 55 | 1 |
subtype4 | 35 | 0 |
Figure S58. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 4e-05 (Fisher's exact test), Q value = 8e-04
Table S64. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 136 | 384 |
subtype1 | 32 | 104 |
subtype2 | 47 | 67 |
subtype3 | 29 | 143 |
subtype4 | 28 | 70 |
Figure S59. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.00061 (Fisher's exact test), Q value = 0.0078
Table S65. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 161 | 297 |
subtype1 | 39 | 80 |
subtype2 | 39 | 65 |
subtype3 | 38 | 111 |
subtype4 | 45 | 41 |
Figure S60. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.00234 (Fisher's exact test), Q value = 0.018
Table S66. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 509 | 10 | 1 |
subtype1 | 134 | 1 | 1 |
subtype2 | 114 | 0 | 0 |
subtype3 | 163 | 9 | 0 |
subtype4 | 98 | 0 | 0 |
Figure S61. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.154 (Kruskal-Wallis (anova)), Q value = 0.28
Table S67. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 296 | 45.8 (35.3) |
subtype1 | 76 | 48.6 (42.5) |
subtype2 | 59 | 36.6 (20.0) |
subtype3 | 110 | 47.7 (29.9) |
subtype4 | 51 | 48.2 (45.9) |
Figure S62. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.839 (Kruskal-Wallis (anova)), Q value = 0.89
Table S68. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 281 | 1967.4 (12.7) |
subtype1 | 74 | 1967.4 (13.0) |
subtype2 | 55 | 1968.3 (13.7) |
subtype3 | 97 | 1966.2 (12.2) |
subtype4 | 55 | 1968.5 (12.4) |
Figure S63. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.14 (Kruskal-Wallis (anova)), Q value = 0.27
Table S69. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 405 | 2.2 (4.3) |
subtype1 | 109 | 2.7 (5.2) |
subtype2 | 95 | 1.6 (2.4) |
subtype3 | 114 | 1.9 (3.6) |
subtype4 | 87 | 2.7 (5.3) |
Figure S64. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.059 (Fisher's exact test), Q value = 0.17
Table S70. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 48 | 444 |
subtype1 | 1 | 2 | 18 | 109 |
subtype2 | 0 | 6 | 7 | 98 |
subtype3 | 0 | 2 | 18 | 148 |
subtype4 | 1 | 1 | 5 | 89 |
Figure S65. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.648 (Fisher's exact test), Q value = 0.74
Table S71. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 25 | 458 |
subtype1 | 8 | 114 |
subtype2 | 5 | 105 |
subtype3 | 6 | 153 |
subtype4 | 6 | 86 |
Figure S66. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Table S72. Description of clustering approach #6: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 179 | 104 | 172 | 65 |
P value = 0.00537 (logrank test), Q value = 0.03
Table S73. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 518 | 220 | 0.1 - 211.0 (21.4) |
subtype1 | 177 | 89 | 0.4 - 180.2 (21.2) |
subtype2 | 104 | 47 | 0.1 - 129.2 (25.4) |
subtype3 | 172 | 72 | 0.4 - 211.0 (18.5) |
subtype4 | 65 | 12 | 0.1 - 139.4 (23.4) |
Figure S67. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00439 (Kruskal-Wallis (anova)), Q value = 0.028
Table S74. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 519 | 60.9 (11.9) |
subtype1 | 178 | 59.2 (13.0) |
subtype2 | 104 | 61.9 (9.8) |
subtype3 | 172 | 63.0 (12.0) |
subtype4 | 65 | 58.1 (10.3) |
Figure S68. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0986 (Fisher's exact test), Q value = 0.23
Table S75. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 27 | 74 | 81 | 253 | 12 | 1 |
subtype1 | 17 | 25 | 32 | 88 | 4 | 0 |
subtype2 | 0 | 15 | 18 | 54 | 3 | 1 |
subtype3 | 6 | 29 | 25 | 90 | 4 | 0 |
subtype4 | 4 | 5 | 6 | 21 | 1 | 0 |
Figure S69. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 3e-05 (Fisher's exact test), Q value = 7e-04
Table S76. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 49 | 136 | 99 | 174 |
subtype1 | 25 | 54 | 42 | 47 |
subtype2 | 5 | 23 | 24 | 41 |
subtype3 | 9 | 44 | 25 | 78 |
subtype4 | 10 | 15 | 8 | 8 |
Figure S70. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.123 (Fisher's exact test), Q value = 0.26
Table S77. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 176 | 67 | 169 | 8 |
