This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 8 different clustering approaches and 12 clinical features across 377 patients, 35 significant findings detected with P value < 0.05 and Q value < 0.25.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'PATHOLOGY_T_STAGE' and 'RACE'.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'YEARS_TO_BIRTH', 'GENDER', 'HISTOLOGICAL_TYPE', and 'RACE'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'PATHOLOGIC_STAGE', 'PATHOLOGY_T_STAGE', 'GENDER', 'HISTOLOGICAL_TYPE', 'RESIDUAL_TUMOR', and 'RACE'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'PATHOLOGIC_STAGE', 'PATHOLOGY_T_STAGE', 'GENDER', 'HISTOLOGICAL_TYPE', 'RESIDUAL_TUMOR', and 'RACE'.
-
6 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'YEARS_TO_BIRTH', 'PATHOLOGY_T_STAGE', and 'GENDER'.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH' and 'GENDER'.
-
4 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'PATHOLOGIC_STAGE', 'GENDER', and 'HISTOLOGICAL_TYPE'.
-
5 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'GENDER', and 'RACE'.
Table 1. Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 12 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 35 significant findings detected.
Clinical Features |
Statistical Tests |
Copy Number Ratio CNMF subtypes |
METHLYATION CNMF |
RNAseq CNMF subtypes |
RNAseq cHierClus subtypes |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRseq Mature CNMF subtypes |
MIRseq Mature cHierClus subtypes |
Time to Death | logrank test |
0.206 (0.388) |
0.953 (0.957) |
0.00485 (0.0245) |
0.00337 (0.0202) |
0.384 (0.58) |
0.0555 (0.147) |
0.101 (0.231) |
0.00965 (0.0421) |
YEARS TO BIRTH | Kruskal-Wallis (anova) |
0.618 (0.732) |
9.51e-09 (9.13e-07) |
4.66e-06 (0.000149) |
1.46e-05 (0.000234) |
4.53e-06 (0.000149) |
6.58e-06 (0.000158) |
0.00393 (0.0209) |
7.4e-05 (0.00096) |
PATHOLOGIC STAGE | Fisher's exact test |
0.166 (0.337) |
0.741 (0.828) |
0.00682 (0.0327) |
0.00204 (0.0132) |
0.0868 (0.214) |
0.948 (0.957) |
0.0298 (0.0924) |
0.136 (0.294) |
PATHOLOGY T STAGE | Fisher's exact test |
0.0455 (0.125) |
0.957 (0.957) |
0.00057 (0.00547) |
0.00021 (0.00224) |
0.0368 (0.107) |
0.879 (0.917) |
0.223 (0.393) |
0.181 (0.348) |
PATHOLOGY N STAGE | Fisher's exact test |
0.472 (0.648) |
0.572 (0.713) |
0.415 (0.612) |
0.172 (0.337) |
0.946 (0.957) |
0.534 (0.693) |
0.433 (0.63) |
0.444 (0.631) |
PATHOLOGY M STAGE | Fisher's exact test |
0.83 (0.881) |
0.285 (0.471) |
0.496 (0.652) |
0.491 (0.652) |
0.31 (0.504) |
0.353 (0.555) |
0.225 (0.393) |
0.387 (0.58) |
GENDER | Fisher's exact test |
0.668 (0.773) |
0.0153 (0.0611) |
1e-05 (0.000192) |
8e-05 (0.00096) |
0.00206 (0.0132) |
0.0277 (0.0886) |
0.0403 (0.114) |
0.0219 (0.0778) |
RADIATION THERAPY | Fisher's exact test |
0.835 (0.881) |
0.566 (0.713) |
0.0739 (0.187) |
0.222 (0.393) |
0.594 (0.722) |
0.138 (0.294) |
0.668 (0.773) |
0.0996 (0.231) |
HISTOLOGICAL TYPE | Fisher's exact test |
0.101 (0.231) |
0.0183 (0.0677) |
0.00364 (0.0206) |
0.00076 (0.00663) |
0.0567 (0.147) |
0.689 (0.788) |
0.0322 (0.0965) |
0.331 (0.529) |
RESIDUAL TUMOR | Fisher's exact test |
0.373 (0.577) |
0.543 (0.695) |
0.0132 (0.0552) |
0.0248 (0.0852) |
0.487 (0.652) |
0.698 (0.789) |
0.153 (0.32) |
0.215 (0.393) |
RACE | Fisher's exact test |
0.0162 (0.0621) |
0.00124 (0.00916) |
0.00093 (0.00744) |
0.0263 (0.087) |
0.129 (0.289) |
0.265 (0.447) |
0.462 (0.643) |
0.00934 (0.0421) |
ETHNICITY | Fisher's exact test |
0.262 (0.447) |
0.586 (0.721) |
0.764 (0.834) |
0.609 (0.731) |
0.172 (0.337) |
0.447 (0.631) |
0.755 (0.833) |
0.784 (0.846) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 93 | 151 | 126 |
P value = 0.206 (logrank test), Q value = 0.39
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 364 | 129 | 0.0 - 120.8 (19.8) |
subtype1 | 90 | 26 | 0.3 - 108.8 (19.9) |
subtype2 | 150 | 59 | 0.0 - 120.8 (19.3) |
subtype3 | 124 | 44 | 0.4 - 114.3 (20.5) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.618 (Kruskal-Wallis (anova)), Q value = 0.73
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 366 | 59.4 (13.2) |
subtype1 | 92 | 57.4 (15.3) |
subtype2 | 149 | 60.3 (11.8) |
subtype3 | 125 | 59.9 (13.0) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.166 (Fisher's exact test), Q value = 0.34
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 173 | 87 | 3 | 62 | 9 | 7 | 2 | 1 | 2 |
subtype1 | 47 | 16 | 1 | 18 | 1 | 3 | 0 | 1 | 1 |
subtype2 | 60 | 42 | 1 | 26 | 5 | 4 | 0 | 0 | 1 |
subtype3 | 66 | 29 | 1 | 18 | 3 | 0 | 2 | 0 | 0 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.0455 (Fisher's exact test), Q value = 0.12
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 183 | 95 | 77 | 12 |
subtype1 | 50 | 16 | 20 | 4 |
subtype2 | 63 | 49 | 32 | 7 |
subtype3 | 70 | 30 | 25 | 1 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.472 (Fisher's exact test), Q value = 0.65
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 254 | 3 |
subtype1 | 63 | 1 |
subtype2 | 99 | 2 |
subtype3 | 92 | 0 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.83 (Fisher's exact test), Q value = 0.88
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 266 | 4 |
subtype1 | 58 | 1 |
subtype2 | 112 | 1 |
subtype3 | 96 | 2 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.668 (Fisher's exact test), Q value = 0.77
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 118 | 252 |
subtype1 | 29 | 64 |
subtype2 | 52 | 99 |
subtype3 | 37 | 89 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.835 (Fisher's exact test), Q value = 0.88
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 338 | 9 |
subtype1 | 83 | 3 |
subtype2 | 139 | 3 |
subtype3 | 116 | 3 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.101 (Fisher's exact test), Q value = 0.23
Table S10. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 3 | 360 | 7 |
subtype1 | 3 | 89 | 1 |
subtype2 | 0 | 148 | 3 |
subtype3 | 0 | 123 | 3 |
Figure S9. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.373 (Fisher's exact test), Q value = 0.58
Table S11. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 324 | 17 | 1 | 21 |
subtype1 | 79 | 4 | 0 | 7 |
subtype2 | 131 | 7 | 0 | 11 |
subtype3 | 114 | 6 | 1 | 3 |
Figure S10. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.0162 (Fisher's exact test), Q value = 0.062
Table S12. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 158 | 17 | 183 |
subtype1 | 1 | 27 | 6 | 58 |
subtype2 | 0 | 73 | 8 | 68 |
subtype3 | 1 | 58 | 3 | 57 |
Figure S11. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'RACE'

