GSEA Class2: Canonical Pathways enriched in each subtypes of mRNAseq_cNMF in SARC-TP
Sarcoma (Primary solid tumor)
28 January 2016  |  analyses__2016_01_28
Maintainer Information
Citation Information
Maintained by Juok Cho (Broad Institute)
Cite as Broad Institute TCGA Genome Data Analysis Center (2016): GSEA Class2: Canonical Pathways enriched in each subtypes of mRNAseq_cNMF in SARC-TP. Broad Institute of MIT and Harvard. doi:10.7908/C1FJ2G79
Overview
Introduction

This pipeline performs Gene Set Enrichment Analysis (GSEA) using The Broad Institute GSEA tool with MSigDB - Class2: Canonical Pathways gene sets. For a given phenotype subtype, it shows what pathways are significantly enriched in each subtype by comparing gene expression profiles between subtypes. Here, the phenotype is mRNAseq_cNMF subtypes having more than three samples and the input expression file "SARC-TP.uncv2.mRNAseq_RSEM_normalized_log2.txt" is generated in the pipeline mRNAseq_Preprocess in the stddata run. This pipeline has the following features:

  1. For each subtype, calculates enrichment scores (ES) using signal to noise (S2N) that checks similarity between subtypes in expression level then calculates p values through permutation test.

  2. Lists pathways significantly enriched in each phenotype subtype and their enrichment scores (ES).

  3. Lists top 20 core genes enriched in each significant gene set and their enrichment scores (ES).

  4. Checks if the top core genes are up-regulated or down-regulated.

  5. Checks if the top core genes are high expressed or low expressed.

  6. Checks if the top core genes are significantly differently expressed genes.

Summary

Table 1.  Get Full Table basic data info

basic data info
Number of Gene Sets: 714
Number of samples: 259
Original number of Gene Sets: 1320
Maximum gene set size: 933

Table 2.  Get Full Table pheno data info

phenotype info
pheno.type: 1 - 3 :[ clus1 ] 116
pheno.type: 2 - 3 :[ clus2 ] 78
pheno.type: 3 - 3 :[ clus3 ] 65

For the expression subtypes of 18187 genes in 260 samples, GSEA found enriched gene sets in each cluster using 259 gene sets in MSigDB canonical pathways. Top enriched gene sets are listed as below.

  • clus1

    • Top enriched gene sets are KEGG AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM, KEGG RNA POLYMERASE, KEGG PROTEASOME, KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION, KEGG CHEMOKINE SIGNALING PATHWAY, KEGG LYSOSOME, KEGG APOPTOSIS, KEGG COMPLEMENT AND COAGULATION CASCADES, KEGG ANTIGEN PROCESSING AND PRESENTATION, KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY

    • And common core enriched genes are PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMA8, PSMB1, PSMB10

  • clus2

    • Top enriched gene sets are KEGG LYSINE DEGRADATION, KEGG PROPANOATE METABOLISM, KEGG BUTANOATE METABOLISM, KEGG VASCULAR SMOOTH MUSCLE CONTRACTION, KEGG INSULIN SIGNALING PATHWAY, BIOCARTA BIOPEPTIDES PATHWAY, BIOCARTA INTEGRIN PATHWAY, BIOCARTA MYOSIN PATHWAY, BIOCARTA RHO PATHWAY, SIG REGULATION OF THE ACTIN CYTOSKELETON BY RHO GTPASES

    • And common core enriched genes are SRC, PPP1R12B, ROCK1, TLN1, VCL, ACAT1, ACAT2, ALDH1B1, ALDH2, ALDH3A2

  • clus3

    • Top enriched gene sets are KEGG GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE, KEGG WNT SIGNALING PATHWAY, KEGG AXON GUIDANCE, KEGG BASAL CELL CARCINOMA, BIOCARTA WNT PATHWAY, WNT SIGNALING, ST WNT BETA CATENIN PATHWAY, PID NOTCH PATHWAY, PID PS1PATHWAY, PID WNT SIGNALING PATHWAY

    • And common core enriched genes are WIF1, CCND1, FZD1, NKD1, DKK2, LRP6, TLE1, BTRC, LEF1, CXXC4

Results
Subtype clus1 enriched pathways

Table 3.  Get Full Table This table shows top 10 pathways which are significantly enriched in cluster clus1. It displays only significant gene sets satisfying nom.p.val.threshold (-1), fwer.p.val.threshold (-1) , fdr.q.val.threshold (0.25) and the default table is sorted by Normalized Enrichment Score (NES). Further details on NES statistics, please visit The Broad GSEA website.

GeneSet(GS) Size(#genes) genes.ES.table ES NES NOM.p.val FDR.q.val FWER.p.val Tag.. Gene.. Signal FDR..median. glob.p.val
KEGG AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM 43 genes.ES.table 0.59 1.9 0.002 0.28 0.35 0.37 0.15 0.32 0 0.063
KEGG RNA POLYMERASE 29 genes.ES.table 0.43 1.4 0.12 0.25 1 0.48 0.32 0.33 0.19 0.003
KEGG PROTEASOME 44 genes.ES.table 0.62 1.8 0.014 0.2 0.52 0.7 0.3 0.5 0.067 0.047
KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION 237 genes.ES.table 0.64 1.6 0.0058 0.14 0.92 0.55 0.14 0.48 0.076 0.005
KEGG CHEMOKINE SIGNALING PATHWAY 185 genes.ES.table 0.55 1.6 0.036 0.16 0.96 0.4 0.14 0.35 0.1 0.003
KEGG LYSOSOME 120 genes.ES.table 0.52 1.9 0.002 0.3 0.41 0.52 0.21 0.41 0 0.06
KEGG APOPTOSIS 86 genes.ES.table 0.46 1.6 0.042 0.15 0.94 0.38 0.22 0.3 0.086 0.005
KEGG COMPLEMENT AND COAGULATION CASCADES 62 genes.ES.table 0.7 1.6 0.018 0.15 0.95 0.5 0.098 0.45 0.089 0.004
KEGG ANTIGEN PROCESSING AND PRESENTATION 67 genes.ES.table 0.75 1.7 0.0058 0.12 0.77 0.67 0.15 0.57 0.054 0.013
KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY 89 genes.ES.table 0.66 1.8 0.0019 0.14 0.6 0.35 0.077 0.32 0.049 0.03
genes ES table in pathway: KEGG AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM

Table S1.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CARD11 CARD11 CARD11 646 0.43 0.015 YES
2 RASGRP1 RASGRP1 RASGRP1 741 0.4 0.057 YES
3 NFKBIE NFKBIE NFKBIE 1006 0.34 0.083 YES
4 PSMB9 PSMB9 PSMB9 1057 0.33 0.12 YES
5 PSMB10 PSMB10 PSMB10 1128 0.32 0.15 YES
6 PRKCB PRKCB PRKCB 1564 0.26 0.16 YES
7 RASGRP3 RASGRP3 RASGRP3 1860 0.22 0.17 YES
8 PSMB8 PSMB8 PSMB8 2232 0.19 0.17 YES
9 PSMA8 PSMA8 PSMA8 2349 0.18 0.18 YES
10 BCL10 BCL10 BCL10 2575 0.16 0.19 YES
11 PSME2 PSME2 PSME2 2662 0.16 0.21 YES
12 NFKBIB NFKBIB NFKBIB 3084 0.14 0.2 YES
13 IKBKG IKBKG IKBKG 3119 0.13 0.21 YES
14 PSMC1 PSMC1 PSMC1 3141 0.13 0.23 YES
15 PSMB6 PSMB6 PSMB6 3312 0.12 0.23 YES
16 NRAS NRAS NRAS 3361 0.12 0.24 YES
17 NFKBIA NFKBIA NFKBIA 3457 0.12 0.25 YES
18 PSMD13 PSMD13 PSMD13 3578 0.11 0.26 YES
19 PSMB7 PSMB7 PSMB7 3761 0.11 0.26 YES
20 AKT1S1 AKT1S1 AKT1S1 3817 0.1 0.27 YES
21 PSMB3 PSMB3 PSMB3 3831 0.1 0.28 YES
22 MDM2 MDM2 MDM2 3832 0.1 0.3 YES
23 PSMA6 PSMA6 PSMA6 3864 0.1 0.31 YES
24 PSMA7 PSMA7 PSMA7 3902 0.1 0.32 YES
25 PSME1 PSME1 PSME1 3964 0.1 0.32 YES
26 THEM4 THEM4 THEM4 4039 0.098 0.33 YES
27 PSMA5 PSMA5 PSMA5 4193 0.093 0.34 YES
28 PSMA2 PSMA2 PSMA2 4238 0.092 0.34 YES
29 PSMB2 PSMB2 PSMB2 4344 0.088 0.35 YES
30 PSMD14 PSMD14 PSMD14 4517 0.082 0.35 YES
31 CASP9 CASP9 CASP9 4518 0.082 0.36 YES
32 PSMA1 PSMA1 PSMA1 4550 0.081 0.37 YES
33 PSMC4 PSMC4 PSMC4 4588 0.08 0.37 YES
34 UBA52 UBA52 UBA52 4613 0.079 0.38 YES
35 PSMC2 PSMC2 PSMC2 4628 0.079 0.39 YES
36 PSMA3 PSMA3 PSMA3 4730 0.076 0.39 YES
37 PSMB1 PSMB1 PSMB1 4783 0.075 0.4 YES
38 PSMD7 PSMD7 PSMD7 4966 0.07 0.4 YES
39 TRIB3 TRIB3 TRIB3 4992 0.07 0.4 YES
40 PSMC3 PSMC3 PSMC3 5066 0.068 0.41 YES
41 PSMC5 PSMC5 PSMC5 5078 0.067 0.42 YES
42 PSMA4 PSMA4 PSMA4 5165 0.065 0.42 YES
43 PSMD9 PSMD9 PSMD9 5262 0.062 0.42 YES
44 RPS6KB2 RPS6KB2 RPS6KB2 5314 0.061 0.42 YES
45 PSMD8 PSMD8 PSMD8 5360 0.06 0.43 YES
46 PSMD12 PSMD12 PSMD12 5434 0.058 0.43 YES
47 HRAS HRAS HRAS 5460 0.058 0.44 YES
48 PSMD3 PSMD3 PSMD3 5875 0.047 0.42 NO
49 PSMD4 PSMD4 PSMD4 5948 0.046 0.42 NO
50 MLST8 MLST8 MLST8 6017 0.044 0.42 NO
51 PSMB5 PSMB5 PSMB5 6231 0.039 0.42 NO
52 PSMB4 PSMB4 PSMB4 6434 0.035 0.41 NO
53 RPS27A RPS27A RPS27A 6457 0.035 0.41 NO
54 PSMD2 PSMD2 PSMD2 6470 0.034 0.42 NO
55 PTEN PTEN PTEN 6505 0.034 0.42 NO
56 CHUK CHUK CHUK 6563 0.032 0.42 NO
57 BTRC BTRC BTRC 6714 0.029 0.41 NO
58 BAD BAD BAD 6940 0.024 0.4 NO
59 PSMD11 PSMD11 PSMD11 7009 0.022 0.4 NO
60 PSMD1 PSMD1 PSMD1 7278 0.017 0.39 NO
61 KRAS KRAS KRAS 7309 0.016 0.39 NO
62 PSMD5 PSMD5 PSMD5 7634 0.0097 0.37 NO
63 RELA RELA RELA 7636 0.0097 0.38 NO
64 PSMF1 PSMF1 PSMF1 7810 0.0055 0.37 NO
65 MAPKAP1 MAPKAP1 MAPKAP1 7859 0.0043 0.36 NO
66 PSMD6 PSMD6 PSMD6 7915 0.0031 0.36 NO
67 PSMC6 PSMC6 PSMC6 7969 0.0021 0.36 NO
68 GSK3A GSK3A GSK3A 8246 -0.0034 0.34 NO
69 MTOR MTOR MTOR 8318 -0.005 0.34 NO
70 PHLPP1 PHLPP1 PHLPP1 8555 -0.01 0.33 NO
71 MALT1 MALT1 MALT1 8610 -0.011 0.33 NO
72 AKT1 AKT1 AKT1 8693 -0.013 0.32 NO
73 AKT2 AKT2 AKT2 8801 -0.016 0.32 NO
74 PSME4 PSME4 PSME4 9281 -0.026 0.3 NO
75 IKBKB IKBKB IKBKB 9634 -0.033 0.28 NO
76 FOXO4 FOXO4 FOXO4 9687 -0.034 0.28 NO
77 CDKN1A CDKN1A CDKN1A 9920 -0.038 0.27 NO
78 FOXO3 FOXO3 FOXO3 9996 -0.04 0.27 NO
79 MAP3K7 MAP3K7 MAP3K7 10070 -0.042 0.28 NO
80 PSMD10 PSMD10 PSMD10 10088 -0.042 0.28 NO
81 SKP1 SKP1 SKP1 10134 -0.043 0.28 NO
82 CREB1 CREB1 CREB1 10640 -0.053 0.26 NO
83 CUL1 CUL1 CUL1 11500 -0.073 0.22 NO
84 TSC2 TSC2 TSC2 11623 -0.076 0.22 NO
85 FBXW11 FBXW11 FBXW11 11763 -0.08 0.22 NO
86 REL REL REL 12049 -0.087 0.22 NO
87 FOXO1 FOXO1 FOXO1 12071 -0.088 0.23 NO
88 RICTOR RICTOR RICTOR 12945 -0.12 0.19 NO
89 PDPK1 PDPK1 PDPK1 13572 -0.14 0.18 NO
90 CDKN1B CDKN1B CDKN1B 13945 -0.15 0.17 NO
91 NR4A1 NR4A1 NR4A1 15019 -0.2 0.14 NO
92 AKT3 AKT3 AKT3 16353 -0.3 0.1 NO

Figure S1.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM.