subtype1 | 58 | 25 | 71 | 3 |
subtype2 | 38 | 12 | 32 | 3 |
subtype3 | 70 | 25 | 46 | 1 |
subtype4 | 10 | 5 | 20 | 1 |
Figure S71. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.26 (Fisher's exact test), Q value = 0.38
Table S78. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 186 | 1 |
subtype1 | 68 | 0 |
subtype2 | 28 | 1 |
subtype3 | 70 | 0 |
subtype4 | 20 | 0 |
Figure S72. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 7e-05 (Fisher's exact test), Q value = 0.0012
Table S79. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 136 | 384 |
subtype1 | 53 | 126 |
subtype2 | 23 | 81 |
subtype3 | 56 | 116 |
subtype4 | 4 | 61 |
Figure S73. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.00243 (Fisher's exact test), Q value = 0.018
Table S80. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 161 | 297 |
subtype1 | 68 | 92 |
subtype2 | 29 | 55 |
subtype3 | 54 | 98 |
subtype4 | 10 | 52 |
Figure S74. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.00025 (Fisher's exact test), Q value = 0.0039
Table S81. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 509 | 10 | 1 |
subtype1 | 178 | 1 | 0 |
subtype2 | 100 | 4 | 0 |
subtype3 | 171 | 0 | 1 |
subtype4 | 60 | 5 | 0 |
Figure S75. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.00186 (Kruskal-Wallis (anova)), Q value = 0.016
Table S82. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 296 | 45.8 (35.3) |
subtype1 | 96 | 42.9 (36.9) |
subtype2 | 72 | 54.1 (28.8) |
subtype3 | 92 | 42.1 (35.2) |
subtype4 | 36 | 46.6 (41.1) |
Figure S76. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.199 (Kruskal-Wallis (anova)), Q value = 0.32
Table S83. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 281 | 1967.4 (12.7) |
subtype1 | 98 | 1969.0 (13.1) |
subtype2 | 65 | 1964.7 (10.5) |
subtype3 | 85 | 1968.2 (13.2) |
subtype4 | 33 | 1965.6 (13.7) |
Figure S77. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.0102 (Kruskal-Wallis (anova)), Q value = 0.052
Table S84. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 405 | 2.2 (4.3) |
subtype1 | 155 | 2.4 (4.3) |
subtype2 | 84 | 2.4 (6.1) |
subtype3 | 136 | 1.8 (3.1) |
subtype4 | 30 | 2.7 (3.1) |
Figure S78. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.126 (Fisher's exact test), Q value = 0.26
Table S85. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 48 | 444 |
subtype1 | 1 | 8 | 11 | 153 |
subtype2 | 0 | 1 | 15 | 84 |
subtype3 | 1 | 2 | 17 | 147 |
subtype4 | 0 | 0 | 5 | 60 |
Figure S79. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.774 (Fisher's exact test), Q value = 0.85
Table S86. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 25 | 458 |
subtype1 | 10 | 159 |
subtype2 | 3 | 89 |
subtype3 | 8 | 152 |
subtype4 | 4 | 58 |
Figure S80. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

Table S87. Description of clustering approach #7: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 81 | 140 | 132 | 91 | 79 |
P value = 0.00483 (logrank test), Q value = 0.028
Table S88. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 521 | 221 | 0.1 - 211.0 (21.2) |
subtype1 | 81 | 40 | 0.4 - 153.9 (19.1) |
subtype2 | 140 | 50 | 0.4 - 169.4 (19.4) |
subtype3 | 132 | 41 | 0.1 - 139.4 (27.4) |
subtype4 | 91 | 55 | 0.1 - 211.0 (20.5) |
subtype5 | 77 | 35 | 2.1 - 180.2 (21.5) |
Figure S81. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.287 (Kruskal-Wallis (anova)), Q value = 0.4
Table S89. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 522 | 60.9 (12.0) |
subtype1 | 81 | 61.2 (12.5) |
subtype2 | 140 | 60.4 (12.7) |
subtype3 | 132 | 60.7 (10.1) |
subtype4 | 91 | 63.3 (13.4) |
subtype5 | 78 | 59.4 (11.1) |
Figure S82. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.134 (Fisher's exact test), Q value = 0.26
Table S90. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 27 | 76 | 79 | 257 | 12 | 1 |
subtype1 | 0 | 7 | 13 | 45 | 4 | 1 |
subtype2 | 10 | 22 | 26 | 66 | 2 | 0 |
subtype3 | 3 | 15 | 13 | 63 | 2 | 0 |
subtype4 | 7 | 18 | 16 | 44 | 2 | 0 |
subtype5 | 7 | 14 | 11 | 39 | 2 | 0 |
Figure S83. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.122 (Fisher's exact test), Q value = 0.26