P value = 0.262 (Fisher's exact test), Q value = 0.45
Table S13. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 16 | 335 |
subtype1 | 2 | 85 |
subtype2 | 10 | 135 |
subtype3 | 4 | 115 |
Figure S12. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'ETHNICITY'

Table S14. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 93 | 163 | 121 |
P value = 0.953 (logrank test), Q value = 0.96
Table S15. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 371 | 132 | 0.0 - 120.8 (19.8) |
subtype1 | 90 | 33 | 0.0 - 108.8 (20.8) |
subtype2 | 162 | 57 | 0.2 - 120.8 (20.2) |
subtype3 | 119 | 42 | 0.2 - 114.3 (18.3) |
Figure S13. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 9.51e-09 (Kruskal-Wallis (anova)), Q value = 9.1e-07
Table S16. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 373 | 59.3 (13.4) |
subtype1 | 91 | 57.9 (15.2) |
subtype2 | 162 | 63.8 (9.9) |
subtype3 | 120 | 54.2 (14.2) |
Figure S14. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.741 (Fisher's exact test), Q value = 0.83
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 175 | 87 | 3 | 65 | 9 | 9 | 2 | 1 | 2 |
subtype1 | 42 | 19 | 0 | 19 | 4 | 4 | 0 | 1 | 0 |
subtype2 | 79 | 38 | 2 | 26 | 3 | 3 | 0 | 0 | 1 |
subtype3 | 54 | 30 | 1 | 20 | 2 | 2 | 2 | 0 | 1 |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.957 (Fisher's exact test), Q value = 0.96
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 185 | 95 | 81 | 13 |
subtype1 | 43 | 22 | 23 | 3 |
subtype2 | 84 | 41 | 31 | 6 |
subtype3 | 58 | 32 | 27 | 4 |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.572 (Fisher's exact test), Q value = 0.71
Table S19. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 257 | 4 |
subtype1 | 65 | 2 |
subtype2 | 107 | 1 |
subtype3 | 85 | 1 |
Figure S17. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.285 (Fisher's exact test), Q value = 0.47
Table S20. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 272 | 4 |
subtype1 | 64 | 0 |
subtype2 | 117 | 1 |
subtype3 | 91 | 3 |
Figure S18. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.0153 (Fisher's exact test), Q value = 0.061
Table S21. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 122 | 255 |
subtype1 | 34 | 59 |
subtype2 | 40 | 123 |
subtype3 | 48 | 73 |
Figure S19. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.566 (Fisher's exact test), Q value = 0.71
Table S22. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 345 | 9 |
subtype1 | 85 | 1 |
subtype2 | 152 | 4 |
subtype3 | 108 | 4 |
Figure S20. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.0183 (Fisher's exact test), Q value = 0.068
Table S23. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 3 | 367 | 7 |
subtype1 | 3 | 87 | 3 |
subtype2 | 0 | 162 | 1 |
subtype3 | 0 | 118 | 3 |
Figure S21. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.543 (Fisher's exact test), Q value = 0.7
Table S24. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 330 | 17 | 1 | 22 |
subtype1 | 76 | 5 | 0 | 8 |
subtype2 | 145 | 8 | 0 | 7 |
subtype3 | 109 | 4 | 1 | 7 |
Figure S22. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.00124 (Fisher's exact test), Q value = 0.0092
Table S25. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 161 | 17 | 187 |
subtype1 | 0 | 29 | 9 | 52 |
subtype2 | 1 | 66 | 7 | 85 |
subtype3 | 1 | 66 | 1 | 50 |
Figure S23. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'RACE'