Figure S2.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG RNA POLYMERASE

Table S2.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PSMB9 PSMB9 PSMB9 1057 0.33 0.013 YES
2 PSMB10 PSMB10 PSMB10 1128 0.32 0.077 YES
3 UNC5B UNC5B UNC5B 1949 0.21 0.078 YES
4 PSMB8 PSMB8 PSMB8 2232 0.19 0.1 YES
5 PSMA8 PSMA8 PSMA8 2349 0.18 0.14 YES
6 DAPK2 DAPK2 DAPK2 2442 0.17 0.17 YES
7 PSME2 PSME2 PSME2 2662 0.16 0.19 YES
8 PSMC1 PSMC1 PSMC1 3141 0.13 0.19 YES
9 PSMB6 PSMB6 PSMB6 3312 0.12 0.21 YES
10 PSMD13 PSMD13 PSMD13 3578 0.11 0.22 YES
11 PSMB7 PSMB7 PSMB7 3761 0.11 0.23 YES
12 PSMB3 PSMB3 PSMB3 3831 0.1 0.25 YES
13 PSMA6 PSMA6 PSMA6 3864 0.1 0.27 YES
14 PSMA7 PSMA7 PSMA7 3902 0.1 0.29 YES
15 PSME1 PSME1 PSME1 3964 0.1 0.31 YES
16 PSMA5 PSMA5 PSMA5 4193 0.093 0.32 YES
17 PSMA2 PSMA2 PSMA2 4238 0.092 0.34 YES
18 PSMB2 PSMB2 PSMB2 4344 0.088 0.35 YES
19 PSMD14 PSMD14 PSMD14 4517 0.082 0.36 YES
20 CASP9 CASP9 CASP9 4518 0.082 0.38 YES
21 PSMA1 PSMA1 PSMA1 4550 0.081 0.39 YES
22 PSMC4 PSMC4 PSMC4 4588 0.08 0.41 YES
23 UBA52 UBA52 UBA52 4613 0.079 0.42 YES
24 PSMC2 PSMC2 PSMC2 4628 0.079 0.44 YES
25 PSMA3 PSMA3 PSMA3 4730 0.076 0.45 YES
26 DAPK1 DAPK1 DAPK1 4732 0.076 0.47 YES
27 PSMB1 PSMB1 PSMB1 4783 0.075 0.48 YES
28 CASP3 CASP3 CASP3 4810 0.074 0.5 YES
29 PSMD7 PSMD7 PSMD7 4966 0.07 0.5 YES
30 PSMC3 PSMC3 PSMC3 5066 0.068 0.51 YES
31 PSMC5 PSMC5 PSMC5 5078 0.067 0.52 YES
32 PSMA4 PSMA4 PSMA4 5165 0.065 0.53 YES
33 PSMD9 PSMD9 PSMD9 5262 0.062 0.54 YES
34 PSMD8 PSMD8 PSMD8 5360 0.06 0.55 YES
35 PSMD12 PSMD12 PSMD12 5434 0.058 0.56 YES
36 PAK2 PAK2 PAK2 5806 0.049 0.55 YES
37 PSMD3 PSMD3 PSMD3 5875 0.047 0.56 YES
38 PSMD4 PSMD4 PSMD4 5948 0.046 0.56 YES
39 PSMB5 PSMB5 PSMB5 6231 0.039 0.55 YES
40 PSMB4 PSMB4 PSMB4 6434 0.035 0.55 YES
41 RPS27A RPS27A RPS27A 6457 0.035 0.56 YES
42 PSMD2 PSMD2 PSMD2 6470 0.034 0.56 YES
43 UNC5A UNC5A UNC5A 6864 0.026 0.55 NO
44 PSMD11 PSMD11 PSMD11 7009 0.022 0.54 NO
45 PSMD1 PSMD1 PSMD1 7278 0.017 0.53 NO
46 MAGED1 MAGED1 MAGED1 7481 0.013 0.52 NO
47 PSMD5 PSMD5 PSMD5 7634 0.0097 0.52 NO
48 PSMF1 PSMF1 PSMF1 7810 0.0055 0.51 NO
49 PSMD6 PSMD6 PSMD6 7915 0.0031 0.5 NO
50 PSMC6 PSMC6 PSMC6 7969 0.0021 0.5 NO
51 ARHGAP10 ARHGAP10 ARHGAP10 8048 0.00064 0.5 NO
52 DAPK3 DAPK3 DAPK3 8385 -0.0064 0.48 NO
53 PSME4 PSME4 PSME4 9281 -0.026 0.44 NO
54 PSMD10 PSMD10 PSMD10 10088 -0.042 0.4 NO
55 APPL1 APPL1 APPL1 10160 -0.043 0.41 NO
56 DCC DCC DCC 14135 -0.16 0.22 NO

Figure S3.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG RNA POLYMERASE.

Figure S4.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG RNA POLYMERASE, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG PROTEASOME

Table S3.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 VAV1 VAV1 VAV1 42 0.76 0.046 YES
2 BTK BTK BTK 150 0.63 0.079 YES
3 PIK3AP1 PIK3AP1 PIK3AP1 174 0.61 0.12 YES
4 SYK SYK SYK 323 0.54 0.14 YES
5 CARD11 CARD11 CARD11 646 0.43 0.15 YES
6 BLK BLK BLK 710 0.41 0.17 YES
7 PIK3CD PIK3CD PIK3CD 717 0.41 0.2 YES
8 RASGRP1 RASGRP1 RASGRP1 741 0.4 0.22 YES
9 CD19 CD19 CD19 815 0.38 0.24 YES
10 LYN LYN LYN 877 0.36 0.26 YES
11 NFKBIE NFKBIE NFKBIE 1006 0.34 0.28 YES
12 PSMB9 PSMB9 PSMB9 1057 0.33 0.3 YES
13 CD79A CD79A CD79A 1100 0.32 0.31 YES
14 PSMB10 PSMB10 PSMB10 1128 0.32 0.33 YES
15 SH3KBP1 SH3KBP1 SH3KBP1 1164 0.31 0.35 YES
16 FYN FYN FYN 1290 0.29 0.36 YES
17 CD79B CD79B CD79B 1320 0.29 0.38 YES
18 PLCG2 PLCG2 PLCG2 1455 0.27 0.39 YES
19 BLNK BLNK BLNK 1522 0.26 0.4 YES
20 ORAI1 ORAI1 ORAI1 1557 0.26 0.41 YES
21 PRKCB PRKCB PRKCB 1564 0.26 0.43 YES
22 RASGRP3 RASGRP3 RASGRP3 1860 0.22 0.43 YES
23 PSMB8 PSMB8 PSMB8 2232 0.19 0.42 YES
24 ITPR2 ITPR2 ITPR2 2235 0.19 0.43 YES
25 PSMA8 PSMA8 PSMA8 2349 0.18 0.44 YES
26 BCL10 BCL10 BCL10 2575 0.16 0.43 YES
27 CBLB CBLB CBLB 2579 0.16 0.44 YES
28 ITPR3 ITPR3 ITPR3 2626 0.16 0.45 YES
29 PSME2 PSME2 PSME2 2662 0.16 0.46 YES
30 NFKBIB NFKBIB NFKBIB 3084 0.14 0.44 YES
31 IKBKG IKBKG IKBKG 3119 0.13 0.45 YES
32 PSMC1 PSMC1 PSMC1 3141 0.13 0.46 YES
33 PSMB6 PSMB6 PSMB6 3312 0.12 0.46 YES
34 NRAS NRAS NRAS 3361 0.12 0.46 YES
35 NFKBIA NFKBIA NFKBIA 3457 0.12 0.46 YES
36 PSMD13 PSMD13 PSMD13 3578 0.11 0.46 YES
37 PSMB7 PSMB7 PSMB7 3761 0.11 0.46 YES
38 AKT1S1 AKT1S1 AKT1S1 3817 0.1 0.46 YES
39 PSMB3 PSMB3 PSMB3 3831 0.1 0.47 YES
40 MDM2 MDM2 MDM2 3832 0.1 0.48 YES
41 PSMA6 PSMA6 PSMA6 3864 0.1 0.48 YES
42 PSMA7 PSMA7 PSMA7 3902 0.1 0.49 YES
43 PSME1 PSME1 PSME1 3964 0.1 0.49 YES
44 THEM4 THEM4 THEM4 4039 0.098 0.49 YES
45 PSMA5 PSMA5 PSMA5 4193 0.093 0.49 YES
46 GRB2 GRB2 GRB2 4194 0.093 0.49 YES
47 PSMA2 PSMA2 PSMA2 4238 0.092 0.5 YES
48 PSMB2 PSMB2 PSMB2 4344 0.088 0.5 YES
49 PSMD14 PSMD14 PSMD14 4517 0.082 0.49 YES
50 CASP9 CASP9 CASP9 4518 0.082 0.5 YES
51 PSMA1 PSMA1 PSMA1 4550 0.081 0.5 YES
52 PSMC4 PSMC4 PSMC4 4588 0.08 0.5 YES
53 UBA52 UBA52 UBA52 4613 0.079 0.51 YES
54 PSMC2 PSMC2 PSMC2 4628 0.079 0.51 YES
55 PSMA3 PSMA3 PSMA3 4730 0.076 0.51 YES
56 PSMB1 PSMB1 PSMB1 4783 0.075 0.51 YES
57 PSMD7 PSMD7 PSMD7 4966 0.07 0.51 YES
58 TRIB3 TRIB3 TRIB3 4992 0.07 0.51 YES
59 PSMC3 PSMC3 PSMC3 5066 0.068 0.51 YES
60 PSMC5 PSMC5 PSMC5 5078 0.067 0.52 YES
61 PSMA4 PSMA4 PSMA4 5165 0.065 0.51 YES
62 PSMD9 PSMD9 PSMD9 5262 0.062 0.51 YES
63 RPS6KB2 RPS6KB2 RPS6KB2 5314 0.061 0.51 YES
64 PSMD8 PSMD8 PSMD8 5360 0.06 0.52 YES
65 PSMD12 PSMD12 PSMD12 5434 0.058 0.52 YES
66 HRAS HRAS HRAS 5460 0.058 0.52 YES
67 PSMD3 PSMD3 PSMD3 5875 0.047 0.5 NO
68 PSMD4 PSMD4 PSMD4 5948 0.046 0.5 NO
69 MLST8 MLST8 MLST8 6017 0.044 0.5 NO
70 PSMB5 PSMB5 PSMB5 6231 0.039 0.49 NO
71 PSMB4 PSMB4 PSMB4 6434 0.035 0.48 NO
72 RPS27A RPS27A RPS27A 6457 0.035 0.48 NO
73 PSMD2 PSMD2 PSMD2 6470 0.034 0.48 NO
74 NCK1 NCK1 NCK1 6496 0.034 0.48 NO
75 PTEN PTEN PTEN 6505 0.034 0.48 NO
76 CHUK CHUK CHUK 6563 0.032 0.48 NO
77 BTRC BTRC BTRC 6714 0.029 0.47 NO
78 BAD BAD BAD 6940 0.024 0.46 NO
79 PSMD11 PSMD11 PSMD11 7009 0.022 0.46 NO
80 CALM3 CALM3 CALM3 7060 0.022 0.46 NO
81 CALM2 CALM2 CALM2 7104 0.02 0.46 NO
82 PSMD1 PSMD1 PSMD1 7278 0.017 0.45 NO
83 KRAS KRAS KRAS 7309 0.016 0.45 NO
84 PSMD5 PSMD5 PSMD5 7634 0.0097 0.43 NO
85 RELA RELA RELA 7636 0.0097 0.43 NO
86 PSMF1 PSMF1 PSMF1 7810 0.0055 0.42 NO
87 MAPKAP1 MAPKAP1 MAPKAP1 7859 0.0043 0.42 NO
88 PSMD6 PSMD6 PSMD6 7915 0.0031 0.42 NO
89 PSMC6 PSMC6 PSMC6 7969 0.0021 0.42 NO
90 STIM1 STIM1 STIM1 8212 -0.0026 0.4 NO
91 GSK3A GSK3A GSK3A 8246 -0.0034 0.4 NO
92 MTOR MTOR MTOR 8318 -0.005 0.4 NO
93 PHLPP1 PHLPP1 PHLPP1 8555 -0.01 0.38 NO
94 MALT1 MALT1 MALT1 8610 -0.011 0.38 NO
95 AKT1 AKT1 AKT1 8693 -0.013 0.38 NO
96 AKT2 AKT2 AKT2 8801 -0.016 0.37 NO
97 PSME4 PSME4 PSME4 9281 -0.026 0.35 NO
98 IKBKB IKBKB IKBKB 9634 -0.033 0.33 NO
99 FOXO4 FOXO4 FOXO4 9687 -0.034 0.33 NO
100 CALM1 CALM1 CALM1 9879 -0.038 0.32 NO
101 CDKN1A CDKN1A CDKN1A 9920 -0.038 0.32 NO
102 FOXO3 FOXO3 FOXO3 9996 -0.04 0.32 NO
103 MAP3K7 MAP3K7 MAP3K7 10070 -0.042 0.32 NO
104 PSMD10 PSMD10 PSMD10 10088 -0.042 0.32 NO
105 SKP1 SKP1 SKP1 10134 -0.043 0.32 NO
106 CREB1 CREB1 CREB1 10640 -0.053 0.3 NO
107 SHC1 SHC1 SHC1 11461 -0.072 0.26 NO
108 CUL1 CUL1 CUL1 11500 -0.073 0.26 NO
109 TSC2 TSC2 TSC2 11623 -0.076 0.26 NO
110 FBXW11 FBXW11 FBXW11 11763 -0.08 0.25 NO
111 REL REL REL 12049 -0.087 0.24 NO
112 FOXO1 FOXO1 FOXO1 12071 -0.088 0.25 NO
113 PLCG1 PLCG1 PLCG1 12294 -0.094 0.24 NO
114 SOS1 SOS1 SOS1 12339 -0.095 0.24 NO
115 RICTOR RICTOR RICTOR 12945 -0.12 0.22 NO
116 PDPK1 PDPK1 PDPK1 13572 -0.14 0.19 NO
117 PIK3R1 PIK3R1 PIK3R1 13707 -0.14 0.19 NO
118 CDKN1B CDKN1B CDKN1B 13945 -0.15 0.19 NO
119 CBL CBL CBL 14510 -0.18 0.17 NO
120 NR4A1 NR4A1 NR4A1 15019 -0.2 0.16 NO
121 AKT3 AKT3 AKT3 16353 -0.3 0.1 NO

Figure S5.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG PROTEASOME.

Figure S6.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG PROTEASOME, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION

Table S4.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CARD11 CARD11 CARD11 646 0.43 0.039 YES
2 NFKBIE NFKBIE NFKBIE 1006 0.34 0.079 YES
3 PSMB9 PSMB9 PSMB9 1057 0.33 0.13 YES
4 PSMB10 PSMB10 PSMB10 1128 0.32 0.18 YES
5 PRKCB PRKCB PRKCB 1564 0.26 0.2 YES
6 PSMB8 PSMB8 PSMB8 2232 0.19 0.2 YES
7 PSMA8 PSMA8 PSMA8 2349 0.18 0.23 YES
8 BCL10 BCL10 BCL10 2575 0.16 0.24 YES
9 PSME2 PSME2 PSME2 2662 0.16 0.27 YES
10 NFKBIB NFKBIB NFKBIB 3084 0.14 0.27 YES
11 IKBKG IKBKG IKBKG 3119 0.13 0.29 YES
12 PSMC1 PSMC1 PSMC1 3141 0.13 0.31 YES
13 PSMB6 PSMB6 PSMB6 3312 0.12 0.32 YES
14 NFKBIA NFKBIA NFKBIA 3457 0.12 0.34 YES
15 PSMD13 PSMD13 PSMD13 3578 0.11 0.35 YES
16 PSMB7 PSMB7 PSMB7 3761 0.11 0.36 YES
17 PSMB3 PSMB3 PSMB3 3831 0.1 0.37 YES
18 PSMA6 PSMA6 PSMA6 3864 0.1 0.39 YES
19 PSMA7 PSMA7 PSMA7 3902 0.1 0.4 YES
20 PSME1 PSME1 PSME1 3964 0.1 0.42 YES
21 PSMA5 PSMA5 PSMA5 4193 0.093 0.42 YES
22 PSMA2 PSMA2 PSMA2 4238 0.092 0.44 YES
23 PSMB2 PSMB2 PSMB2 4344 0.088 0.44 YES
24 PSMD14 PSMD14 PSMD14 4517 0.082 0.45 YES
25 PSMA1 PSMA1 PSMA1 4550 0.081 0.46 YES
26 PSMC4 PSMC4 PSMC4 4588 0.08 0.47 YES
27 UBA52 UBA52 UBA52 4613 0.079 0.49 YES
28 PSMC2 PSMC2 PSMC2 4628 0.079 0.5 YES
29 PSMA3 PSMA3 PSMA3 4730 0.076 0.51 YES
30 PSMB1 PSMB1 PSMB1 4783 0.075 0.52 YES
31 PSMD7 PSMD7 PSMD7 4966 0.07 0.52 YES
32 PSMC3 PSMC3 PSMC3 5066 0.068 0.53 YES
33 PSMC5 PSMC5 PSMC5 5078 0.067 0.54 YES
34 PSMA4 PSMA4 PSMA4 5165 0.065 0.54 YES
35 PSMD9 PSMD9 PSMD9 5262 0.062 0.55 YES
36 PSMD8 PSMD8 PSMD8 5360 0.06 0.56 YES
37 PSMD12 PSMD12 PSMD12 5434 0.058 0.56 YES
38 PSMD3 PSMD3 PSMD3 5875 0.047 0.55 NO
39 PSMD4 PSMD4 PSMD4 5948 0.046 0.55 NO
40 PSMB5 PSMB5 PSMB5 6231 0.039 0.54 NO
41 PSMB4 PSMB4 PSMB4 6434 0.035 0.54 NO
42 RPS27A RPS27A RPS27A 6457 0.035 0.54 NO
43 PSMD2 PSMD2 PSMD2 6470 0.034 0.55 NO
44 CHUK CHUK CHUK 6563 0.032 0.55 NO
45 BTRC BTRC BTRC 6714 0.029 0.54 NO
46 PSMD11 PSMD11 PSMD11 7009 0.022 0.53 NO
47 PSMD1 PSMD1 PSMD1 7278 0.017 0.52 NO
48 PSMD5 PSMD5 PSMD5 7634 0.0097 0.5 NO
49 RELA RELA RELA 7636 0.0097 0.5 NO
50 PSMF1 PSMF1 PSMF1 7810 0.0055 0.49 NO
51 PSMD6 PSMD6 PSMD6 7915 0.0031 0.49 NO
52 PSMC6 PSMC6 PSMC6 7969 0.0021 0.49 NO
53 MALT1 MALT1 MALT1 8610 -0.011 0.45 NO
54 PSME4 PSME4 PSME4 9281 -0.026 0.42 NO
55 IKBKB IKBKB IKBKB 9634 -0.033 0.41 NO
56 MAP3K7 MAP3K7 MAP3K7 10070 -0.042 0.39 NO
57 PSMD10 PSMD10 PSMD10 10088 -0.042 0.4 NO
58 SKP1 SKP1 SKP1 10134 -0.043 0.4 NO
59 CUL1 CUL1 CUL1 11500 -0.073 0.34 NO
60 FBXW11 FBXW11 FBXW11 11763 -0.08 0.34 NO
61 REL REL REL 12049 -0.087 0.34 NO

Figure S7.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION.