Table S91. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 49 | 138 | 99 | 175 |
subtype1 | 4 | 12 | 16 | 40 |
subtype2 | 13 | 38 | 31 | 45 |
subtype3 | 11 | 35 | 21 | 34 |
subtype4 | 9 | 29 | 16 | 33 |
subtype5 | 12 | 24 | 15 | 23 |
Figure S84. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.612 (Fisher's exact test), Q value = 0.71
Table S92. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 176 | 68 | 171 | 8 |
subtype1 | 32 | 7 | 28 | 2 |
subtype2 | 55 | 22 | 40 | 2 |
subtype3 | 33 | 12 | 46 | 2 |
subtype4 | 28 | 15 | 28 | 1 |
subtype5 | 28 | 12 | 29 | 1 |
Figure S85. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.273 (Fisher's exact test), Q value = 0.39
Table S93. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 189 | 1 |
subtype1 | 26 | 1 |
subtype2 | 68 | 0 |
subtype3 | 42 | 0 |
subtype4 | 25 | 0 |
subtype5 | 28 | 0 |
Figure S86. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.00198 (Fisher's exact test), Q value = 0.016
Table S94. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 141 | 382 |
subtype1 | 22 | 59 |
subtype2 | 48 | 92 |
subtype3 | 19 | 113 |
subtype4 | 26 | 65 |
subtype5 | 26 | 53 |
Figure S87. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.024 (Fisher's exact test), Q value = 0.091
Table S95. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 161 | 300 |
subtype1 | 29 | 43 |
subtype2 | 44 | 87 |
subtype3 | 29 | 90 |
subtype4 | 27 | 42 |
subtype5 | 32 | 38 |
Figure S88. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.00467 (Fisher's exact test), Q value = 0.028
Table S96. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 512 | 10 | 1 |
subtype1 | 78 | 2 | 1 |
subtype2 | 140 | 0 | 0 |
subtype3 | 125 | 7 | 0 |
subtype4 | 91 | 0 | 0 |
subtype5 | 78 | 1 | 0 |
Figure S89. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.583 (Kruskal-Wallis (anova)), Q value = 0.7
Table S97. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 295 | 45.7 (35.2) |
subtype1 | 46 | 45.1 (24.8) |
subtype2 | 81 | 45.5 (37.4) |
subtype3 | 80 | 48.3 (35.3) |
subtype4 | 41 | 49.5 (47.8) |
subtype5 | 47 | 39.0 (26.1) |
Figure S90. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0559 (Kruskal-Wallis (anova)), Q value = 0.17
Table S98. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 279 | 1967.2 (12.7) |
subtype1 | 38 | 1963.9 (10.3) |
subtype2 | 72 | 1970.6 (12.6) |
subtype3 | 75 | 1966.3 (13.1) |
subtype4 | 48 | 1966.1 (15.1) |
subtype5 | 46 | 1967.3 (10.7) |
Figure S91. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.157 (Kruskal-Wallis (anova)), Q value = 0.28
Table S99. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 410 | 2.2 (4.3) |
subtype1 | 68 | 2.8 (6.7) |
subtype2 | 119 | 1.6 (2.6) |
subtype3 | 84 | 2.2 (2.6) |
subtype4 | 72 | 1.9 (3.0) |
subtype5 | 67 | 3.0 (6.0) |
Figure S92. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.0119 (Fisher's exact test), Q value = 0.055
Table S100. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 47 | 448 |
subtype1 | 0 | 1 | 12 | 64 |
subtype2 | 0 | 9 | 11 | 116 |
subtype3 | 1 | 0 | 13 | 117 |
subtype4 | 0 | 1 | 5 | 82 |
subtype5 | 1 | 0 | 6 | 69 |
Figure S93. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'RACE'

P value = 0.438 (Fisher's exact test), Q value = 0.56
Table S101. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 25 | 461 |
subtype1 | 2 | 69 |
subtype2 | 7 | 129 |
subtype3 | 4 | 118 |
subtype4 | 6 | 78 |
subtype5 | 6 | 67 |
Figure S94. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'ETHNICITY'

Table S102. Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 193 | 144 | 186 |
P value = 0.028 (logrank test), Q value = 0.098
Table S103. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 521 | 221 | 0.1 - 211.0 (21.2) |
subtype1 | 191 | 97 | 0.4 - 180.2 (20.9) |
subtype2 | 144 | 59 | 0.1 - 153.9 (20.6) |
subtype3 | 186 | 65 | 0.1 - 211.0 (22.7) |
Figure S95. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.0733 (Kruskal-Wallis (anova)), Q value = 0.19
Table S104. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 522 | 60.9 (12.0) |