P value = 0.586 (Fisher's exact test), Q value = 0.72
Table S26. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 340 |
subtype1 | 4 | 84 |
subtype2 | 6 | 146 |
subtype3 | 8 | 110 |
Figure S24. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'ETHNICITY'

Table S27. Description of clustering approach #3: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 68 | 88 | 74 | 71 | 70 |
P value = 0.00485 (logrank test), Q value = 0.025
Table S28. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 365 | 130 | 0.0 - 120.8 (19.6) |
subtype1 | 65 | 32 | 0.3 - 120.8 (13.6) |
subtype2 | 88 | 29 | 0.3 - 102.7 (22.9) |
subtype3 | 72 | 26 | 0.2 - 114.3 (19.4) |
subtype4 | 70 | 22 | 0.0 - 107.1 (20.9) |
subtype5 | 70 | 21 | 0.4 - 108.8 (19.0) |
Figure S25. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 4.66e-06 (Kruskal-Wallis (anova)), Q value = 0.00015
Table S29. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 367 | 59.3 (13.4) |
subtype1 | 66 | 60.7 (13.3) |
subtype2 | 87 | 62.7 (12.4) |
subtype3 | 73 | 52.5 (13.8) |
subtype4 | 71 | 58.8 (12.9) |
subtype5 | 70 | 61.2 (12.8) |
Figure S26. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.00682 (Fisher's exact test), Q value = 0.033
Table S30. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 171 | 86 | 3 | 65 | 8 | 9 | 2 | 1 | 2 |
subtype1 | 17 | 25 | 0 | 14 | 3 | 3 | 0 | 0 | 1 |
subtype2 | 55 | 13 | 1 | 12 | 1 | 0 | 0 | 0 | 0 |
subtype3 | 33 | 17 | 1 | 14 | 1 | 2 | 1 | 0 | 1 |
subtype4 | 35 | 13 | 0 | 9 | 2 | 3 | 1 | 1 | 0 |
subtype5 | 31 | 18 | 1 | 16 | 1 | 1 | 0 | 0 | 0 |
Figure S27. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.00057 (Fisher's exact test), Q value = 0.0055
Table S31. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 181 | 94 | 80 | 13 |
subtype1 | 17 | 29 | 17 | 5 |
subtype2 | 57 | 14 | 14 | 2 |
subtype3 | 37 | 18 | 18 | 1 |
subtype4 | 38 | 15 | 13 | 4 |
subtype5 | 32 | 18 | 18 | 1 |
Figure S28. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.415 (Fisher's exact test), Q value = 0.61
Table S32. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 252 | 4 |
subtype1 | 40 | 1 |
subtype2 | 61 | 0 |
subtype3 | 59 | 2 |
subtype4 | 41 | 1 |
subtype5 | 51 | 0 |
Figure S29. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.496 (Fisher's exact test), Q value = 0.65
Table S33. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 266 | 4 |
subtype1 | 46 | 1 |
subtype2 | 64 | 0 |
subtype3 | 61 | 2 |
subtype4 | 43 | 1 |
subtype5 | 52 | 0 |
Figure S30. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.00019
Table S34. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 121 | 250 |
subtype1 | 20 | 48 |
subtype2 | 23 | 65 |
subtype3 | 38 | 36 |
subtype4 | 30 | 41 |
subtype5 | 10 | 60 |
Figure S31. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0739 (Fisher's exact test), Q value = 0.19
Table S35. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 339 | 9 |
subtype1 | 64 | 1 |
subtype2 | 81 | 1 |
subtype3 | 69 | 0 |
subtype4 | 63 | 2 |
subtype5 | 62 | 5 |
Figure S32. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.00364 (Fisher's exact test), Q value = 0.021
Table S36. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 3 | 361 | 7 |
subtype1 | 0 | 66 | 2 |
subtype2 | 0 | 88 | 0 |
subtype3 | 0 | 73 | 1 |
subtype4 | 3 | 64 | 4 |
subtype5 | 0 | 70 | 0 |
Figure S33. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.0132 (Fisher's exact test), Q value = 0.055
Table S37. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 324 | 17 | 1 | 22 |
subtype1 | 54 | 6 | 0 | 7 |
subtype2 | 78 | 3 | 0 | 6 |
subtype3 | 69 | 1 | 0 | 4 |
subtype4 | 56 | 6 | 1 | 5 |
subtype5 | 67 | 1 | 0 | 0 |
Figure S34. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.00093 (Fisher's exact test), Q value = 0.0074
Table S38. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 158 | 17 | 184 |
subtype1 | 1 | 25 | 8 | 32 |
subtype2 | 0 | 32 | 3 | 48 |
subtype3 | 0 | 48 | 1 | 24 |
subtype4 | 0 | 24 | 2 | 43 |
subtype5 | 1 | 29 | 3 | 37 |
Figure S35. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'RACE'