Figure S8.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG CHEMOKINE SIGNALING PATHWAY

Table S5.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 HK3 HK3 HK3 12 0.85 0.12 YES
2 GFPT2 GFPT2 GFPT2 107 0.66 0.21 YES
3 NPL NPL NPL 141 0.63 0.3 YES
4 RENBP RENBP RENBP 316 0.54 0.37 YES
5 UAP1 UAP1 UAP1 1021 0.33 0.38 YES
6 UGDH UGDH UGDH 1251 0.3 0.41 YES
7 NANS NANS NANS 1538 0.26 0.43 YES
8 AMDHD2 AMDHD2 AMDHD2 1843 0.22 0.44 YES
9 PMM2 PMM2 PMM2 2070 0.2 0.46 YES
10 GALK1 GALK1 GALK1 2153 0.19 0.48 YES
11 HK2 HK2 HK2 2260 0.18 0.5 YES
12 HEXA HEXA HEXA 2364 0.18 0.52 YES
13 CHIT1 CHIT1 CHIT1 2379 0.18 0.55 YES
14 GNPNAT1 GNPNAT1 GNPNAT1 2517 0.17 0.56 YES
15 NAGK NAGK NAGK 2711 0.16 0.58 YES
16 PGM3 PGM3 PGM3 2800 0.15 0.59 YES
17 GMPPA GMPPA GMPPA 3339 0.12 0.58 NO
18 GMPPB GMPPB GMPPB 4037 0.098 0.56 NO
19 GALE GALE GALE 4055 0.097 0.57 NO
20 HEXB HEXB HEXB 4126 0.096 0.58 NO
21 UGP2 UGP2 UGP2 4860 0.073 0.55 NO
22 GMDS GMDS GMDS 5874 0.047 0.5 NO
23 PMM1 PMM1 PMM1 5973 0.045 0.5 NO
24 HK1 HK1 HK1 6018 0.044 0.51 NO
25 UXS1 UXS1 UXS1 6295 0.038 0.5 NO
26 GALK2 GALK2 GALK2 6664 0.03 0.48 NO
27 GNPDA1 GNPDA1 GNPDA1 6692 0.03 0.48 NO
28 CYB5R3 CYB5R3 CYB5R3 7025 0.022 0.47 NO
29 NANP NANP NANP 7335 0.016 0.45 NO
30 TSTA3 TSTA3 TSTA3 7838 0.0049 0.43 NO
31 GFPT1 GFPT1 GFPT1 7878 0.0038 0.42 NO
32 PGM1 PGM1 PGM1 7991 0.0016 0.42 NO
33 GPI GPI GPI 8309 -0.0047 0.4 NO
34 CYB5R1 CYB5R1 CYB5R1 9470 -0.03 0.34 NO
35 GNE GNE GNE 10331 -0.047 0.3 NO
36 MPI MPI MPI 10433 -0.049 0.3 NO
37 FPGT FPGT FPGT 11034 -0.063 0.28 NO
38 FUK FUK FUK 11106 -0.064 0.28 NO
39 CMAS CMAS CMAS 11187 -0.066 0.29 NO
40 GALT GALT GALT 11730 -0.079 0.27 NO
41 GNPDA2 GNPDA2 GNPDA2 12000 -0.086 0.27 NO
42 PGM2 PGM2 PGM2 12637 -0.1 0.25 NO
43 GCK GCK GCK 17130 -0.4 0.057 NO

Figure S9.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG CHEMOKINE SIGNALING PATHWAY.

Figure S10.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG CHEMOKINE SIGNALING PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG LYSOSOME

Table S6.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CD68 CD68 CD68 300 0.55 0.014 YES
2 CTSW CTSW CTSW 326 0.54 0.042 YES
3 LAPTM5 LAPTM5 LAPTM5 496 0.48 0.059 YES
4 CTSS CTSS CTSS 506 0.47 0.084 YES
5 CTSC CTSC CTSC 526 0.46 0.11 YES
6 ACP5 ACP5 ACP5 633 0.43 0.13 YES
7 PLA2G15 PLA2G15 PLA2G15 849 0.37 0.14 YES
8 FUCA1 FUCA1 FUCA1 946 0.35 0.15 YES
9 SLC11A1 SLC11A1 SLC11A1 963 0.35 0.17 YES
10 LGMN LGMN LGMN 975 0.34 0.19 YES
11 LAMP3 LAMP3 LAMP3 1103 0.32 0.2 YES
12 CTSZ CTSZ CTSZ 1292 0.29 0.2 YES
13 NAPSA NAPSA NAPSA 1512 0.26 0.2 YES
14 NAGPA NAGPA NAGPA 1567 0.25 0.22 YES
15 ATP6V0D2 ATP6V0D2 ATP6V0D2 1577 0.25 0.23 YES
16 CTSL1 CTSL1 CTSL1 1581 0.25 0.24 YES
17 NPC2 NPC2 NPC2 1669 0.24 0.25 YES
18 LIPA LIPA LIPA 1686 0.24 0.26 YES
19 GALC GALC GALC 1699 0.24 0.28 YES
20 CTSH CTSH CTSH 1729 0.24 0.29 YES
21 CTSB CTSB CTSB 1800 0.23 0.3 YES
22 MANBA MANBA MANBA 1966 0.21 0.3 YES
23 ACP2 ACP2 ACP2 2045 0.2 0.31 YES
24 CTSD CTSD CTSD 2114 0.2 0.31 YES
25 MAN2B1 MAN2B1 MAN2B1 2182 0.19 0.32 YES
26 IDUA IDUA IDUA 2203 0.19 0.33 YES
27 GLA GLA GLA 2257 0.18 0.34 YES
28 ARSA ARSA ARSA 2337 0.18 0.34 YES
29 HEXA HEXA HEXA 2364 0.18 0.35 YES
30 GALNS GALNS GALNS 2369 0.18 0.36 YES
31 CTNS CTNS CTNS 2376 0.18 0.37 YES
32 CTSA CTSA CTSA 2378 0.18 0.38 YES
33 NEU1 NEU1 NEU1 2489 0.17 0.38 YES
34 MCOLN1 MCOLN1 MCOLN1 2496 0.17 0.39 YES
35 AP1B1 AP1B1 AP1B1 2551 0.17 0.4 YES
36 SLC17A5 SLC17A5 SLC17A5 2618 0.16 0.4 YES
37 TCIRG1 TCIRG1 TCIRG1 2632 0.16 0.41 YES
38 PSAP PSAP PSAP 2687 0.16 0.42 YES
39 ATP6V0B ATP6V0B ATP6V0B 2763 0.15 0.42 YES
40 CTSG CTSG CTSG 2888 0.15 0.42 YES
41 NAGLU NAGLU NAGLU 2929 0.14 0.43 YES
42 ATP6V0D1 ATP6V0D1 ATP6V0D1 3016 0.14 0.43 YES
43 GNPTAB GNPTAB GNPTAB 3042 0.14 0.44 YES
44 TPP1 TPP1 TPP1 3125 0.13 0.44 YES
45 SMPD1 SMPD1 SMPD1 3250 0.13 0.44 YES
46 HYAL1 HYAL1 HYAL1 3295 0.13 0.44 YES
47 GBA GBA GBA 3297 0.13 0.45 YES
48 ATP6V0C ATP6V0C ATP6V0C 3335 0.12 0.46 YES
49 CLTA CLTA CLTA 3356 0.12 0.46 YES
50 DNASE2B DNASE2B DNASE2B 3366 0.12 0.47 YES
51 NAGA NAGA NAGA 3368 0.12 0.48 YES
52 CD63 CD63 CD63 3394 0.12 0.48 YES
53 ATP6AP1 ATP6AP1 ATP6AP1 3421 0.12 0.48 YES
54 GLB1 GLB1 GLB1 3531 0.12 0.48 YES
55 DNASE2 DNASE2 DNASE2 3548 0.11 0.49 YES
56 ASAH1 ASAH1 ASAH1 3584 0.11 0.5 YES
57 GNPTG GNPTG GNPTG 3596 0.11 0.5 YES
58 AP3S1 AP3S1 AP3S1 3658 0.11 0.5 YES
59 LAMP1 LAMP1 LAMP1 3680 0.11 0.51 YES
60 LAMP2 LAMP2 LAMP2 3694 0.11 0.51 YES
61 SGSH SGSH SGSH 3742 0.11 0.52 YES
62 GM2A GM2A GM2A 3748 0.11 0.52 YES
63 CLN3 CLN3 CLN3 3957 0.1 0.52 NO
64 HEXB HEXB HEXB 4126 0.096 0.51 NO
65 CTSO CTSO CTSO 4237 0.092 0.51 NO
66 SUMF1 SUMF1 SUMF1 4295 0.09 0.51 NO
67 GAA GAA GAA 4573 0.08 0.5 NO
68 GNS GNS GNS 4705 0.077 0.5 NO
69 M6PR M6PR M6PR 4724 0.077 0.5 NO
70 LAPTM4A LAPTM4A LAPTM4A 4841 0.074 0.5 NO
71 AGA AGA AGA 4850 0.073 0.5 NO
72 GUSB GUSB GUSB 4874 0.073 0.51 NO
73 AP1S1 AP1S1 AP1S1 4967 0.07 0.5 NO
74 AP1M1 AP1M1 AP1M1 5145 0.066 0.5 NO
75 CLTB CLTB CLTB 5236 0.063 0.5 NO
76 GGA3 GGA3 GGA3 5385 0.06 0.49 NO
77 ATP6V0A2 ATP6V0A2 ATP6V0A2 5612 0.054 0.48 NO
78 IGF2R IGF2R IGF2R 5823 0.048 0.47 NO
79 AP4B1 AP4B1 AP4B1 5956 0.046 0.47 NO
80 CD164 CD164 CD164 5962 0.046 0.47 NO
81 AP1S2 AP1S2 AP1S2 6397 0.036 0.45 NO
82 CLTC CLTC CLTC 6567 0.032 0.44 NO
83 CLN5 CLN5 CLN5 6629 0.031 0.44 NO
84 PPT1 PPT1 PPT1 6822 0.027 0.43 NO
85 SCARB2 SCARB2 SCARB2 6856 0.026 0.43 NO
86 AP3B1 AP3B1 AP3B1 7139 0.02 0.42 NO
87 GGA2 GGA2 GGA2 7261 0.018 0.41 NO
88 GGA1 GGA1 GGA1 7500 0.013 0.4 NO
89 NPC1 NPC1 NPC1 7544 0.012 0.4 NO
90 IDS IDS IDS 7889 0.0036 0.38 NO
91 AP1G1 AP1G1 AP1G1 7952 0.0023 0.37 NO
92 AP3M1 AP3M1 AP3M1 8567 -0.011 0.34 NO
93 AP4E1 AP4E1 AP4E1 8738 -0.014 0.33 NO
94 AP1S3 AP1S3 AP1S3 8767 -0.015 0.33 NO
95 AP3D1 AP3D1 AP3D1 8783 -0.015 0.33 NO
96 CLTCL1 CLTCL1 CLTCL1 9075 -0.022 0.32 NO
97 ATP6V0A1 ATP6V0A1 ATP6V0A1 9091 -0.022 0.32 NO
98 AP3S2 AP3S2 AP3S2 9312 -0.027 0.31 NO
99 AP4M1 AP4M1 AP4M1 9734 -0.035 0.28 NO
100 CTSK CTSK CTSK 9795 -0.036 0.28 NO
101 PPT2 PPT2 PPT2 10147 -0.043 0.27 NO
102 SLC11A2 SLC11A2 SLC11A2 10155 -0.043 0.27 NO
103 MFSD8 MFSD8 MFSD8 10714 -0.055 0.24 NO
104 ENTPD4 ENTPD4 ENTPD4 10744 -0.056 0.24 NO
105 AP4S1 AP4S1 AP4S1 10772 -0.056 0.24 NO
106 HGSNAT HGSNAT HGSNAT 10816 -0.058 0.24 NO
107 CTSE CTSE CTSE 11146 -0.065 0.23 NO
108 LAPTM4B LAPTM4B LAPTM4B 11201 -0.066 0.23 NO
109 ATP6V1H ATP6V1H ATP6V1H 11496 -0.073 0.22 NO
110 AP3M2 AP3M2 AP3M2 11667 -0.077 0.21 NO
111 ARSG ARSG ARSG 11793 -0.08 0.21 NO
112 ARSB ARSB ARSB 12401 -0.097 0.18 NO
113 CTSF CTSF CTSF 13250 -0.12 0.14 NO
114 ABCA2 ABCA2 ABCA2 13782 -0.14 0.12 NO
115 AP1M2 AP1M2 AP1M2 15001 -0.2 0.064 NO
116 ABCB9 ABCB9 ABCB9 15386 -0.23 0.056 NO
117 ATP6V0A4 ATP6V0A4 ATP6V0A4 15843 -0.26 0.044 NO
118 SORT1 SORT1 SORT1 16514 -0.32 0.025 NO
119 AP3B2 AP3B2 AP3B2 17613 -0.51 -0.008 NO
120 CTSL2 CTSL2 CTSL2 18037 -0.7 0.0073 NO

Figure S11.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG LYSOSOME.