subtype1 | 192 | 59.6 (13.5) |
subtype2 | 144 | 62.8 (11.1) |
subtype3 | 186 | 60.8 (10.8) |
Figure S96. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0591 (Fisher's exact test), Q value = 0.17
Table S105. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 27 | 76 | 79 | 257 | 12 | 1 |
subtype1 | 19 | 31 | 31 | 94 | 5 | 0 |
subtype2 | 3 | 18 | 20 | 80 | 5 | 1 |
subtype3 | 5 | 27 | 28 | 83 | 2 | 0 |
Figure S97. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.00165 (Fisher's exact test), Q value = 0.015
Table S106. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 49 | 138 | 99 | 175 |
subtype1 | 27 | 58 | 41 | 55 |
subtype2 | 5 | 30 | 27 | 66 |
subtype3 | 17 | 50 | 31 | 54 |
Figure S98. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.0861 (Fisher's exact test), Q value = 0.2
Table S107. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 176 | 68 | 171 | 8 |
subtype1 | 67 | 25 | 73 | 3 |
subtype2 | 61 | 15 | 40 | 4 |
subtype3 | 48 | 28 | 58 | 1 |
Figure S99. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.278 (Fisher's exact test), Q value = 0.39
Table S108. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 189 | 1 |
subtype1 | 74 | 0 |
subtype2 | 51 | 1 |
subtype3 | 64 | 0 |
Figure S100. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.0108 (Fisher's exact test), Q value = 0.052
Table S109. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 141 | 382 |
subtype1 | 58 | 135 |
subtype2 | 47 | 97 |
subtype3 | 36 | 150 |
Figure S101. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

P value = 0.0107 (Fisher's exact test), Q value = 0.052
Table S110. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 161 | 300 |
subtype1 | 74 | 96 |
subtype2 | 39 | 82 |
subtype3 | 48 | 122 |
Figure S102. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.238 (Fisher's exact test), Q value = 0.36
Table S111. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 512 | 10 | 1 |
subtype1 | 191 | 2 | 0 |
subtype2 | 141 | 2 | 1 |
subtype3 | 180 | 6 | 0 |
Figure S103. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.182 (Kruskal-Wallis (anova)), Q value = 0.31
Table S112. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 295 | 45.7 (35.2) |
subtype1 | 96 | 44.0 (36.8) |
subtype2 | 77 | 49.9 (30.1) |
subtype3 | 122 | 44.3 (36.8) |
Figure S104. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0804 (Kruskal-Wallis (anova)), Q value = 0.2
Table S113. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 279 | 1967.2 (12.7) |
subtype1 | 99 | 1969.4 (13.2) |
subtype2 | 72 | 1964.6 (10.5) |
subtype3 | 108 | 1966.9 (13.4) |
Figure S105. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.00425 (Kruskal-Wallis (anova)), Q value = 0.028
Table S114. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 410 | 2.2 (4.3) |
subtype1 | 167 | 2.4 (4.2) |
subtype2 | 119 | 1.6 (3.5) |
subtype3 | 124 | 2.5 (4.9) |
Figure S106. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.0272 (Fisher's exact test), Q value = 0.098
Table S115. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 47 | 448 |
subtype1 | 1 | 8 | 12 | 165 |
subtype2 | 0 | 2 | 20 | 118 |
subtype3 | 1 | 1 | 15 | 165 |
Figure S107. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'RACE'

P value = 0.377 (Fisher's exact test), Q value = 0.5
Table S116. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 25 | 461 |
subtype1 | 12 | 169 |
subtype2 | 4 | 128 |
subtype3 | 9 | 164 |
Figure S108. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'ETHNICITY'

Table S117. Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 144 | 189 | 144 |
P value = 0.656 (logrank test), Q value = 0.75
Table S118. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 475 | 197 | 0.1 - 211.0 (21.2) |
subtype1 | 144 | 71 | 0.1 - 211.0 (22.2) |
subtype2 | 187 | 67 | 0.1 - 180.2 (19.7) |
subtype3 | 144 | 59 | 0.4 - 139.4 (24.9) |
Figure S109. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.811 (Kruskal-Wallis (anova)), Q value = 0.88
Table S119. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 476 | 61.0 (11.8) |