P value = 0.764 (Fisher's exact test), Q value = 0.83
Table S39. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 334 |
subtype1 | 4 | 58 |
subtype2 | 6 | 76 |
subtype3 | 3 | 70 |
subtype4 | 3 | 64 |
subtype5 | 2 | 66 |
Figure S36. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'ETHNICITY'

Table S40. Description of clustering approach #4: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 55 | 56 | 116 | 87 | 57 |
P value = 0.00337 (logrank test), Q value = 0.02
Table S41. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 365 | 130 | 0.0 - 120.8 (19.6) |
subtype1 | 53 | 29 | 0.2 - 107.1 (13.1) |
subtype2 | 56 | 17 | 0.0 - 90.3 (19.2) |
subtype3 | 116 | 42 | 0.3 - 120.8 (21.2) |
subtype4 | 83 | 27 | 0.2 - 114.3 (19.6) |
subtype5 | 57 | 15 | 0.4 - 108.8 (18.7) |
Figure S37. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 1.46e-05 (Kruskal-Wallis (anova)), Q value = 0.00023
Table S42. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 367 | 59.3 (13.4) |
subtype1 | 53 | 61.3 (11.3) |
subtype2 | 55 | 61.9 (9.6) |
subtype3 | 115 | 61.9 (11.7) |
subtype4 | 87 | 51.7 (16.0) |
subtype5 | 57 | 60.9 (13.6) |
Figure S38. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.00204 (Fisher's exact test), Q value = 0.013
Table S43. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 171 | 86 | 3 | 65 | 8 | 9 | 2 | 1 | 2 |
subtype1 | 11 | 17 | 0 | 15 | 4 | 3 | 0 | 0 | 0 |
subtype2 | 33 | 10 | 0 | 3 | 1 | 2 | 0 | 0 | 0 |
subtype3 | 62 | 25 | 1 | 17 | 2 | 1 | 0 | 0 | 1 |
subtype4 | 41 | 19 | 1 | 17 | 0 | 2 | 2 | 1 | 1 |
subtype5 | 24 | 15 | 1 | 13 | 1 | 1 | 0 | 0 | 0 |
Figure S39. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.00021 (Fisher's exact test), Q value = 0.0022
Table S44. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 181 | 94 | 80 | 13 |
subtype1 | 11 | 20 | 20 | 4 |
subtype2 | 37 | 11 | 5 | 2 |
subtype3 | 63 | 28 | 19 | 5 |
subtype4 | 45 | 20 | 21 | 1 |
subtype5 | 25 | 15 | 15 | 1 |
Figure S40. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.172 (Fisher's exact test), Q value = 0.34
Table S45. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 252 | 4 |
subtype1 | 33 | 1 |
subtype2 | 31 | 0 |
subtype3 | 77 | 0 |
subtype4 | 67 | 3 |
subtype5 | 44 | 0 |
Figure S41. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.491 (Fisher's exact test), Q value = 0.65
Table S46. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 266 | 4 |
subtype1 | 39 | 0 |
subtype2 | 32 | 0 |
subtype3 | 83 | 1 |
subtype4 | 68 | 3 |
subtype5 | 44 | 0 |
Figure S42. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 8e-05 (Fisher's exact test), Q value = 0.00096
Table S47. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 121 | 250 |
subtype1 | 23 | 32 |
subtype2 | 13 | 43 |
subtype3 | 35 | 81 |
subtype4 | 42 | 45 |
subtype5 | 8 | 49 |
Figure S43. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.222 (Fisher's exact test), Q value = 0.39
Table S48. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 339 | 9 |
subtype1 | 52 | 1 |
subtype2 | 52 | 0 |
subtype3 | 107 | 2 |
subtype4 | 77 | 2 |
subtype5 | 51 | 4 |
Figure S44. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.00076 (Fisher's exact test), Q value = 0.0066
Table S49. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 3 | 361 | 7 |
subtype1 | 0 | 50 | 5 |
subtype2 | 0 | 56 | 0 |
subtype3 | 0 | 114 | 2 |
subtype4 | 3 | 84 | 0 |
subtype5 | 0 | 57 | 0 |
Figure S45. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.0248 (Fisher's exact test), Q value = 0.085
Table S50. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 324 | 17 | 1 | 22 |
subtype1 | 43 | 7 | 0 | 4 |
subtype2 | 46 | 4 | 0 | 4 |
subtype3 | 102 | 4 | 0 | 8 |
subtype4 | 79 | 1 | 1 | 6 |
subtype5 | 54 | 1 | 0 | 0 |
Figure S46. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.0263 (Fisher's exact test), Q value = 0.087
Table S51. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 158 | 17 | 184 |
subtype1 | 0 | 26 | 1 | 27 |
subtype2 | 0 | 14 | 4 | 35 |
subtype3 | 0 | 45 | 6 | 59 |
subtype4 | 1 | 50 | 2 | 34 |
subtype5 | 1 | 23 | 4 | 29 |
Figure S47. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'RACE'