Figure S12.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG LYSOSOME, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG APOPTOSIS

Table S7.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PSMB9 PSMB9 PSMB9 1057 0.33 0.0003 YES
2 PSMB10 PSMB10 PSMB10 1128 0.32 0.053 YES
3 TNFSF13 TNFSF13 TNFSF13 1579 0.25 0.074 YES
4 PSMB8 PSMB8 PSMB8 2232 0.19 0.071 YES
5 PSMA8 PSMA8 PSMA8 2349 0.18 0.097 YES
6 PSME2 PSME2 PSME2 2662 0.16 0.11 YES
7 EXOSC1 EXOSC1 EXOSC1 3087 0.14 0.11 YES
8 PSMC1 PSMC1 PSMC1 3141 0.13 0.13 YES
9 PSMB6 PSMB6 PSMB6 3312 0.12 0.14 YES
10 EXOSC5 EXOSC5 EXOSC5 3318 0.12 0.16 YES
11 PSMD13 PSMD13 PSMD13 3578 0.11 0.17 YES
12 PSMB7 PSMB7 PSMB7 3761 0.11 0.18 YES
13 EXOSC7 EXOSC7 EXOSC7 3769 0.11 0.2 YES
14 PSMB3 PSMB3 PSMB3 3831 0.1 0.22 YES
15 PSMA6 PSMA6 PSMA6 3864 0.1 0.23 YES
16 PSMA7 PSMA7 PSMA7 3902 0.1 0.25 YES
17 PSME1 PSME1 PSME1 3964 0.1 0.26 YES
18 EXOSC4 EXOSC4 EXOSC4 3966 0.1 0.28 YES
19 PSMA5 PSMA5 PSMA5 4193 0.093 0.28 YES
20 PSMA2 PSMA2 PSMA2 4238 0.092 0.3 YES
21 PSMB2 PSMB2 PSMB2 4344 0.088 0.31 YES
22 PSMD14 PSMD14 PSMD14 4517 0.082 0.31 YES
23 PSMA1 PSMA1 PSMA1 4550 0.081 0.33 YES
24 PSMC4 PSMC4 PSMC4 4588 0.08 0.34 YES
25 UBA52 UBA52 UBA52 4613 0.079 0.35 YES
26 PSMC2 PSMC2 PSMC2 4628 0.079 0.36 YES
27 ZFP36 ZFP36 ZFP36 4640 0.079 0.38 YES
28 PSMA3 PSMA3 PSMA3 4730 0.076 0.39 YES
29 PSMB1 PSMB1 PSMB1 4783 0.075 0.4 YES
30 YWHAB YWHAB YWHAB 4958 0.07 0.4 YES
31 PSMD7 PSMD7 PSMD7 4966 0.07 0.41 YES
32 PSMC3 PSMC3 PSMC3 5066 0.068 0.42 YES
33 PSMC5 PSMC5 PSMC5 5078 0.067 0.43 YES
34 PSMA4 PSMA4 PSMA4 5165 0.065 0.44 YES
35 HSPA1B HSPA1B HSPA1B 5192 0.064 0.45 YES
36 PSMD9 PSMD9 PSMD9 5262 0.062 0.46 YES
37 EXOSC6 EXOSC6 EXOSC6 5286 0.062 0.47 YES
38 PSMD8 PSMD8 PSMD8 5360 0.06 0.47 YES
39 PSMD12 PSMD12 PSMD12 5434 0.058 0.48 YES
40 PRKCD PRKCD PRKCD 5824 0.048 0.47 YES
41 PSMD3 PSMD3 PSMD3 5875 0.047 0.47 YES
42 PSMD4 PSMD4 PSMD4 5948 0.046 0.48 YES
43 EXOSC3 EXOSC3 EXOSC3 6086 0.042 0.48 YES
44 PSMB5 PSMB5 PSMB5 6231 0.039 0.48 YES
45 PSMB4 PSMB4 PSMB4 6434 0.035 0.47 YES
46 RPS27A RPS27A RPS27A 6457 0.035 0.48 YES
47 PSMD2 PSMD2 PSMD2 6470 0.034 0.48 YES
48 MAPKAPK2 MAPKAPK2 MAPKAPK2 6672 0.03 0.48 NO
49 PRKCA PRKCA PRKCA 6690 0.03 0.48 NO
50 EXOSC8 EXOSC8 EXOSC8 6764 0.028 0.48 NO
51 PABPC1 PABPC1 PABPC1 6931 0.024 0.48 NO
52 PSMD11 PSMD11 PSMD11 7009 0.022 0.48 NO
53 ZFP36L1 ZFP36L1 ZFP36L1 7152 0.019 0.47 NO
54 PSMD1 PSMD1 PSMD1 7278 0.017 0.47 NO
55 MAPK14 MAPK14 MAPK14 7518 0.012 0.46 NO
56 PSMD5 PSMD5 PSMD5 7634 0.0097 0.45 NO
57 EIF4G1 EIF4G1 EIF4G1 7668 0.0087 0.45 NO
58 DCP2 DCP2 DCP2 7705 0.0078 0.45 NO
59 PSMF1 PSMF1 PSMF1 7810 0.0055 0.45 NO
60 HSPA8 HSPA8 HSPA8 7890 0.0036 0.44 NO
61 PSMD6 PSMD6 PSMD6 7915 0.0031 0.44 NO
62 PSMC6 PSMC6 PSMC6 7969 0.0021 0.44 NO
63 EXOSC9 EXOSC9 EXOSC9 8376 -0.0063 0.42 NO
64 EXOSC2 EXOSC2 EXOSC2 8425 -0.0072 0.42 NO
65 HNRNPD HNRNPD HNRNPD 8514 -0.0093 0.41 NO
66 AKT1 AKT1 AKT1 8693 -0.013 0.41 NO
67 PARN PARN PARN 8958 -0.019 0.4 NO
68 XRN1 XRN1 XRN1 8967 -0.019 0.4 NO
69 TNPO1 TNPO1 TNPO1 9232 -0.025 0.39 NO
70 ANP32A ANP32A ANP32A 9236 -0.025 0.39 NO
71 PSME4 PSME4 PSME4 9281 -0.026 0.39 NO
72 NUP214 NUP214 NUP214 9284 -0.026 0.4 NO
73 ELAVL1 ELAVL1 ELAVL1 9371 -0.028 0.4 NO
74 KHSRP KHSRP KHSRP 9645 -0.033 0.39 NO
75 YWHAZ YWHAZ YWHAZ 9716 -0.034 0.39 NO
76 PSMD10 PSMD10 PSMD10 10088 -0.042 0.38 NO
77 HSPB1 HSPB1 HSPB1 10558 -0.051 0.36 NO
78 DIS3 DIS3 DIS3 10855 -0.058 0.36 NO
79 XPO1 XPO1 XPO1 11433 -0.071 0.34 NO
80 MAPK11 MAPK11 MAPK11 11460 -0.072 0.35 NO
81 DCP1A DCP1A DCP1A 13191 -0.12 0.28 NO

Figure S13.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG APOPTOSIS.

Figure S14.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG APOPTOSIS, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG COMPLEMENT AND COAGULATION CASCADES

Table S8.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PSMB9 PSMB9 PSMB9 1057 0.33 0.027 YES
2 PSMB10 PSMB10 PSMB10 1128 0.32 0.11 YES
3 PSMB8 PSMB8 PSMB8 2232 0.19 0.094 YES
4 PSMA8 PSMA8 PSMA8 2349 0.18 0.14 YES
5 PSME2 PSME2 PSME2 2662 0.16 0.16 YES
6 PSMC1 PSMC1 PSMC1 3141 0.13 0.17 YES
7 PSMB6 PSMB6 PSMB6 3312 0.12 0.19 YES
8 PSMD13 PSMD13 PSMD13 3578 0.11 0.21 YES
9 PSMB7 PSMB7 PSMB7 3761 0.11 0.22 YES
10 PSMB3 PSMB3 PSMB3 3831 0.1 0.25 YES
11 PSMA6 PSMA6 PSMA6 3864 0.1 0.27 YES
12 PSMA7 PSMA7 PSMA7 3902 0.1 0.3 YES
13 PSME1 PSME1 PSME1 3964 0.1 0.32 YES
14 PSMA5 PSMA5 PSMA5 4193 0.093 0.33 YES
15 PSMA2 PSMA2 PSMA2 4238 0.092 0.35 YES
16 PSMB2 PSMB2 PSMB2 4344 0.088 0.37 YES
17 PSMD14 PSMD14 PSMD14 4517 0.082 0.38 YES
18 PSMA1 PSMA1 PSMA1 4550 0.081 0.4 YES
19 PSMC4 PSMC4 PSMC4 4588 0.08 0.42 YES
20 UBA52 UBA52 UBA52 4613 0.079 0.44 YES
21 PSMC2 PSMC2 PSMC2 4628 0.079 0.46 YES
22 PSMA3 PSMA3 PSMA3 4730 0.076 0.48 YES
23 PSMB1 PSMB1 PSMB1 4783 0.075 0.49 YES
24 PSMD7 PSMD7 PSMD7 4966 0.07 0.5 YES
25 PSMC3 PSMC3 PSMC3 5066 0.068 0.51 YES
26 PSMC5 PSMC5 PSMC5 5078 0.067 0.53 YES
27 PSMA4 PSMA4 PSMA4 5165 0.065 0.54 YES
28 PSMD9 PSMD9 PSMD9 5262 0.062 0.55 YES
29 PSMD8 PSMD8 PSMD8 5360 0.06 0.56 YES
30 PSMD12 PSMD12 PSMD12 5434 0.058 0.58 YES
31 PSMD3 PSMD3 PSMD3 5875 0.047 0.56 YES
32 PSMD4 PSMD4 PSMD4 5948 0.046 0.57 YES
33 PSMB5 PSMB5 PSMB5 6231 0.039 0.57 YES
34 PSMB4 PSMB4 PSMB4 6434 0.035 0.56 YES
35 RPS27A RPS27A RPS27A 6457 0.035 0.57 YES
36 PSMD2 PSMD2 PSMD2 6470 0.034 0.58 YES
37 PSMD11 PSMD11 PSMD11 7009 0.022 0.56 NO
38 PSMD1 PSMD1 PSMD1 7278 0.017 0.55 NO
39 PSMD5 PSMD5 PSMD5 7634 0.0097 0.53 NO
40 RFWD2 RFWD2 RFWD2 7693 0.008 0.53 NO
41 PSMF1 PSMF1 PSMF1 7810 0.0055 0.52 NO
42 PSMD6 PSMD6 PSMD6 7915 0.0031 0.52 NO
43 PSMC6 PSMC6 PSMC6 7969 0.0021 0.52 NO
44 TP53 TP53 TP53 8862 -0.017 0.47 NO
45 PSME4 PSME4 PSME4 9281 -0.026 0.46 NO
46 PSMD10 PSMD10 PSMD10 10088 -0.042 0.42 NO
47 ATM ATM ATM 12243 -0.093 0.33 NO

Figure S15.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG COMPLEMENT AND COAGULATION CASCADES.

Figure S16.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG COMPLEMENT AND COAGULATION CASCADES, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG ANTIGEN PROCESSING AND PRESENTATION

Table S9.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 NCF1 NCF1 NCF1 28 0.78 0.039 YES
2 VAV1 VAV1 VAV1 42 0.76 0.078 YES
3 FCGR1A FCGR1A FCGR1A 53 0.74 0.12 YES
4 HCK HCK HCK 90 0.68 0.15 YES
5 WAS WAS WAS 104 0.66 0.18 YES
6 PIK3R5 PIK3R5 PIK3R5 242 0.57 0.2 YES
7 FCGR2B FCGR2B FCGR2B 245 0.57 0.24 YES
8 FCGR2C FCGR2C FCGR2C 276 0.56 0.26 YES
9 SYK SYK SYK 323 0.54 0.29 YES
10 DOCK2 DOCK2 DOCK2 335 0.53 0.32 YES
11 FCGR3A FCGR3A FCGR3A 340 0.53 0.34 YES
12 RAC2 RAC2 RAC2 371 0.52 0.37 YES
13 PIK3CG PIK3CG PIK3CG 421 0.5 0.39 YES
14 PTPRC PTPRC PTPRC 505 0.47 0.41 YES
15 FCGR2A FCGR2A FCGR2A 516 0.47 0.44 YES
16 INPP5D INPP5D INPP5D 650 0.43 0.45 YES
17 PIK3CD PIK3CD PIK3CD 717 0.41 0.47 YES
18 ASAP3 ASAP3 ASAP3 774 0.4 0.48 YES
19 LYN LYN LYN 877 0.36 0.5 YES
20 DNM1 DNM1 DNM1 921 0.35 0.51 YES
21 SCIN SCIN SCIN 1300 0.29 0.51 YES
22 ARPC1B ARPC1B ARPC1B 1349 0.28 0.52 YES
23 LIMK1 LIMK1 LIMK1 1372 0.28 0.53 YES
24 SPHK1 SPHK1 SPHK1 1380 0.28 0.55 YES
25 PLCG2 PLCG2 PLCG2 1455 0.27 0.56 YES
26 LAT LAT LAT 1531 0.26 0.57 YES
27 PRKCB PRKCB PRKCB 1564 0.26 0.58 YES
28 MARCKS MARCKS MARCKS 1665 0.24 0.59 YES
29 PLA2G4A PLA2G4A PLA2G4A 2139 0.19 0.57 NO
30 ARPC3 ARPC3 ARPC3 2700 0.16 0.55 NO
31 PPAP2B PPAP2B PPAP2B 3258 0.13 0.52 NO
32 ARPC5L ARPC5L ARPC5L 3587 0.11 0.51 NO
33 ARF6 ARF6 ARF6 3790 0.11 0.5 NO
34 CDC42 CDC42 CDC42 3914 0.1 0.5 NO
35 ARPC4 ARPC4 ARPC4 4140 0.095 0.5 NO
36 CFL1 CFL1 CFL1 4232 0.092 0.5 NO
37 MAPK3 MAPK3 MAPK3 4418 0.086 0.49 NO
38 ARPC2 ARPC2 ARPC2 4650 0.078 0.48 NO
39 RAC1 RAC1 RAC1 5148 0.066 0.46 NO
40 RPS6KB2 RPS6KB2 RPS6KB2 5314 0.061 0.45 NO
41 PLD2 PLD2 PLD2 5317 0.061 0.45 NO
42 DNM2 DNM2 DNM2 5530 0.056 0.44 NO
43 ARPC5 ARPC5 ARPC5 5621 0.054 0.44 NO
44 SPHK2 SPHK2 SPHK2 5714 0.051 0.44 NO
45 PRKCD PRKCD PRKCD 5824 0.048 0.44 NO
46 PAK1 PAK1 PAK1 5827 0.048 0.44 NO
47 VAV3 VAV3 VAV3 6112 0.042 0.43 NO
48 MAP2K1 MAP2K1 MAP2K1 6279 0.038 0.42 NO
49 PRKCA PRKCA PRKCA 6690 0.03 0.4 NO
50 ARPC1A ARPC1A ARPC1A 6799 0.027 0.39 NO
51 PLD1 PLD1 PLD1 7035 0.022 0.38 NO
52 ASAP2 ASAP2 ASAP2 7207 0.018 0.37 NO
53 PIK3R2 PIK3R2 PIK3R2 7228 0.018 0.37 NO
54 CRK CRK CRK 7334 0.016 0.37 NO
55 WASF3 WASF3 WASF3 7676 0.0084 0.35 NO
56 ASAP1 ASAP1 ASAP1 7756 0.0068 0.34 NO
57 WASL WASL WASL 8529 -0.0097 0.3 NO
58 PRKCE PRKCE PRKCE 8639 -0.012 0.3 NO
59 AKT1 AKT1 AKT1 8693 -0.013 0.3 NO
60 CRKL CRKL CRKL 8717 -0.014 0.3 NO
61 AKT2 AKT2 AKT2 8801 -0.016 0.29 NO
62 MAPK1 MAPK1 MAPK1 9010 -0.02 0.28 NO
63 RPS6KB1 RPS6KB1 RPS6KB1 9018 -0.02 0.28 NO
64 WASF2 WASF2 WASF2 9110 -0.022 0.28 NO
65 PIP5K1C PIP5K1C PIP5K1C 9277 -0.026 0.27 NO
66 RAF1 RAF1 RAF1 9695 -0.034 0.25 NO
67 VASP VASP VASP 9737 -0.035 0.25 NO
68 GSN GSN GSN 9825 -0.036 0.24 NO
69 VAV2 VAV2 VAV2 10090 -0.042 0.23 NO
70 PIK3CB PIK3CB PIK3CB 10663 -0.054 0.2 NO
71 PIK3CA PIK3CA PIK3CA 11114 -0.064 0.18 NO
72 LIMK2 LIMK2 LIMK2 11124 -0.065 0.18 NO
73 GAB2 GAB2 GAB2 11271 -0.068 0.18 NO
74 PPAP2A PPAP2A PPAP2A 11624 -0.076 0.16 NO
75 MYO10 MYO10 MYO10 11870 -0.082 0.16 NO
76 PIP4K2B PIP4K2B PIP4K2B 12220 -0.092 0.14 NO
77 PLCG1 PLCG1 PLCG1 12294 -0.094 0.14 NO
78 DNM1L DNM1L DNM1L 12678 -0.1 0.13 NO
79 PIP5K1A PIP5K1A PIP5K1A 13020 -0.12 0.11 NO
80 MARCKSL1 MARCKSL1 MARCKSL1 13045 -0.12 0.12 NO
81 PIKFYVE PIKFYVE PIKFYVE 13061 -0.12 0.12 NO
82 PIK3R1 PIK3R1 PIK3R1 13707 -0.14 0.095 NO
83 PIK3R3 PIK3R3 PIK3R3 13972 -0.15 0.089 NO
84 AMPH AMPH AMPH 14148 -0.16 0.087 NO
85 PLA2G6 PLA2G6 PLA2G6 14356 -0.17 0.085 NO
86 WASF1 WASF1 WASF1 14846 -0.2 0.068 NO
87 PLA2G4F PLA2G4F PLA2G4F 15047 -0.21 0.068 NO
88 PLA2G4D PLA2G4D PLA2G4D 15401 -0.23 0.06 NO
89 CFL2 CFL2 CFL2 15459 -0.23 0.069 NO
90 PPAP2C PPAP2C PPAP2C 16151 -0.29 0.045 NO
91 DNM3 DNM3 DNM3 16170 -0.29 0.059 NO
92 PRKCG PRKCG PRKCG 16183 -0.29 0.074 NO
93 AKT3 AKT3 AKT3 16353 -0.3 0.08 NO
94 PIP5K1B PIP5K1B PIP5K1B 17104 -0.39 0.059 NO

Figure S17.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG ANTIGEN PROCESSING AND PRESENTATION.