subtype1 | 144 | 61.4 (11.7) |
subtype2 | 188 | 61.2 (12.0) |
subtype3 | 144 | 60.4 (11.5) |
Figure S110. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.833 (Fisher's exact test), Q value = 0.89
Table S120. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 25 | 72 | 74 | 230 | 10 | 1 |
subtype1 | 9 | 25 | 23 | 78 | 3 | 0 |
subtype2 | 8 | 26 | 34 | 87 | 6 | 1 |
subtype3 | 8 | 21 | 17 | 65 | 1 | 0 |
Figure S111. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.825 (Fisher's exact test), Q value = 0.89
Table S121. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 46 | 125 | 90 | 158 |
subtype1 | 14 | 42 | 29 | 53 |
subtype2 | 20 | 55 | 33 | 60 |
subtype3 | 12 | 28 | 28 | 45 |
Figure S112. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.686 (Fisher's exact test), Q value = 0.77
Table S122. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 161 | 65 | 154 | 6 |
subtype1 | 48 | 21 | 58 | 1 |
subtype2 | 68 | 28 | 56 | 4 |
subtype3 | 45 | 16 | 40 | 1 |
Figure S113. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S123. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 175 | 1 |
subtype1 | 45 | 0 |
subtype2 | 99 | 1 |
subtype3 | 31 | 0 |
Figure S114. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.359 (Fisher's exact test), Q value = 0.48
Table S124. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 130 | 347 |
subtype1 | 43 | 101 |
subtype2 | 54 | 135 |
subtype3 | 33 | 111 |
Figure S115. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0316 (Fisher's exact test), Q value = 0.1
Table S125. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 146 | 275 |
subtype1 | 53 | 69 |
subtype2 | 51 | 127 |
subtype3 | 42 | 79 |
Figure S116. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.191 (Fisher's exact test), Q value = 0.31
Table S126. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 466 | 10 | 1 |
subtype1 | 142 | 2 | 0 |
subtype2 | 181 | 7 | 1 |
subtype3 | 143 | 1 | 0 |
Figure S117. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.000916 (Kruskal-Wallis (anova)), Q value = 0.0099
Table S127. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 45.9 (36.2) |
subtype1 | 71 | 43.4 (28.9) |
subtype2 | 104 | 37.2 (22.5) |
subtype3 | 87 | 58.3 (49.4) |
Figure S118. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.114 (Kruskal-Wallis (anova)), Q value = 0.26
Table S128. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 255 | 1967.1 (12.9) |
subtype1 | 77 | 1966.6 (12.4) |
subtype2 | 86 | 1969.1 (13.4) |
subtype3 | 92 | 1965.8 (12.7) |
Figure S119. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.0929 (Kruskal-Wallis (anova)), Q value = 0.22
Table S129. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 376 | 2.2 (4.3) |
subtype1 | 124 | 2.9 (6.1) |
subtype2 | 155 | 1.5 (2.1) |
subtype3 | 97 | 2.2 (4.1) |
Figure S120. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.243 (Fisher's exact test), Q value = 0.36
Table S130. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 44 | 405 |
subtype1 | 0 | 1 | 14 | 123 |
subtype2 | 2 | 8 | 15 | 156 |
subtype3 | 0 | 2 | 15 | 126 |
Figure S121. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.931 (Fisher's exact test), Q value = 0.98
Table S131. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 417 |
subtype1 | 8 | 127 |
subtype2 | 9 | 161 |
subtype3 | 7 | 129 |
Figure S122. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'ETHNICITY'

Table S132. Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 174 | 104 | 199 |
P value = 0.0582 (logrank test), Q value = 0.17
Table S133. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 475 | 197 | 0.1 - 211.0 (21.2) |
subtype1 | 172 | 83 | 0.4 - 180.2 (21.6) |
subtype2 | 104 | 45 | 0.1 - 211.0 (18.0) |
subtype3 | 199 | 69 | 0.1 - 172.7 (23.8) |
Figure S123. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.739 (Kruskal-Wallis (anova)), Q value = 0.82
Table S134. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 476 | 61.0 (11.8) |
subtype1 | 173 | 60.3 (13.5) |
subtype2 | 104 | 61.9 (11.9) |
subtype3 | 199 | 61.2 (9.9) |