P value = 0.609 (Fisher's exact test), Q value = 0.73
Table S52. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 334 |
subtype1 | 3 | 51 |
subtype2 | 4 | 51 |
subtype3 | 7 | 98 |
subtype4 | 3 | 80 |
subtype5 | 1 | 54 |
Figure S48. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'ETHNICITY'

Table S53. Description of clustering approach #5: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 40 | 64 | 92 | 85 | 50 | 41 |
P value = 0.384 (logrank test), Q value = 0.58
Table S54. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 366 | 128 | 0.0 - 120.8 (19.8) |
subtype1 | 38 | 17 | 0.2 - 120.8 (14.6) |
subtype2 | 64 | 23 | 0.3 - 113.0 (21.9) |
subtype3 | 92 | 26 | 0.0 - 114.3 (21.3) |
subtype4 | 84 | 27 | 0.3 - 108.8 (18.1) |
subtype5 | 49 | 19 | 0.4 - 83.2 (24.5) |
subtype6 | 39 | 16 | 0.2 - 89.7 (18.2) |
Figure S49. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 4.53e-06 (Kruskal-Wallis (anova)), Q value = 0.00015
Table S55. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 368 | 59.2 (13.4) |
subtype1 | 38 | 61.5 (11.3) |
subtype2 | 63 | 64.8 (10.6) |
subtype3 | 92 | 57.0 (13.1) |
subtype4 | 85 | 61.9 (11.9) |
subtype5 | 50 | 54.0 (16.1) |
subtype6 | 40 | 54.1 (14.5) |
Figure S50. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0868 (Fisher's exact test), Q value = 0.21
Table S56. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 172 | 86 | 3 | 64 | 9 | 9 | 2 | 1 | 2 |
subtype1 | 19 | 6 | 0 | 10 | 2 | 1 | 0 | 0 | 1 |
subtype2 | 26 | 20 | 1 | 8 | 3 | 1 | 0 | 0 | 0 |
subtype3 | 51 | 17 | 0 | 9 | 0 | 2 | 1 | 1 | 1 |
subtype4 | 44 | 19 | 0 | 14 | 3 | 2 | 0 | 0 | 0 |
subtype5 | 18 | 14 | 2 | 11 | 0 | 2 | 1 | 0 | 0 |
subtype6 | 14 | 10 | 0 | 12 | 1 | 1 | 0 | 0 | 0 |
Figure S51. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.0368 (Fisher's exact test), Q value = 0.11
Table S57. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 182 | 94 | 80 | 13 |
subtype1 | 19 | 7 | 12 | 2 |
subtype2 | 27 | 23 | 11 | 3 |
subtype3 | 57 | 17 | 12 | 4 |
subtype4 | 45 | 19 | 17 | 3 |
subtype5 | 20 | 15 | 14 | 1 |
subtype6 | 14 | 13 | 14 | 0 |
Figure S52. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.946 (Fisher's exact test), Q value = 0.96
Table S58. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 254 | 4 |
subtype1 | 28 | 0 |
subtype2 | 40 | 0 |
subtype3 | 55 | 1 |
subtype4 | 62 | 1 |
subtype5 | 38 | 1 |
subtype6 | 31 | 1 |
Figure S53. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.31 (Fisher's exact test), Q value = 0.5
Table S59. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 269 | 4 |
subtype1 | 24 | 1 |
subtype2 | 45 | 0 |
subtype3 | 60 | 2 |
subtype4 | 66 | 0 |
subtype5 | 40 | 1 |
subtype6 | 34 | 0 |
Figure S54. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.00206 (Fisher's exact test), Q value = 0.013
Table S60. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 119 | 253 |
subtype1 | 14 | 26 |
subtype2 | 18 | 46 |
subtype3 | 29 | 63 |
subtype4 | 16 | 69 |
subtype5 | 19 | 31 |
subtype6 | 23 | 18 |
Figure S55. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.594 (Fisher's exact test), Q value = 0.72
Table S61. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 340 | 9 |
subtype1 | 39 | 0 |
subtype2 | 61 | 1 |
subtype3 | 83 | 2 |
subtype4 | 75 | 4 |
subtype5 | 46 | 2 |
subtype6 | 36 | 0 |
Figure S56. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.0567 (Fisher's exact test), Q value = 0.15
Table S62. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 3 | 362 | 7 |
subtype1 | 0 | 40 | 0 |
subtype2 | 0 | 63 | 1 |
subtype3 | 3 | 88 | 1 |
subtype4 | 0 | 85 | 0 |
subtype5 | 0 | 47 | 3 |
subtype6 | 0 | 39 | 2 |
Figure S57. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.487 (Fisher's exact test), Q value = 0.65
Table S63. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 325 | 17 | 1 | 22 |
subtype1 | 32 | 2 | 0 | 3 |
subtype2 | 53 | 3 | 0 | 6 |
subtype3 | 78 | 5 | 1 | 7 |
subtype4 | 79 | 3 | 0 | 2 |
subtype5 | 45 | 1 | 0 | 4 |
subtype6 | 38 | 3 | 0 | 0 |
Figure S58. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.129 (Fisher's exact test), Q value = 0.29
Table S64. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 161 | 17 | 182 |
subtype1 | 0 | 16 | 5 | 19 |
subtype2 | 0 | 20 | 4 | 36 |
subtype3 | 0 | 35 | 5 | 47 |
subtype4 | 1 | 42 | 2 | 40 |
subtype5 | 0 | 27 | 1 | 22 |
subtype6 | 1 | 21 | 0 | 18 |
Figure S59. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #11: 'RACE'