Figure S18.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG ANTIGEN PROCESSING AND PRESENTATION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY

Table S10.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 IKBKE IKBKE IKBKE 1399 0.28 0.034 YES
2 ISG15 ISG15 ISG15 1585 0.25 0.12 YES
3 RNF125 RNF125 RNF125 1849 0.22 0.2 YES
4 UBE2L6 UBE2L6 UBE2L6 1931 0.21 0.28 YES
5 TRAF3 TRAF3 TRAF3 2194 0.19 0.34 YES
6 NLRC5 NLRC5 NLRC5 2530 0.17 0.39 YES
7 UBE2D1 UBE2D1 UBE2D1 3151 0.13 0.41 YES
8 TNFAIP3 TNFAIP3 TNFAIP3 3353 0.12 0.45 YES
9 RNF135 RNF135 RNF135 3798 0.11 0.46 YES
10 IRF3 IRF3 IRF3 4063 0.097 0.49 YES
11 UBA7 UBA7 UBA7 4074 0.097 0.53 YES
12 IFIH1 IFIH1 IFIH1 4109 0.096 0.56 YES
13 UBA52 UBA52 UBA52 4613 0.079 0.57 YES
14 OTUD5 OTUD5 OTUD5 6401 0.036 0.48 NO
15 RPS27A RPS27A RPS27A 6457 0.035 0.49 NO
16 ATG5 ATG5 ATG5 6699 0.03 0.49 NO
17 UBE2D3 UBE2D3 UBE2D3 6738 0.029 0.5 NO
18 TRIM25 TRIM25 TRIM25 6806 0.027 0.51 NO
19 PCBP2 PCBP2 PCBP2 7316 0.016 0.49 NO
20 ATG12 ATG12 ATG12 7322 0.016 0.49 NO
21 TBK1 TBK1 TBK1 7961 0.0022 0.46 NO
22 DDX58 DDX58 DDX58 8430 -0.0074 0.44 NO
23 UBE2K UBE2K UBE2K 8460 -0.008 0.44 NO
24 UBE2D2 UBE2D2 UBE2D2 8510 -0.0092 0.44 NO
25 CYLD CYLD CYLD 8550 -0.01 0.44 NO
26 TAX1BP1 TAX1BP1 TAX1BP1 8975 -0.019 0.43 NO
27 PIN1 PIN1 PIN1 9139 -0.023 0.43 NO
28 MAVS MAVS MAVS 9533 -0.031 0.42 NO
29 NLRX1 NLRX1 NLRX1 9615 -0.032 0.42 NO
30 HERC5 HERC5 HERC5 12957 -0.12 0.29 NO

Figure S19.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY.

Figure S20.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

Fold change

For the top enriched genes, if you want to check whether they are

Expression level

For the top enriched genes, if you want to check whether they are

An expression pattern of top(30%)/middle(30%)/low(30%) in this subtype against other subtypes is available in a heatmap

Significant gene list

For the top enriched genes, if you want to check whether they are

Subtype clus2 enriched pathways

Table 4.  Get Full Table This table shows top 10 pathways which are significantly enriched in cluster clus2. It displays only significant gene sets satisfying nom.p.val.threshold (-1), fwer.p.val.threshold (-1) , fdr.q.val.threshold (0.25) and the default table is sorted by Normalized Enrichment Score (NES). Further details on NES statistics, please visit The Broad GSEA website.

GeneSet(GS) Size(#genes) genes.ES.table ES NES NOM.p.val FDR.q.val FWER.p.val Tag.. Gene.. Signal FDR..median. glob.p.val
KEGG LYSINE DEGRADATION 44 genes.ES.table 0.47 1.8 0.004 0.68 0.54 0.46 0.29 0.32 0.23 0.16
KEGG PROPANOATE METABOLISM 32 genes.ES.table 0.52 1.7 0.016 0.76 0.76 0.53 0.32 0.36 0.34 0.21
KEGG BUTANOATE METABOLISM 31 genes.ES.table 0.64 1.8 0.0042 0.68 0.62 0.52 0.24 0.39 0.25 0.17
KEGG VASCULAR SMOOTH MUSCLE CONTRACTION 107 genes.ES.table 0.52 1.7 0.0042 0.73 0.87 0.21 0.068 0.19 0.4 0.22
KEGG INSULIN SIGNALING PATHWAY 131 genes.ES.table 0.37 1.5 0.028 0.93 0.98 0.33 0.24 0.25 0.67 0.32
BIOCARTA BIOPEPTIDES PATHWAY 40 genes.ES.table 0.45 1.6 0.018 0.86 0.93 0.2 0.16 0.17 0.53 0.28
BIOCARTA INTEGRIN PATHWAY 38 genes.ES.table 0.54 1.9 0.0063 0.69 0.43 0.34 0.2 0.28 0 0.16
BIOCARTA MYOSIN PATHWAY 29 genes.ES.table 0.54 1.7 0.01 0.75 0.83 0.24 0.11 0.22 0.38 0.22
BIOCARTA RHO PATHWAY 32 genes.ES.table 0.49 1.8 0.011 0.63 0.67 0.34 0.17 0.28 0.24 0.16
SIG REGULATION OF THE ACTIN CYTOSKELETON BY RHO GTPASES 35 genes.ES.table 0.5 1.6 0.033 0.77 0.93 0.4 0.17 0.33 0.48 0.24
genes ES table in pathway: KEGG LYSINE DEGRADATION

Table S11.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 SLC2A4 SLC2A4 SLC2A4 563 0.56 0.12 YES
2 AKT3 AKT3 AKT3 1071 0.41 0.2 YES
3 SRC SRC SRC 1417 0.35 0.28 YES
4 RICTOR RICTOR RICTOR 2160 0.26 0.3 YES
5 CDKN1B CDKN1B CDKN1B 2973 0.19 0.31 YES
6 YWHAH YWHAH YWHAH 3121 0.18 0.35 YES
7 PDPK1 PDPK1 PDPK1 3904 0.14 0.34 YES
8 MAP3K5 MAP3K5 MAP3K5 3920 0.14 0.38 YES
9 FOXO1 FOXO1 FOXO1 4369 0.12 0.39 YES
10 FOXO4 FOXO4 FOXO4 4482 0.11 0.41 YES
11 KPNA1 KPNA1 KPNA1 4697 0.11 0.43 YES
12 GSK3B GSK3B GSK3B 4983 0.097 0.44 YES
13 PRKDC PRKDC PRKDC 5541 0.079 0.43 YES
14 PRKACA PRKACA PRKACA 5608 0.077 0.45 YES
15 CDKN1A CDKN1A CDKN1A 6033 0.065 0.44 NO
16 RAF1 RAF1 RAF1 6405 0.055 0.44 NO
17 YWHAZ YWHAZ YWHAZ 6632 0.048 0.44 NO
18 BAD BAD BAD 7465 0.027 0.4 NO
19 AKT1 AKT1 AKT1 7885 0.017 0.38 NO
20 YWHAQ YWHAQ YWHAQ 7967 0.015 0.38 NO
21 MAPKAP1 MAPKAP1 MAPKAP1 8468 0.0032 0.35 NO
22 GSK3A GSK3A GSK3A 8525 0.002 0.35 NO
23 MTOR MTOR MTOR 8911 -0.0068 0.33 NO
24 HSP90AA1 HSP90AA1 HSP90AA1 8940 -0.0074 0.33 NO
25 FOXO3 FOXO3 FOXO3 9240 -0.014 0.32 NO
26 SFN SFN SFN 9396 -0.018 0.32 NO
27 BCL2L1 BCL2L1 BCL2L1 9622 -0.023 0.31 NO
28 AKT2 AKT2 AKT2 9930 -0.03 0.3 NO
29 YWHAG YWHAG YWHAG 9938 -0.031 0.31 NO
30 YWHAB YWHAB YWHAB 10382 -0.042 0.3 NO
31 MLST8 MLST8 MLST8 10581 -0.047 0.3 NO
32 CHUK CHUK CHUK 11090 -0.06 0.29 NO
33 CASP9 CASP9 CASP9 12225 -0.09 0.25 NO
34 TBC1D4 TBC1D4 TBC1D4 13472 -0.13 0.21 NO
35 YWHAE YWHAE YWHAE 14391 -0.17 0.21 NO

Figure S21.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG LYSINE DEGRADATION.

Figure S22.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG LYSINE DEGRADATION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG PROPANOATE METABOLISM

Table S12.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PPP1R12B PPP1R12B PPP1R12B 46 1.2 0.16 YES
2 ACTA1 ACTA1 ACTA1 347 0.67 0.24 YES
3 ACTN2 ACTN2 ACTN2 894 0.45 0.27 YES
4 TNS1 TNS1 TNS1 907 0.44 0.33 YES
5 ACTN1 ACTN1 ACTN1 934 0.44 0.39 YES
6 ITGA1 ITGA1 ITGA1 1142 0.4 0.43 YES
7 SRC SRC SRC 1417 0.35 0.47 YES
8 VCL VCL VCL 1604 0.32 0.5 YES
9 ROCK1 ROCK1 ROCK1 1971 0.27 0.52 YES
10 RAP1A RAP1A RAP1A 2471 0.23 0.52 YES
11 TLN1 TLN1 TLN1 2720 0.2 0.54 YES
12 CAV1 CAV1 CAV1 3233 0.17 0.54 YES
13 ZYX ZYX ZYX 3534 0.16 0.54 YES
14 ITGB1 ITGB1 ITGB1 4479 0.11 0.5 NO
15 PTK2 PTK2 PTK2 5514 0.08 0.46 NO
16 SOS1 SOS1 SOS1 5844 0.07 0.45 NO
17 RAF1 RAF1 RAF1 6405 0.055 0.43 NO
18 MAPK1 MAPK1 MAPK1 6710 0.046 0.42 NO
19 SHC1 SHC1 SHC1 7826 0.019 0.36 NO
20 MAP2K1 MAP2K1 MAP2K1 8866 -0.0056 0.3 NO
21 CAPN1 CAPN1 CAPN1 8967 -0.0079 0.3 NO
22 JUN JUN JUN 9506 -0.02 0.27 NO
23 RHOA RHOA RHOA 9612 -0.023 0.27 NO
24 MAPK8 MAPK8 MAPK8 9616 -0.023 0.27 NO
25 ACTN3 ACTN3 ACTN3 9792 -0.027 0.26 NO
26 CRKL CRKL CRKL 9828 -0.028 0.27 NO
27 HRAS HRAS HRAS 10251 -0.039 0.25 NO
28 RAPGEF1 RAPGEF1 RAPGEF1 10962 -0.056 0.22 NO
29 BCR BCR BCR 11150 -0.061 0.22 NO
30 BCAR1 BCAR1 BCAR1 11366 -0.067 0.21 NO
31 CAPNS1 CAPNS1 CAPNS1 11377 -0.067 0.22 NO
32 GRB2 GRB2 GRB2 11420 -0.068 0.23 NO
33 MAPK3 MAPK3 MAPK3 11468 -0.069 0.24 NO
34 MAP2K2 MAP2K2 MAP2K2 13213 -0.12 0.16 NO
35 PXN PXN PXN 14017 -0.15 0.13 NO
36 CSK CSK CSK 14278 -0.16 0.14 NO
37 CAPNS2 CAPNS2 CAPNS2 15366 -0.22 0.11 NO
38 FYN FYN FYN 16267 -0.3 0.1 NO

Figure S23.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG PROPANOATE METABOLISM.

Figure S24.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG PROPANOATE METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG BUTANOATE METABOLISM

Table S13.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ALDH1B1 ALDH1B1 ALDH1B1 231 0.77 0.12 YES
2 SETMAR SETMAR SETMAR 621 0.54 0.19 YES
3 HADH HADH HADH 1430 0.35 0.21 YES
4 ALDH3A2 ALDH3A2 ALDH3A2 1723 0.31 0.25 YES
5 BBOX1 BBOX1 BBOX1 2295 0.24 0.26 YES
6 PIPOX PIPOX PIPOX 2468 0.23 0.29 YES
7 ACAT2 ACAT2 ACAT2 2596 0.22 0.32 YES
8 SETD1B SETD1B SETD1B 2854 0.2 0.34 YES
9 ACAT1 ACAT1 ACAT1 2913 0.19 0.37 YES
10 ASH1L ASH1L ASH1L 3055 0.18 0.39 YES
11 OGDHL OGDHL OGDHL 3640 0.15 0.39 YES
12 ALDH2 ALDH2 ALDH2 3798 0.14 0.4 YES
13 EHHADH EHHADH EHHADH 4203 0.13 0.4 YES
14 WHSC1 WHSC1 WHSC1 4375 0.12 0.42 YES
15 AADAT AADAT AADAT 4419 0.12 0.43 YES
16 SETD8 SETD8 SETD8 4426 0.12 0.45 YES
17 PLOD2 PLOD2 PLOD2 4952 0.098 0.44 YES
18 TMLHE TMLHE TMLHE 5065 0.095 0.45 YES
19 SETD2 SETD2 SETD2 5246 0.088 0.46 YES
20 SUV39H1 SUV39H1 SUV39H1 5268 0.088 0.47 YES
21 OGDH OGDH OGDH 5623 0.077 0.47 NO
22 WHSC1L1 WHSC1L1 WHSC1L1 5919 0.068 0.46 NO
23 DOT1L DOT1L DOT1L 5977 0.066 0.47 NO
24 SETD7 SETD7 SETD7 6844 0.042 0.43 NO
25 SETD1A SETD1A SETD1A 6891 0.041 0.43 NO
26 DLST DLST DLST 8266 0.0079 0.36 NO
27 SETDB1 SETDB1 SETDB1 8308 0.0068 0.36 NO
28 EHMT2 EHMT2 EHMT2 8793 -0.0041 0.33 NO
29 AASS AASS AASS 8851 -0.0054 0.33 NO
30 AASDH AASDH AASDH 9154 -0.012 0.32 NO
31 ALDH9A1 ALDH9A1 ALDH9A1 9208 -0.014 0.32 NO
32 EHMT1 EHMT1 EHMT1 9267 -0.015 0.32 NO
33 NSD1 NSD1 NSD1 9530 -0.021 0.3 NO
34 GCDH GCDH GCDH 9560 -0.022 0.31 NO
35 ALDH7A1 ALDH7A1 ALDH7A1 9634 -0.023 0.31 NO
36 AASDHPPT AASDHPPT AASDHPPT 10402 -0.042 0.27 NO
37 SUV420H2 SUV420H2 SUV420H2 10607 -0.048 0.27 NO
38 SUV420H1 SUV420H1 SUV420H1 10671 -0.049 0.27 NO
39 HADHA HADHA HADHA 11853 -0.08 0.22 NO
40 ECHS1 ECHS1 ECHS1 12502 -0.099 0.2 NO
41 SETDB2 SETDB2 SETDB2 13354 -0.13 0.18 NO
42 SUV39H2 SUV39H2 SUV39H2 13612 -0.14 0.19 NO
43 PLOD3 PLOD3 PLOD3 14206 -0.16 0.18 NO
44 PLOD1 PLOD1 PLOD1 15056 -0.2 0.17 NO

Figure S25.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG BUTANOATE METABOLISM.