Figure S124. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0822 (Fisher's exact test), Q value = 0.2
Table S135. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVB | STAGE IVC |
---|---|---|---|---|---|---|
ALL | 25 | 72 | 74 | 230 | 10 | 1 |
subtype1 | 16 | 32 | 32 | 79 | 4 | 0 |
subtype2 | 2 | 13 | 13 | 61 | 4 | 0 |
subtype3 | 7 | 27 | 29 | 90 | 2 | 1 |
Figure S125. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.0179 (Fisher's exact test), Q value = 0.071
Table S136. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T0+T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 46 | 125 | 90 | 158 |
subtype1 | 24 | 54 | 39 | 46 |
subtype2 | 6 | 23 | 17 | 49 |
subtype3 | 16 | 48 | 34 | 63 |
Figure S126. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.951 (Fisher's exact test), Q value = 0.99
Table S137. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 161 | 65 | 154 | 6 |
subtype1 | 64 | 24 | 61 | 2 |
subtype2 | 37 | 13 | 38 | 2 |
subtype3 | 60 | 28 | 55 | 2 |
Figure S127. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.633 (Fisher's exact test), Q value = 0.73
Table S138. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 175 | 1 |
subtype1 | 65 | 0 |
subtype2 | 54 | 0 |
subtype3 | 56 | 1 |
Figure S128. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.122 (Fisher's exact test), Q value = 0.26
Table S139. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 130 | 347 |
subtype1 | 57 | 117 |
subtype2 | 26 | 78 |
subtype3 | 47 | 152 |
Figure S129. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.00162 (Fisher's exact test), Q value = 0.015
Table S140. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 146 | 275 |
subtype1 | 69 | 81 |
subtype2 | 26 | 70 |
subtype3 | 51 | 124 |
Figure S130. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.159 (Fisher's exact test), Q value = 0.28
Table S141. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | HEAD & NECK SQUAMOUS CELL CARCINOMA | HEAD & NECK SQUAMOUS CELL CARCINOMA BASALOID TYPE | HEAD & NECK SQUAMOUS CELL CARCINOMA, SPINDLE CELL VARIANT |
---|---|---|---|
ALL | 466 | 10 | 1 |
subtype1 | 172 | 2 | 0 |
subtype2 | 102 | 1 | 1 |
subtype3 | 192 | 7 | 0 |
Figure S131. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.556 (Kruskal-Wallis (anova)), Q value = 0.68
Table S142. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 262 | 45.9 (36.2) |
subtype1 | 86 | 44.8 (38.8) |
subtype2 | 54 | 45.8 (42.2) |
subtype3 | 122 | 46.7 (31.5) |
Figure S132. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.118 (Kruskal-Wallis (anova)), Q value = 0.26
Table S143. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 255 | 1967.1 (12.9) |
subtype1 | 94 | 1968.7 (13.5) |
subtype2 | 41 | 1968.9 (13.3) |
subtype3 | 120 | 1965.4 (12.1) |
Figure S133. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'YEAR_OF_TOBACCO_SMOKING_ONSET'

P value = 0.597 (Kruskal-Wallis (anova)), Q value = 0.7
Table S144. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 376 | 2.2 (4.3) |
subtype1 | 148 | 2.1 (4.1) |
subtype2 | 87 | 2.2 (3.4) |
subtype3 | 141 | 2.2 (5.0) |
Figure S134. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'NUMBER_OF_LYMPH_NODES'

P value = 0.181 (Fisher's exact test), Q value = 0.31
Table S145. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 11 | 44 | 405 |
subtype1 | 1 | 6 | 10 | 151 |
subtype2 | 1 | 1 | 13 | 84 |
subtype3 | 0 | 4 | 21 | 170 |
Figure S135. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'RACE'

P value = 0.486 (Fisher's exact test), Q value = 0.61
Table S146. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 24 | 417 |
subtype1 | 12 | 155 |
subtype2 | 4 | 91 |
subtype3 | 8 | 171 |
Figure S136. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'ETHNICITY'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/HNSC-TP/22541004/HNSC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/HNSC-TP/22506490/HNSC-TP.merged_data.txt
-
Number of patients = 528
-
Number of clustering approaches = 10
-
Number of selected clinical features = 14
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.