P value = 0.172 (Fisher's exact test), Q value = 0.34
Table S65. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 335 |
subtype1 | 2 | 36 |
subtype2 | 4 | 55 |
subtype3 | 3 | 82 |
subtype4 | 1 | 82 |
subtype5 | 5 | 44 |
subtype6 | 3 | 36 |
Figure S60. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #12: 'ETHNICITY'

Table S66. Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 44 | 97 | 57 | 126 | 48 |
P value = 0.0555 (logrank test), Q value = 0.15
Table S67. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 366 | 128 | 0.0 - 120.8 (19.8) |
subtype1 | 42 | 18 | 0.0 - 120.8 (16.9) |
subtype2 | 97 | 34 | 0.3 - 102.7 (21.8) |
subtype3 | 55 | 26 | 0.3 - 113.0 (16.0) |
subtype4 | 124 | 40 | 0.2 - 114.3 (21.5) |
subtype5 | 48 | 10 | 0.3 - 108.8 (17.9) |
Figure S61. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 6.58e-06 (Kruskal-Wallis (anova)), Q value = 0.00016
Table S68. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 368 | 59.2 (13.4) |
subtype1 | 43 | 61.6 (11.0) |
subtype2 | 95 | 62.8 (11.7) |
subtype3 | 57 | 59.0 (13.6) |
subtype4 | 125 | 54.1 (14.8) |
subtype5 | 48 | 63.6 (9.9) |
Figure S62. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.948 (Fisher's exact test), Q value = 0.96
Table S69. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 172 | 86 | 3 | 64 | 9 | 9 | 2 | 1 | 2 |
subtype1 | 21 | 7 | 0 | 11 | 2 | 1 | 0 | 0 | 1 |
subtype2 | 45 | 23 | 1 | 11 | 4 | 1 | 0 | 0 | 0 |
subtype3 | 26 | 14 | 0 | 12 | 1 | 1 | 0 | 0 | 0 |
subtype4 | 57 | 30 | 2 | 21 | 1 | 5 | 2 | 1 | 1 |
subtype5 | 23 | 12 | 0 | 9 | 1 | 1 | 0 | 0 | 0 |
Figure S63. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.879 (Fisher's exact test), Q value = 0.92
Table S70. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 182 | 94 | 80 | 13 |
subtype1 | 21 | 8 | 13 | 2 |
subtype2 | 49 | 26 | 17 | 5 |
subtype3 | 28 | 15 | 14 | 0 |
subtype4 | 60 | 33 | 26 | 5 |
subtype5 | 24 | 12 | 10 | 1 |
Figure S64. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.534 (Fisher's exact test), Q value = 0.69
Table S71. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 254 | 4 |
subtype1 | 31 | 0 |
subtype2 | 59 | 0 |
subtype3 | 39 | 1 |
subtype4 | 88 | 3 |
subtype5 | 37 | 0 |
Figure S65. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.353 (Fisher's exact test), Q value = 0.55
Table S72. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 269 | 4 |
subtype1 | 28 | 1 |
subtype2 | 65 | 0 |
subtype3 | 43 | 0 |
subtype4 | 94 | 3 |
subtype5 | 39 | 0 |
Figure S66. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.0277 (Fisher's exact test), Q value = 0.089
Table S73. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 119 | 253 |
subtype1 | 14 | 30 |
subtype2 | 29 | 68 |
subtype3 | 19 | 38 |
subtype4 | 50 | 76 |
subtype5 | 7 | 41 |
Figure S67. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

P value = 0.138 (Fisher's exact test), Q value = 0.29
Table S74. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 340 | 9 |
subtype1 | 41 | 1 |
subtype2 | 93 | 0 |
subtype3 | 50 | 1 |
subtype4 | 113 | 4 |
subtype5 | 43 | 3 |
Figure S68. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.689 (Fisher's exact test), Q value = 0.79
Table S75. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 3 | 362 | 7 |
subtype1 | 0 | 44 | 0 |
subtype2 | 0 | 95 | 2 |
subtype3 | 0 | 56 | 1 |
subtype4 | 3 | 119 | 4 |
subtype5 | 0 | 48 | 0 |
Figure S69. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.698 (Fisher's exact test), Q value = 0.79
Table S76. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 325 | 17 | 1 | 22 |
subtype1 | 35 | 3 | 0 | 3 |
subtype2 | 83 | 5 | 0 | 6 |
subtype3 | 50 | 2 | 0 | 5 |
subtype4 | 111 | 6 | 1 | 8 |
subtype5 | 46 | 1 | 0 | 0 |
Figure S70. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.265 (Fisher's exact test), Q value = 0.45
Table S77. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 161 | 17 | 182 |
subtype1 | 0 | 18 | 5 | 21 |
subtype2 | 0 | 34 | 5 | 52 |
subtype3 | 0 | 32 | 2 | 22 |
subtype4 | 1 | 56 | 4 | 62 |
subtype5 | 1 | 21 | 1 | 25 |
Figure S71. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'RACE'