Figure S26.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG BUTANOATE METABOLISM, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG VASCULAR SMOOTH MUSCLE CONTRACTION

Table S14.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ALDH1B1 ALDH1B1 ALDH1B1 231 0.77 0.12 YES
2 ACSM1 ACSM1 ACSM1 470 0.6 0.21 YES
3 BDH1 BDH1 BDH1 715 0.51 0.28 YES
4 GAD1 GAD1 GAD1 918 0.44 0.34 YES
5 OXCT1 OXCT1 OXCT1 1042 0.41 0.41 YES
6 L2HGDH L2HGDH L2HGDH 1381 0.36 0.45 YES
7 HADH HADH HADH 1430 0.35 0.51 YES
8 ALDH3A2 ALDH3A2 ALDH3A2 1723 0.31 0.54 YES
9 AKR1B10 AKR1B10 AKR1B10 2129 0.26 0.57 YES
10 ACAT2 ACAT2 ACAT2 2596 0.22 0.58 YES
11 ACAT1 ACAT1 ACAT1 2913 0.19 0.59 YES
12 ACSM5 ACSM5 ACSM5 2949 0.19 0.62 YES
13 ACSM3 ACSM3 ACSM3 3772 0.14 0.6 YES
14 ALDH2 ALDH2 ALDH2 3798 0.14 0.63 YES
15 EHHADH EHHADH EHHADH 4203 0.13 0.62 YES
16 ACSM2A ACSM2A ACSM2A 4347 0.12 0.64 YES
17 ALDH5A1 ALDH5A1 ALDH5A1 5450 0.082 0.59 NO
18 PDHB PDHB PDHB 6346 0.056 0.55 NO
19 PDHA1 PDHA1 PDHA1 7032 0.038 0.52 NO
20 ACADS ACADS ACADS 7556 0.025 0.5 NO
21 ABAT ABAT ABAT 7904 0.016 0.48 NO
22 OXCT2 OXCT2 OXCT2 8570 0.001 0.44 NO
23 HMGCS1 HMGCS1 HMGCS1 9199 -0.014 0.41 NO
24 ALDH9A1 ALDH9A1 ALDH9A1 9208 -0.014 0.41 NO
25 HMGCS2 HMGCS2 HMGCS2 9311 -0.016 0.41 NO
26 ALDH7A1 ALDH7A1 ALDH7A1 9634 -0.023 0.4 NO
27 HMGCL HMGCL HMGCL 10297 -0.04 0.37 NO
28 AACS AACS AACS 10657 -0.048 0.35 NO
29 HADHA HADHA HADHA 11853 -0.08 0.3 NO
30 ECHS1 ECHS1 ECHS1 12502 -0.099 0.28 NO
31 BDH2 BDH2 BDH2 14484 -0.17 0.2 NO

Figure S27.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG VASCULAR SMOOTH MUSCLE CONTRACTION.

Figure S28.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG VASCULAR SMOOTH MUSCLE CONTRACTION, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG INSULIN SIGNALING PATHWAY

Table S15.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 MYLK MYLK MYLK 43 1.2 0.16 YES
2 PPP1R12B PPP1R12B PPP1R12B 46 1.2 0.32 YES
3 SRC SRC SRC 1417 0.35 0.29 YES
4 PIP5K1B PIP5K1B PIP5K1B 1426 0.35 0.34 YES
5 ARHGEF5 ARHGEF5 ARHGEF5 1450 0.34 0.38 YES
6 VCL VCL VCL 1604 0.32 0.42 YES
7 ARHGAP6 ARHGAP6 ARHGAP6 1840 0.29 0.45 YES
8 ROCK1 ROCK1 ROCK1 1971 0.27 0.48 YES
9 TLN1 TLN1 TLN1 2720 0.2 0.47 YES
10 GSN GSN GSN 2951 0.19 0.48 YES
11 ARHGAP1 ARHGAP1 ARHGAP1 3135 0.18 0.49 YES
12 ARHGAP5 ARHGAP5 ARHGAP5 4914 0.099 0.41 NO
13 OPHN1 OPHN1 OPHN1 5028 0.096 0.42 NO
14 ACTR3 ACTR3 ACTR3 5829 0.071 0.38 NO
15 PIP5K1A PIP5K1A PIP5K1A 6711 0.046 0.34 NO
16 ARPC5 ARPC5 ARPC5 6996 0.039 0.33 NO
17 DIAPH1 DIAPH1 DIAPH1 8693 -0.0018 0.24 NO
18 ARHGEF11 ARHGEF11 ARHGEF11 8786 -0.0039 0.23 NO
19 PFN1 PFN1 PFN1 9143 -0.012 0.21 NO
20 RHOA RHOA RHOA 9612 -0.023 0.19 NO
21 ARPC1A ARPC1A ARPC1A 9783 -0.027 0.19 NO
22 ARPC2 ARPC2 ARPC2 9915 -0.03 0.18 NO
23 ARPC4 ARPC4 ARPC4 10454 -0.044 0.16 NO
24 CFL1 CFL1 CFL1 11147 -0.061 0.13 NO
25 ACTR2 ACTR2 ACTR2 12357 -0.094 0.076 NO
26 ARHGEF1 ARHGEF1 ARHGEF1 12622 -0.1 0.075 NO
27 ARPC3 ARPC3 ARPC3 13175 -0.12 0.061 NO
28 ARPC1B ARPC1B ARPC1B 15820 -0.26 -0.049 NO
29 BAIAP2 BAIAP2 BAIAP2 15822 -0.26 -0.014 NO
30 ARHGAP4 ARHGAP4 ARHGAP4 15975 -0.27 0.015 NO
31 MYL2 MYL2 MYL2 16260 -0.3 0.04 NO
32 LIMK1 LIMK1 LIMK1 17569 -0.47 0.033 NO

Figure S29.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG INSULIN SIGNALING PATHWAY.

Figure S30.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG INSULIN SIGNALING PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA BIOPEPTIDES PATHWAY

Table S16.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ALDH1B1 ALDH1B1 ALDH1B1 231 0.77 0.19 YES
2 ALDH3A2 ALDH3A2 ALDH3A2 1723 0.31 0.18 YES
3 ACACB ACACB ACACB 2100 0.26 0.23 YES
4 LDHAL6B LDHAL6B LDHAL6B 2254 0.25 0.29 YES
5 ACAT2 ACAT2 ACAT2 2596 0.22 0.33 YES
6 ALDH6A1 ALDH6A1 ALDH6A1 2878 0.2 0.36 YES
7 ACAT1 ACAT1 ACAT1 2913 0.19 0.41 YES
8 ALDH2 ALDH2 ALDH2 3798 0.14 0.4 YES
9 ACSS3 ACSS3 ACSS3 3978 0.14 0.42 YES
10 EHHADH EHHADH EHHADH 4203 0.13 0.44 YES
11 SUCLG2 SUCLG2 SUCLG2 4660 0.11 0.45 YES
12 ACACA ACACA ACACA 4855 0.1 0.46 YES
13 PCCB PCCB PCCB 4986 0.097 0.48 YES
14 PCCA PCCA PCCA 5143 0.092 0.5 YES
15 ACADM ACADM ACADM 5277 0.088 0.51 YES
16 HIBCH HIBCH HIBCH 5546 0.079 0.52 YES
17 LDHAL6A LDHAL6A LDHAL6A 5795 0.072 0.52 YES
18 ACSS2 ACSS2 ACSS2 6498 0.052 0.5 NO
19 MUT MUT MUT 7011 0.038 0.48 NO
20 LDHB LDHB LDHB 7085 0.036 0.49 NO
21 ABAT ABAT ABAT 7904 0.016 0.44 NO
22 SUCLA2 SUCLA2 SUCLA2 7996 0.014 0.44 NO
23 MLYCD MLYCD MLYCD 8053 0.013 0.44 NO
24 SUCLG1 SUCLG1 SUCLG1 8608 0.00022 0.41 NO
25 ALDH9A1 ALDH9A1 ALDH9A1 9208 -0.014 0.38 NO
26 LDHC LDHC LDHC 9525 -0.02 0.37 NO
27 ALDH7A1 ALDH7A1 ALDH7A1 9634 -0.023 0.37 NO
28 MCEE MCEE MCEE 11118 -0.06 0.31 NO
29 LDHA LDHA LDHA 11182 -0.062 0.32 NO
30 ACSS1 ACSS1 ACSS1 11621 -0.074 0.31 NO
31 HADHA HADHA HADHA 11853 -0.08 0.32 NO
32 ECHS1 ECHS1 ECHS1 12502 -0.099 0.31 NO

Figure S31.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA BIOPEPTIDES PATHWAY.

Figure S32.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA BIOPEPTIDES PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA INTEGRIN PATHWAY

Table S17.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 PPP1R14A PPP1R14A PPP1R14A 83 1 0.12 YES
2 MYL9 MYL9 MYL9 346 0.68 0.18 YES
3 LIMS2 LIMS2 LIMS2 453 0.61 0.24 YES
4 PPP1R14C PPP1R14C PPP1R14C 793 0.48 0.28 YES
5 TNS1 TNS1 TNS1 907 0.44 0.33 YES
6 ACTN1 ACTN1 ACTN1 934 0.44 0.38 YES
7 PPP1R12A PPP1R12A PPP1R12A 1242 0.38 0.4 YES
8 ILK ILK ILK 1921 0.28 0.4 YES
9 RICTOR RICTOR RICTOR 2160 0.26 0.42 YES
10 PARVA PARVA PARVA 3509 0.16 0.36 NO
11 ZYX ZYX ZYX 3534 0.16 0.38 NO
12 IQGAP1 IQGAP1 IQGAP1 3871 0.14 0.37 NO
13 GSK3B GSK3B GSK3B 4983 0.097 0.32 NO
14 ZEB1 ZEB1 ZEB1 6190 0.06 0.26 NO
15 LIMS1 LIMS1 LIMS1 6477 0.053 0.26 NO
16 CTNNB1 CTNNB1 CTNNB1 6679 0.047 0.25 NO
17 PARP1 PARP1 PARP1 6994 0.039 0.24 NO
18 XPO1 XPO1 XPO1 7378 0.03 0.22 NO
19 CREB1 CREB1 CREB1 7411 0.029 0.22 NO
20 ARHGEF7 ARHGEF7 ARHGEF7 7505 0.026 0.22 NO
21 ILKAP ILKAP ILKAP 7635 0.023 0.21 NO
22 RUVBL1 RUVBL1 RUVBL1 7710 0.022 0.21 NO
23 AKT1 AKT1 AKT1 7885 0.017 0.2 NO
24 AURKA AURKA AURKA 8044 0.013 0.2 NO
25 CKAP5 CKAP5 CKAP5 8431 0.004 0.18 NO
26 DIAPH1 DIAPH1 DIAPH1 8693 -0.0018 0.16 NO
27 HSP90AA1 HSP90AA1 HSP90AA1 8940 -0.0074 0.15 NO
28 NCK2 NCK2 NCK2 9165 -0.012 0.14 NO
29 JUN JUN JUN 9506 -0.02 0.12 NO
30 CDC37 CDC37 CDC37 10396 -0.042 0.078 NO
31 ARHGEF6 ARHGEF6 ARHGEF6 10540 -0.046 0.076 NO
32 RAC1 RAC1 RAC1 11337 -0.066 0.039 NO
33 RUVBL2 RUVBL2 RUVBL2 11418 -0.068 0.043 NO
34 TACC3 TACC3 TACC3 11421 -0.068 0.051 NO
35 GIT2 GIT2 GIT2 11757 -0.077 0.041 NO
36 ELMO2 ELMO2 ELMO2 12020 -0.084 0.036 NO
37 NACA NACA NACA 12123 -0.087 0.041 NO
38 CDC42 CDC42 CDC42 12835 -0.11 0.015 NO
39 PXN PXN PXN 14017 -0.15 -0.033 NO
40 RHOG RHOG RHOG 14356 -0.17 -0.032 NO
41 PPP1R14B PPP1R14B PPP1R14B 16018 -0.27 -0.092 NO
42 PARVG PARVG PARVG 17158 -0.39 -0.11 NO
43 PARVB PARVB PARVB 17226 -0.41 -0.065 NO
44 SNAI1 SNAI1 SNAI1 17405 -0.44 -0.024 NO
45 CCND1 CCND1 CCND1 17890 -0.57 0.015 NO

Figure S33.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA INTEGRIN PATHWAY.

Figure S34.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA INTEGRIN PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA MYOSIN PATHWAY

Table S18.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 MYLK MYLK MYLK 43 1.2 0.19 YES
2 PPP1R12B PPP1R12B PPP1R12B 46 1.2 0.38 YES
3 ARHGEF4 ARHGEF4 ARHGEF4 1403 0.35 0.37 YES
4 ARHGEF5 ARHGEF5 ARHGEF5 1450 0.34 0.42 YES
5 ARHGEF17 ARHGEF17 ARHGEF17 1720 0.31 0.46 YES
6 ARHGEF9 ARHGEF9 ARHGEF9 1761 0.3 0.5 YES
7 ROCK1 ROCK1 ROCK1 1971 0.27 0.54 YES
8 PLCB1 PLCB1 PLCB1 3145 0.18 0.5 NO
9 ARHGEF10 ARHGEF10 ARHGEF10 3757 0.14 0.49 NO
10 ARHGEF12 ARHGEF12 ARHGEF12 4601 0.11 0.46 NO
11 GNAQ GNAQ GNAQ 4704 0.11 0.48 NO
12 ARHGAP5 ARHGAP5 ARHGAP5 4914 0.099 0.48 NO
13 PKN1 PKN1 PKN1 5878 0.069 0.44 NO
14 GNA13 GNA13 GNA13 5896 0.068 0.45 NO
15 ARHGEF3 ARHGEF3 ARHGEF3 6658 0.048 0.42 NO
16 ARHGEF7 ARHGEF7 ARHGEF7 7505 0.026 0.37 NO
17 GNA12 GNA12 GNA12 7568 0.025 0.37 NO
18 ARHGEF2 ARHGEF2 ARHGEF2 8094 0.012 0.35 NO
19 ARHGEF18 ARHGEF18 ARHGEF18 8278 0.0077 0.34 NO
20 ARHGEF11 ARHGEF11 ARHGEF11 8786 -0.0039 0.31 NO
21 ARHGEF16 ARHGEF16 ARHGEF16 8952 -0.0076 0.3 NO
22 PRKCB PRKCB PRKCB 9591 -0.022 0.27 NO
23 ARHGEF6 ARHGEF6 ARHGEF6 10540 -0.046 0.23 NO
24 PRKCA PRKCA PRKCA 12524 -0.1 0.13 NO
25 ARHGEF1 ARHGEF1 ARHGEF1 12622 -0.1 0.15 NO
26 ARHGEF15 ARHGEF15 ARHGEF15 12941 -0.11 0.15 NO
27 GNB1 GNB1 GNB1 13349 -0.13 0.14 NO
28 MYL2 MYL2 MYL2 16260 -0.3 0.034 NO
29 ARHGEF19 ARHGEF19 ARHGEF19 17367 -0.43 0.044 NO

Figure S35.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA MYOSIN PATHWAY.