P value = 0.447 (Fisher's exact test), Q value = 0.63
Table S78. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 18 | 335 |
subtype1 | 3 | 40 |
subtype2 | 4 | 86 |
subtype3 | 3 | 52 |
subtype4 | 8 | 112 |
subtype5 | 0 | 45 |
Figure S72. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'ETHNICITY'

Table S79. Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 110 | 81 | 104 | 51 |
P value = 0.101 (logrank test), Q value = 0.23
Table S80. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 340 | 120 | 0.0 - 120.8 (19.8) |
subtype1 | 107 | 46 | 0.3 - 120.8 (17.6) |
subtype2 | 80 | 28 | 0.2 - 107.1 (21.4) |
subtype3 | 104 | 31 | 0.3 - 108.8 (21.2) |
subtype4 | 49 | 15 | 0.0 - 90.3 (17.1) |
Figure S73. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00393 (Kruskal-Wallis (anova)), Q value = 0.021
Table S81. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 342 | 59.2 (13.1) |
subtype1 | 108 | 58.6 (14.0) |
subtype2 | 80 | 58.1 (12.4) |
subtype3 | 104 | 63.1 (9.8) |
subtype4 | 50 | 54.3 (16.2) |
Figure S74. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0298 (Fisher's exact test), Q value = 0.092
Table S82. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 157 | 83 | 3 | 59 | 7 | 8 | 2 | 1 | 2 |
subtype1 | 47 | 26 | 0 | 26 | 5 | 5 | 0 | 0 | 0 |
subtype2 | 38 | 17 | 0 | 10 | 0 | 3 | 1 | 1 | 1 |
subtype3 | 51 | 26 | 1 | 14 | 0 | 0 | 0 | 0 | 1 |
subtype4 | 21 | 14 | 2 | 9 | 2 | 0 | 1 | 0 | 0 |
Figure S75. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.223 (Fisher's exact test), Q value = 0.39
Table S83. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 167 | 91 | 73 | 12 |
subtype1 | 48 | 27 | 30 | 5 |
subtype2 | 42 | 20 | 13 | 5 |
subtype3 | 55 | 29 | 16 | 2 |
subtype4 | 22 | 15 | 14 | 0 |
Figure S76. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.433 (Fisher's exact test), Q value = 0.63
Table S84. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 238 | 4 |
subtype1 | 81 | 3 |
subtype2 | 48 | 1 |
subtype3 | 70 | 0 |
subtype4 | 39 | 0 |
Figure S77. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.225 (Fisher's exact test), Q value = 0.39
Table S85. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 255 | 4 |
subtype1 | 88 | 0 |
subtype2 | 49 | 2 |
subtype3 | 75 | 1 |
subtype4 | 43 | 1 |
Figure S78. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.0403 (Fisher's exact test), Q value = 0.11
Table S86. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 115 | 231 |
subtype1 | 45 | 65 |
subtype2 | 27 | 54 |
subtype3 | 24 | 80 |
subtype4 | 19 | 32 |
Figure S79. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.668 (Fisher's exact test), Q value = 0.77
Table S87. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 315 | 9 |
subtype1 | 101 | 3 |
subtype2 | 73 | 2 |
subtype3 | 94 | 4 |
subtype4 | 47 | 0 |
Figure S80. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.0322 (Fisher's exact test), Q value = 0.097
Table S88. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 337 | 7 |
subtype1 | 0 | 108 | 2 |
subtype2 | 2 | 77 | 2 |
subtype3 | 0 | 104 | 0 |
subtype4 | 0 | 48 | 3 |
Figure S81. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.153 (Fisher's exact test), Q value = 0.32
Table S89. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 303 | 17 | 1 | 19 |
subtype1 | 96 | 5 | 0 | 6 |
subtype2 | 65 | 8 | 1 | 5 |
subtype3 | 97 | 3 | 0 | 3 |
subtype4 | 45 | 1 | 0 | 5 |
Figure S82. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.462 (Fisher's exact test), Q value = 0.64
Table S90. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 155 | 16 | 163 |
subtype1 | 1 | 56 | 3 | 48 |
subtype2 | 0 | 31 | 4 | 42 |
subtype3 | 1 | 40 | 7 | 52 |
subtype4 | 0 | 28 | 2 | 21 |
Figure S83. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'RACE'

P value = 0.755 (Fisher's exact test), Q value = 0.83
Table S91. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 16 | 312 |
subtype1 | 5 | 98 |
subtype2 | 5 | 72 |
subtype3 | 3 | 94 |
subtype4 | 3 | 48 |
Figure S84. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'ETHNICITY'

Table S92. Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 73 | 84 | 101 | 34 | 54 |
P value = 0.00965 (logrank test), Q value = 0.042
Table S93. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 340 | 120 | 0.0 - 120.8 (19.8) |
subtype1 | 69 | 34 | 0.3 - 107.1 (16.0) |
subtype2 | 84 | 30 | 0.3 - 113.0 (21.8) |
subtype3 | 100 | 32 | 0.2 - 114.3 (21.4) |
subtype4 | 33 | 14 | 0.0 - 120.8 (15.5) |
subtype5 | 54 | 10 | 0.3 - 108.8 (19.4) |
Figure S85. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 7.4e-05 (Kruskal-Wallis (anova)), Q value = 0.00096
Table S94. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 342 | 59.2 (13.1) |
subtype1 | 72 | 54.8 (13.1) |
subtype2 | 82 | 63.2 (11.1) |
subtype3 | 100 | 56.4 (15.0) |
subtype4 | 34 | 62.6 (11.1) |
subtype5 | 54 | 62.4 (10.4) |
Figure S86. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.136 (Fisher's exact test), Q value = 0.29
Table S95. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 157 | 83 | 3 | 59 | 7 | 8 | 2 | 1 | 2 |
subtype1 | 27 | 17 | 0 | 20 | 2 | 2 | 0 | 0 | 1 |
subtype2 | 39 | 20 | 1 | 11 | 4 | 1 | 0 | 0 | 0 |
subtype3 | 44 | 25 | 2 | 13 | 0 | 4 | 2 | 1 | 0 |
subtype4 | 19 | 4 | 0 | 8 | 1 | 1 | 0 | 0 | 1 |
subtype5 | 28 | 17 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
Figure S87. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGIC_STAGE'

P value = 0.181 (Fisher's exact test), Q value = 0.35
Table S96. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 167 | 91 | 73 | 12 |
subtype1 | 28 | 19 | 23 | 3 |
subtype2 | 42 | 23 | 15 | 4 |
subtype3 | 49 | 28 | 19 | 3 |
subtype4 | 19 | 4 | 9 | 2 |
subtype5 | 29 | 17 | 7 | 0 |
Figure S88. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

P value = 0.444 (Fisher's exact test), Q value = 0.63
Table S97. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 238 | 4 |
subtype1 | 50 | 1 |
subtype2 | 51 | 0 |
subtype3 | 68 | 3 |
subtype4 | 27 | 0 |
subtype5 | 42 | 0 |
Figure S89. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_N_STAGE'

P value = 0.387 (Fisher's exact test), Q value = 0.58
Table S98. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 255 | 4 |
subtype1 | 54 | 1 |
subtype2 | 59 | 0 |
subtype3 | 73 | 2 |
subtype4 | 23 | 1 |
subtype5 | 46 | 0 |
Figure S90. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_M_STAGE'

P value = 0.0219 (Fisher's exact test), Q value = 0.078
Table S99. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 115 | 231 |
subtype1 | 24 | 49 |
subtype2 | 24 | 60 |
subtype3 | 44 | 57 |
subtype4 | 13 | 21 |
subtype5 | 10 | 44 |
Figure S91. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0996 (Fisher's exact test), Q value = 0.23
Table S100. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 315 | 9 |
subtype1 | 63 | 3 |
subtype2 | 79 | 1 |
subtype3 | 94 | 1 |
subtype4 | 32 | 0 |
subtype5 | 47 | 4 |
Figure S92. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RADIATION_THERAPY'

P value = 0.331 (Fisher's exact test), Q value = 0.53
Table S101. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'
nPatients | FIBROLAMELLAR CARCINOMA | HEPATOCELLULAR CARCINOMA | HEPATOCHOLANGIOCARCINOMA (MIXED) |
---|---|---|---|
ALL | 2 | 337 | 7 |
subtype1 | 0 | 72 | 1 |
subtype2 | 0 | 83 | 1 |
subtype3 | 2 | 94 | 5 |
subtype4 | 0 | 34 | 0 |
subtype5 | 0 | 54 | 0 |
Figure S93. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'HISTOLOGICAL_TYPE'

P value = 0.215 (Fisher's exact test), Q value = 0.39
Table S102. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 303 | 17 | 1 | 19 |
subtype1 | 66 | 4 | 0 | 3 |
subtype2 | 73 | 2 | 0 | 7 |
subtype3 | 85 | 7 | 1 | 8 |
subtype4 | 27 | 3 | 0 | 1 |
subtype5 | 52 | 1 | 0 | 0 |
Figure S94. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RESIDUAL_TUMOR'

P value = 0.00934 (Fisher's exact test), Q value = 0.042
Table S103. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'RACE'
nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|---|
ALL | 2 | 155 | 16 | 163 |
subtype1 | 1 | 45 | 0 | 27 |
subtype2 | 0 | 27 | 7 | 44 |
subtype3 | 0 | 43 | 5 | 50 |
subtype4 | 0 | 13 | 3 | 18 |
subtype5 | 1 | 27 | 1 | 24 |
Figure S95. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'RACE'

P value = 0.784 (Fisher's exact test), Q value = 0.85
Table S104. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 16 | 312 |
subtype1 | 5 | 66 |
subtype2 | 4 | 73 |
subtype3 | 3 | 93 |
subtype4 | 2 | 31 |
subtype5 | 2 | 49 |
Figure S96. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'ETHNICITY'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/LIHC-TP/22542932/LIHC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/LIHC-TP/22506983/LIHC-TP.merged_data.txt
-
Number of patients = 377
-
Number of clustering approaches = 8
-
Number of selected clinical features = 12
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.