Figure S36.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA MYOSIN PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA RHO PATHWAY

Table S19.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 ADHFE1 ADHFE1 ADHFE1 148 0.88 0.15 YES
2 PDK3 PDK3 PDK3 666 0.52 0.22 YES
3 L2HGDH L2HGDH L2HGDH 1381 0.36 0.24 YES
4 PDK4 PDK4 PDK4 2102 0.26 0.25 YES
5 IDH2 IDH2 IDH2 2121 0.26 0.3 YES
6 PDK1 PDK1 PDK1 2446 0.23 0.32 YES
7 NNT NNT NNT 2728 0.2 0.34 YES
8 IDH3A IDH3A IDH3A 3341 0.17 0.34 YES
9 SLC16A1 SLC16A1 SLC16A1 3750 0.14 0.34 YES
10 PDHX PDHX PDHX 3848 0.14 0.36 YES
11 PDPR PDPR PDPR 3877 0.14 0.39 YES
12 PDK2 PDK2 PDK2 4114 0.13 0.4 YES
13 PDP2 PDP2 PDP2 4305 0.12 0.41 YES
14 FH FH FH 4386 0.12 0.43 YES
15 SUCLG2 SUCLG2 SUCLG2 4660 0.11 0.43 YES
16 SLC16A8 SLC16A8 SLC16A8 4926 0.099 0.44 YES
17 DLAT DLAT DLAT 5013 0.096 0.45 YES
18 ACO2 ACO2 ACO2 5577 0.078 0.43 NO
19 OGDH OGDH OGDH 5623 0.077 0.44 NO
20 SDHA SDHA SDHA 5971 0.066 0.44 NO
21 SDHD SDHD SDHD 6197 0.06 0.44 NO
22 PDHB PDHB PDHB 6346 0.056 0.44 NO
23 DLD DLD DLD 6383 0.056 0.44 NO
24 CS CS CS 7022 0.038 0.42 NO
25 PDHA1 PDHA1 PDHA1 7032 0.038 0.42 NO
26 LDHB LDHB LDHB 7085 0.036 0.43 NO
27 SUCLA2 SUCLA2 SUCLA2 7996 0.014 0.38 NO
28 DLST DLST DLST 8266 0.0079 0.37 NO
29 SUCLG1 SUCLG1 SUCLG1 8608 0.00022 0.35 NO
30 SDHC SDHC SDHC 9038 -0.0095 0.32 NO
31 IDH3B IDH3B IDH3B 9394 -0.018 0.31 NO
32 D2HGDH D2HGDH D2HGDH 10228 -0.038 0.27 NO
33 SDHB SDHB SDHB 10820 -0.052 0.25 NO
34 MDH2 MDH2 MDH2 10938 -0.056 0.25 NO
35 BSG BSG BSG 11160 -0.062 0.25 NO
36 LDHA LDHA LDHA 11182 -0.062 0.26 NO
37 IDH3G IDH3G IDH3G 11470 -0.069 0.26 NO
38 PDP1 PDP1 PDP1 12518 -0.099 0.22 NO
39 SLC16A3 SLC16A3 SLC16A3 15831 -0.26 0.081 NO
40 IDH1 IDH1 IDH1 15877 -0.26 0.13 NO

Figure S37.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA RHO PATHWAY.

Figure S38.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA RHO PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: SIG REGULATION OF THE ACTIN CYTOSKELETON BY RHO GTPASES

Table S20.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 MYH11 MYH11 MYH11 3 1.6 0.05 YES
2 KCNMB1 KCNMB1 KCNMB1 6 1.6 0.1 YES
3 ACTG2 ACTG2 ACTG2 31 1.2 0.14 YES
4 RAMP1 RAMP1 RAMP1 37 1.2 0.18 YES
5 MYLK MYLK MYLK 43 1.2 0.21 YES
6 PPP1R12B PPP1R12B PPP1R12B 46 1.2 0.25 YES
7 MRVI1 MRVI1 MRVI1 51 1.1 0.28 YES
8 PPP1R14A PPP1R14A PPP1R14A 83 1 0.31 YES
9 ADRA1A ADRA1A ADRA1A 129 0.91 0.34 YES
10 ADCY5 ADCY5 ADCY5 130 0.91 0.37 YES
11 ITPR1 ITPR1 ITPR1 188 0.81 0.39 YES
12 CACNA1C CACNA1C CACNA1C 279 0.73 0.41 YES
13 ACTA2 ACTA2 ACTA2 283 0.72 0.43 YES
14 KCNMA1 KCNMA1 KCNMA1 319 0.7 0.45 YES
15 MYL9 MYL9 MYL9 346 0.68 0.47 YES
16 PLA2G10 PLA2G10 PLA2G10 612 0.54 0.47 YES
17 PLCB4 PLCB4 PLCB4 686 0.52 0.49 YES
18 ADCY2 ADCY2 ADCY2 814 0.47 0.49 YES
19 PRKG1 PRKG1 PRKG1 951 0.43 0.5 YES
20 EDNRA EDNRA EDNRA 1024 0.42 0.51 YES
21 CALD1 CALD1 CALD1 1185 0.39 0.51 YES
22 PPP1R12A PPP1R12A PPP1R12A 1242 0.38 0.52 YES
23 GNA11 GNA11 GNA11 1634 0.32 0.51 NO
24 ROCK2 ROCK2 ROCK2 1810 0.3 0.51 NO
25 ROCK1 ROCK1 ROCK1 1971 0.27 0.51 NO
26 ADCY9 ADCY9 ADCY9 2723 0.2 0.47 NO
27 NPR1 NPR1 NPR1 2757 0.2 0.48 NO
28 PRKCG PRKCG PRKCG 2881 0.2 0.48 NO
29 CACNA1D CACNA1D CACNA1D 2903 0.19 0.48 NO
30 PPP1CB PPP1CB PPP1CB 3098 0.18 0.48 NO
31 PLCB1 PLCB1 PLCB1 3145 0.18 0.48 NO
32 MYLK3 MYLK3 MYLK3 3270 0.17 0.48 NO
33 PLA2G6 PLA2G6 PLA2G6 3333 0.17 0.48 NO
34 MYL6 MYL6 MYL6 3427 0.16 0.48 NO
35 PLA2G3 PLA2G3 PLA2G3 3511 0.16 0.48 NO
36 NPR2 NPR2 NPR2 3581 0.15 0.48 NO
37 ADCY6 ADCY6 ADCY6 3637 0.15 0.48 NO
38 PRKACB PRKACB PRKACB 3662 0.15 0.49 NO
39 PLA2G12A PLA2G12A PLA2G12A 3769 0.14 0.49 NO
40 PRKACG PRKACG PRKACG 3865 0.14 0.49 NO
41 GUCY1A3 GUCY1A3 GUCY1A3 4308 0.12 0.46 NO
42 ARHGEF12 ARHGEF12 ARHGEF12 4601 0.11 0.45 NO
43 GNAQ GNAQ GNAQ 4704 0.11 0.45 NO
44 JMJD7-PLA2G4B JMJD7-PLA2G4B JMJD7-PLA2G4B 4796 0.1 0.45 NO
45 PLCB3 PLCB3 PLCB3 4938 0.098 0.44 NO
46 CALM1 CALM1 CALM1 5273 0.088 0.43 NO
47 PRKACA PRKACA PRKACA 5608 0.077 0.41 NO
48 RAMP3 RAMP3 RAMP3 5734 0.073 0.41 NO
49 GNA13 GNA13 GNA13 5896 0.068 0.4 NO
50 BRAF BRAF BRAF 6220 0.06 0.38 NO
51 RAF1 RAF1 RAF1 6405 0.055 0.38 NO
52 MAPK1 MAPK1 MAPK1 6710 0.046 0.36 NO
53 ADCY8 ADCY8 ADCY8 7151 0.035 0.34 NO
54 GNA12 GNA12 GNA12 7568 0.025 0.32 NO
55 PRKCD PRKCD PRKCD 7779 0.02 0.3 NO
56 ADCY3 ADCY3 ADCY3 7984 0.015 0.29 NO
57 KCNMB3 KCNMB3 KCNMB3 8131 0.011 0.28 NO
58 ADCY1 ADCY1 ADCY1 8194 0.0096 0.28 NO
59 CALCRL CALCRL CALCRL 8328 0.0064 0.28 NO
60 ARHGEF11 ARHGEF11 ARHGEF11 8786 -0.0039 0.25 NO
61 MAP2K1 MAP2K1 MAP2K1 8866 -0.0056 0.25 NO
62 CALM3 CALM3 CALM3 8927 -0.0071 0.24 NO
63 CALML3 CALML3 CALML3 8996 -0.0085 0.24 NO
64 GUCY1B3 GUCY1B3 GUCY1B3 9347 -0.017 0.22 NO
65 PRKCB PRKCB PRKCB 9591 -0.022 0.21 NO
66 RHOA RHOA RHOA 9612 -0.023 0.21 NO
67 ARAF ARAF ARAF 9773 -0.027 0.2 NO
68 PPP1CC PPP1CC PPP1CC 10309 -0.04 0.17 NO
69 CALM2 CALM2 CALM2 10425 -0.043 0.17 NO
70 GNAS GNAS GNAS 10474 -0.044 0.16 NO
71 ADRA1D ADRA1D ADRA1D 10551 -0.046 0.16 NO
72 CACNA1F CACNA1F CACNA1F 11331 -0.066 0.12 NO
73 MAPK3 MAPK3 MAPK3 11468 -0.069 0.12 NO
74 PRKCA PRKCA PRKCA 12524 -0.1 0.06 NO
75 ARHGEF1 ARHGEF1 ARHGEF1 12622 -0.1 0.058 NO
76 MAP2K2 MAP2K2 MAP2K2 13213 -0.12 0.029 NO
77 PRKCQ PRKCQ PRKCQ 13244 -0.12 0.031 NO
78 MYL6B MYL6B MYL6B 13605 -0.14 0.016 NO
79 PLA2G12B PLA2G12B PLA2G12B 13661 -0.14 0.017 NO
80 PLA2G2D PLA2G2D PLA2G2D 13710 -0.14 0.018 NO
81 PRKCH PRKCH PRKCH 13800 -0.14 0.018 NO
82 ADORA2A ADORA2A ADORA2A 13893 -0.15 0.018 NO
83 PPP1CA PPP1CA PPP1CA 13944 -0.15 0.019 NO
84 RAMP2 RAMP2 RAMP2 14034 -0.15 0.019 NO
85 ITPR2 ITPR2 ITPR2 14085 -0.15 0.021 NO
86 CALML6 CALML6 CALML6 14105 -0.16 0.025 NO
87 PRKCE PRKCE PRKCE 14241 -0.16 0.023 NO
88 ADCY4 ADCY4 ADCY4 14319 -0.16 0.024 NO
89 GUCY1A2 GUCY1A2 GUCY1A2 14475 -0.17 0.021 NO
90 ITPR3 ITPR3 ITPR3 14829 -0.19 0.007 NO
91 CACNA1S CACNA1S CACNA1S 14990 -0.2 0.0044 NO
92 CYP4A11 CYP4A11 CYP4A11 14993 -0.2 0.011 NO
93 PLA2G5 PLA2G5 PLA2G5 15091 -0.2 0.012 NO
94 AVPR1A AVPR1A AVPR1A 15359 -0.22 0.0039 NO
95 PRKX PRKX PRKX 15418 -0.23 0.0078 NO
96 ADRA1B ADRA1B ADRA1B 15470 -0.23 0.012 NO
97 PLA2G4A PLA2G4A PLA2G4A 15786 -0.25 0.0028 NO
98 PTGIR PTGIR PTGIR 15921 -0.26 0.0037 NO
99 PLA2G1B PLA2G1B PLA2G1B 15928 -0.26 0.012 NO
100 AGTR1 AGTR1 AGTR1 16331 -0.3 -0.00094 NO
101 MYLK2 MYLK2 MYLK2 16554 -0.32 -0.003 NO
102 ADCY7 ADCY7 ADCY7 16570 -0.32 0.0064 NO
103 ADORA2B ADORA2B ADORA2B 16671 -0.34 0.012 NO
104 PLCB2 PLCB2 PLCB2 17165 -0.4 -0.0033 NO
105 KCNMB2 KCNMB2 KCNMB2 17611 -0.48 -0.013 NO
106 PLA2G2A PLA2G2A PLA2G2A 17957 -0.61 -0.013 NO
107 KCNMB4 KCNMB4 KCNMB4 18105 -0.78 0.0035 NO

Figure S39.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: SIG REGULATION OF THE ACTIN CYTOSKELETON BY RHO GTPASES.

Figure S40.  Get High-res Image For the top 5 core enriched genes in the pathway: SIG REGULATION OF THE ACTIN CYTOSKELETON BY RHO GTPASES, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

Fold change

For the top enriched genes, if you want to check whether they are

Expression level

For the top enriched genes, if you want to check whether they are

An expression pattern of top(30%)/middle(30%)/low(30%) in this subtype against other subtypes is available in a heatmap

Significant gene list

For the top enriched genes, if you want to check whether they are

Subtype clus3 enriched pathways

Table 5.  Get Full Table This table shows top 10 pathways which are significantly enriched in cluster clus3. It displays only significant gene sets satisfying nom.p.val.threshold (-1), fwer.p.val.threshold (-1) , fdr.q.val.threshold (0.25) and the default table is sorted by Normalized Enrichment Score (NES). Further details on NES statistics, please visit The Broad GSEA website.

GeneSet(GS) Size(#genes) genes.ES.table ES NES NOM.p.val FDR.q.val FWER.p.val Tag.. Gene.. Signal FDR..median. glob.p.val
KEGG GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE 26 genes.ES.table 0.6 1.6 0.012 0.42 0.92 0.46 0.18 0.38 0.22 0.1
KEGG WNT SIGNALING PATHWAY 147 genes.ES.table 0.51 1.8 0.006 0.53 0.62 0.24 0.13 0.21 0.19 0.12
KEGG AXON GUIDANCE 129 genes.ES.table 0.53 1.7 0.002 0.5 0.87 0.54 0.29 0.39 0.26 0.13
KEGG BASAL CELL CARCINOMA 53 genes.ES.table 0.67 1.7 0.004 0.63 0.83 0.47 0.13 0.41 0.29 0.16
BIOCARTA WNT PATHWAY 26 genes.ES.table 0.59 1.9 0.0085 0.45 0.32 0.23 0.12 0.2 0 0.11
WNT SIGNALING 85 genes.ES.table 0.56 1.8 0.006 0.59 0.59 0.35 0.17 0.29 0.21 0.14
ST WNT BETA CATENIN PATHWAY 32 genes.ES.table 0.61 1.8 0.0061 0.77 0.59 0.28 0.11 0.25 0.27 0.18
PID NOTCH PATHWAY 58 genes.ES.table 0.51 1.7 0.0083 0.41 0.89 0.33 0.22 0.26 0.21 0.097
PID PS1PATHWAY 46 genes.ES.table 0.6 2 0 0.42 0.17 0.28 0.16 0.24 0 0.096
PID WNT SIGNALING PATHWAY 28 genes.ES.table 0.69 1.7 0.012 0.48 0.88 0.57 0.17 0.48 0.24 0.12
genes ES table in pathway: KEGG GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE

Table S21.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 SSPO SSPO SSPO 45 0.68 0.11 YES
2 WIF1 WIF1 WIF1 138 0.57 0.2 YES
3 DTX1 DTX1 DTX1 326 0.49 0.28 YES
4 DLL1 DLL1 DLL1 683 0.4 0.32 YES
5 NKD1 NKD1 NKD1 768 0.38 0.38 YES
6 TLE1 TLE1 TLE1 1281 0.31 0.41 YES
7 DKK2 DKK2 DKK2 1553 0.28 0.44 YES
8 HNF1A HNF1A HNF1A 1667 0.26 0.48 YES
9 LRP6 LRP6 LRP6 1683 0.26 0.52 YES
10 CCND1 CCND1 CCND1 1851 0.25 0.56 YES
11 FZD1 FZD1 FZD1 2084 0.23 0.58 YES
12 FOS FOS FOS 2735 0.18 0.58 YES
13 KREMEN2 KREMEN2 KREMEN2 2910 0.17 0.6 YES
14 NOTCH1 NOTCH1 NOTCH1 4011 0.13 0.56 NO
15 CSNK2A1 CSNK2A1 CSNK2A1 4995 0.097 0.52 NO
16 APH1A APH1A APH1A 5090 0.094 0.53 NO
17 APC APC APC 5142 0.093 0.54 NO
18 MAP3K7 MAP3K7 MAP3K7 5517 0.083 0.54 NO
19 PPARD PPARD PPARD 5744 0.078 0.54 NO
20 HDAC1 HDAC1 HDAC1 6407 0.065 0.51 NO
21 CTNNB1 CTNNB1 CTNNB1 6511 0.063 0.52 NO
22 JUN JUN JUN 7420 0.046 0.48 NO
23 DVL1 DVL1 DVL1 7494 0.045 0.48 NO
24 CTBP1 CTBP1 CTBP1 7723 0.041 0.47 NO
25 FBXW11 FBXW11 FBXW11 7903 0.039 0.47 NO
26 APH1B APH1B APH1B 7921 0.038 0.48 NO
27 CREBBP CREBBP CREBBP 8040 0.036 0.48 NO
28 ADAM10 ADAM10 ADAM10 8144 0.035 0.48 NO
29 PSEN1 PSEN1 PSEN1 8667 0.027 0.45 NO
30 MYC MYC MYC 8716 0.026 0.45 NO
31 PPP2R5D PPP2R5D PPP2R5D 8721 0.026 0.46 NO
32 WNT1 WNT1 WNT1 9871 0.0084 0.39 NO
33 NLK NLK NLK 10341 0.00097 0.37 NO
34 NCSTN NCSTN NCSTN 10412 0.000046 0.36 NO
35 GSK3B GSK3B GSK3B 10675 -0.0042 0.35 NO
36 FRAT1 FRAT1 FRAT1 11400 -0.015 0.31 NO
37 AXIN1 AXIN1 AXIN1 11506 -0.017 0.31 NO
38 TAB1 TAB1 TAB1 11631 -0.019 0.31 NO
39 NEDD4 NEDD4 NEDD4 11778 -0.021 0.3 NO
40 MAPK1 MAPK1 MAPK1 12006 -0.026 0.3 NO
41 CSNK1A1 CSNK1A1 CSNK1A1 12073 -0.027 0.3 NO
42 PSENEN PSENEN PSENEN 12203 -0.029 0.29 NO
43 AES AES AES 12396 -0.033 0.29 NO
44 MAPK3 MAPK3 MAPK3 12593 -0.036 0.28 NO
45 RBPJ RBPJ RBPJ 13553 -0.057 0.24 NO
46 DKK1 DKK1 DKK1 14533 -0.085 0.2 NO

Figure S41.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE.

Figure S42.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG WNT SIGNALING PATHWAY

Table S22.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 WIF1 WIF1 WIF1 138 0.57 0.2 YES
2 LEF1 LEF1 LEF1 622 0.41 0.32 YES
3 TLE1 TLE1 TLE1 1281 0.31 0.4 YES
4 CCND1 CCND1 CCND1 1851 0.25 0.46 YES
5 FZD1 FZD1 FZD1 2084 0.23 0.52 YES
6 BTRC BTRC BTRC 2241 0.22 0.59 YES
7 CSNK2A1 CSNK2A1 CSNK2A1 4995 0.097 0.48 NO
8 APC APC APC 5142 0.093 0.5 NO
9 MAP3K7 MAP3K7 MAP3K7 5517 0.083 0.51 NO
10 PPARD PPARD PPARD 5744 0.078 0.53 NO
11 HDAC1 HDAC1 HDAC1 6407 0.065 0.52 NO
12 CTNNB1 CTNNB1 CTNNB1 6511 0.063 0.53 NO
13 DVL1 DVL1 DVL1 7494 0.045 0.5 NO
14 CTBP1 CTBP1 CTBP1 7723 0.041 0.5 NO
15 CSNK1D CSNK1D CSNK1D 7959 0.038 0.5 NO
16 CREBBP CREBBP CREBBP 8040 0.036 0.51 NO
17 MYC MYC MYC 8716 0.026 0.48 NO
18 WNT1 WNT1 WNT1 9871 0.0084 0.42 NO
19 SMAD4 SMAD4 SMAD4 10283 0.0018 0.4 NO
20 NLK NLK NLK 10341 0.00097 0.39 NO
21 GSK3B GSK3B GSK3B 10675 -0.0042 0.38 NO
22 FRAT1 FRAT1 FRAT1 11400 -0.015 0.34 NO
23 AXIN1 AXIN1 AXIN1 11506 -0.017 0.34 NO
24 TAB1 TAB1 TAB1 11631 -0.019 0.34 NO
25 PPP2CA PPP2CA PPP2CA 11774 -0.021 0.34 NO
26 CSNK1A1 CSNK1A1 CSNK1A1 12073 -0.027 0.34 NO

Figure S43.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG WNT SIGNALING PATHWAY.

Figure S44.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG WNT SIGNALING PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG AXON GUIDANCE

Table S23.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 NKD2 NKD2 NKD2 18 0.76 0.14 YES
2 WIF1 WIF1 WIF1 138 0.57 0.25 YES
3 CXXC4 CXXC4 CXXC4 314 0.49 0.33 YES
4 DACT1 DACT1 DACT1 417 0.46 0.42 YES
5 NKD1 NKD1 NKD1 768 0.38 0.47 YES
6 ANKRD6 ANKRD6 ANKRD6 1443 0.29 0.49 YES
7 DKK2 DKK2 DKK2 1553 0.28 0.54 YES
8 SFRP1 SFRP1 SFRP1 1733 0.26 0.58 YES
9 CER1 CER1 CER1 1990 0.24 0.61 YES
10 DKK3 DKK3 DKK3 2799 0.18 0.6 NO
11 AXIN2 AXIN2 AXIN2 4796 0.1 0.51 NO
12 SENP2 SENP2 SENP2 4970 0.098 0.52 NO
13 LRP1 LRP1 LRP1 5104 0.094 0.53 NO
14 APC APC APC 5142 0.093 0.54 NO
15 PTPRA PTPRA PTPRA 5394 0.086 0.55 NO
16 CTNNB1 CTNNB1 CTNNB1 6511 0.063 0.5 NO
17 AKT2 AKT2 AKT2 6997 0.054 0.48 NO
18 DVL1 DVL1 DVL1 7494 0.045 0.46 NO
19 PSEN1 PSEN1 PSEN1 8667 0.027 0.4 NO
20 RPSA RPSA RPSA 9074 0.02 0.38 NO
21 GSK3A GSK3A GSK3A 10250 0.0023 0.32 NO
22 AKT1 AKT1 AKT1 10511 -0.0015 0.3 NO
23 GSK3B GSK3B GSK3B 10675 -0.0042 0.3 NO
24 FRAT1 FRAT1 FRAT1 11400 -0.015 0.26 NO
25 AXIN1 AXIN1 AXIN1 11506 -0.017 0.26 NO
26 CSNK1A1 CSNK1A1 CSNK1A1 12073 -0.027 0.23 NO
27 FSTL1 FSTL1 FSTL1 12558 -0.036 0.21 NO
28 CBY1 CBY1 CBY1 13847 -0.064 0.15 NO
29 AKT3 AKT3 AKT3 14240 -0.075 0.15 NO
30 PIN1 PIN1 PIN1 14492 -0.084 0.15 NO
31 DKK1 DKK1 DKK1 14533 -0.085 0.16 NO
32 MVP MVP MVP 16593 -0.2 0.087 NO

Figure S45.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG AXON GUIDANCE.

Figure S46.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG AXON GUIDANCE, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: KEGG BASAL CELL CARCINOMA

Table S24.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 CCND2 CCND2 CCND2 103 0.6 0.041 YES
2 WIF1 WIF1 WIF1 138 0.57 0.083 YES
3 WNT5A WNT5A WNT5A 183 0.55 0.12 YES
4 CXXC4 CXXC4 CXXC4 314 0.49 0.15 YES
5 FZD2 FZD2 FZD2 554 0.43 0.17 YES
6 FZD3 FZD3 FZD3 606 0.41 0.2 YES
7 LEF1 LEF1 LEF1 622 0.41 0.23 YES
8 WNT11 WNT11 WNT11 739 0.38 0.25 YES
9 NKD1 NKD1 NKD1 768 0.38 0.28 YES
10 FZD8 FZD8 FZD8 862 0.36 0.3 YES
11 WNT4 WNT4 WNT4 1034 0.34 0.32 YES
12 WNT3A WNT3A WNT3A 1136 0.32 0.34 YES
13 WNT6 WNT6 WNT6 1174 0.32 0.36 YES
14 LRP5 LRP5 LRP5 1194 0.32 0.38 YES
15 TLE1 TLE1 TLE1 1281 0.31 0.4 YES
16 WNT5B WNT5B WNT5B 1467 0.28 0.42 YES
17 WNT7A WNT7A WNT7A 1585 0.27 0.43 YES
18 LRP6 LRP6 LRP6 1683 0.26 0.44 YES
19 WNT7B WNT7B WNT7B 1702 0.26 0.46 YES
20 SFRP1 SFRP1 SFRP1 1733 0.26 0.48 YES
21 CCND1 CCND1 CCND1 1851 0.25 0.49 YES
22 BCL9 BCL9 BCL9 1912 0.24 0.51 YES
23 FZD1 FZD1 FZD1 2084 0.23 0.52 YES
24 BTRC BTRC BTRC 2241 0.22 0.52 YES
25 PYGO1 PYGO1 PYGO1 2277 0.21 0.54 YES
26 PITX2 PITX2 PITX2 2743 0.18 0.53 YES
27 FRZB FRZB FRZB 2832 0.18 0.54 YES
28 RHOU RHOU RHOU 2834 0.18 0.55 YES
29 CTNNBIP1 CTNNBIP1 CTNNBIP1 2974 0.17 0.56 YES
30 WNT3 WNT3 WNT3 3088 0.17 0.56 YES
31 WNT16 WNT16 WNT16 3521 0.15 0.55 NO
32 TCF7L1 TCF7L1 TCF7L1 3522 0.15 0.56 NO
33 TLE2 TLE2 TLE2 4263 0.12 0.53 NO
34 FZD4 FZD4 FZD4 4392 0.12 0.53 NO
35 FZD7 FZD7 FZD7 4559 0.11 0.53 NO
36 SENP2 SENP2 SENP2 4970 0.098 0.51 NO
37 CSNK2A1 CSNK2A1 CSNK2A1 4995 0.097 0.52 NO
38 APC APC APC 5142 0.093 0.52 NO
39 WNT10A WNT10A WNT10A 5438 0.085 0.51 NO
40 CTBP2 CTBP2 CTBP2 5712 0.079 0.5 NO
41 WNT9A WNT9A WNT9A 6082 0.071 0.48 NO
42 RPL13A RPL13A RPL13A 6090 0.071 0.49 NO
43 DVL2 DVL2 DVL2 6239 0.068 0.49 NO
44 CTNNB1 CTNNB1 CTNNB1 6511 0.063 0.48 NO
45 EP300 EP300 EP300 6879 0.056 0.46 NO
46 JUN JUN JUN 7420 0.046 0.44 NO
47 DVL1 DVL1 DVL1 7494 0.045 0.43 NO
48 CTBP1 CTBP1 CTBP1 7723 0.041 0.42 NO
49 CCND3 CCND3 CCND3 7789 0.04 0.42 NO
50 PPP2R1A PPP2R1A PPP2R1A 7808 0.04 0.43 NO
51 FBXW11 FBXW11 FBXW11 7903 0.039 0.42 NO
52 CSNK1D CSNK1D CSNK1D 7959 0.038 0.42 NO
53 CSNK1G1 CSNK1G1 CSNK1G1 8509 0.029 0.4 NO
54 MYC MYC MYC 8716 0.026 0.39 NO
55 FBXW4 FBXW4 FBXW4 8884 0.023 0.38 NO
56 FZD5 FZD5 FZD5 8973 0.022 0.38 NO
57 TCF7 TCF7 TCF7 9174 0.019 0.37 NO
58 WISP1 WISP1 WISP1 9368 0.016 0.36 NO
59 WNT1 WNT1 WNT1 9871 0.0084 0.33 NO
60 GSK3A GSK3A GSK3A 10250 0.0023 0.31 NO
61 NLK NLK NLK 10341 0.00097 0.3 NO
62 GSK3B GSK3B GSK3B 10675 -0.0042 0.29 NO
63 T T T 10775 -0.0056 0.28 NO
64 FBXW2 FBXW2 FBXW2 11071 -0.01 0.26 NO
65 FRAT1 FRAT1 FRAT1 11400 -0.015 0.25 NO
66 AXIN1 AXIN1 AXIN1 11506 -0.017 0.24 NO
67 PPP2CA PPP2CA PPP2CA 11774 -0.021 0.23 NO
68 KREMEN1 KREMEN1 KREMEN1 11969 -0.025 0.22 NO
69 CSNK1A1 CSNK1A1 CSNK1A1 12073 -0.027 0.22 NO
70 WNT2B WNT2B WNT2B 12142 -0.028 0.22 NO
71 AES AES AES 12396 -0.033 0.2 NO
72 GAPDH GAPDH GAPDH 13525 -0.056 0.15 NO
73 SLC9A3R1 SLC9A3R1 SLC9A3R1 13820 -0.064 0.14 NO
74 HPRT1 HPRT1 HPRT1 13999 -0.068 0.13 NO
75 DAAM1 DAAM1 DAAM1 14211 -0.074 0.12 NO
76 DKK1 DKK1 DKK1 14533 -0.085 0.11 NO
77 PORCN PORCN PORCN 14636 -0.088 0.12 NO
78 DIXDC1 DIXDC1 DIXDC1 14672 -0.089 0.12 NO
79 SOX17 SOX17 SOX17 14769 -0.094 0.12 NO
80 WNT2 WNT2 WNT2 14930 -0.099 0.12 NO
81 ACTB ACTB ACTB 15239 -0.11 0.11 NO
82 SFRP4 SFRP4 SFRP4 15255 -0.11 0.12 NO
83 FOSL1 FOSL1 FOSL1 15750 -0.14 0.1 NO
84 B2M B2M B2M 16515 -0.19 0.075 NO
85 FZD6 FZD6 FZD6 16736 -0.21 0.079 NO

Figure S47.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: KEGG BASAL CELL CARCINOMA.

Figure S48.  Get High-res Image For the top 5 core enriched genes in the pathway: KEGG BASAL CELL CARCINOMA, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: BIOCARTA WNT PATHWAY

Table S25.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 NKD2 NKD2 NKD2 18 0.76 0.033 YES
2 SFRP5 SFRP5 SFRP5 24 0.73 0.066 YES
3 VANGL2 VANGL2 VANGL2 72 0.64 0.093 YES
4 CCND2 CCND2 CCND2 103 0.6 0.12 YES
5 APC2 APC2 APC2 116 0.59 0.14 YES
6 FZD10 FZD10 FZD10 117 0.59 0.17 YES
7 WIF1 WIF1 WIF1 138 0.57 0.2 YES
8 WNT5A WNT5A WNT5A 183 0.55 0.22 YES
9 FZD9 FZD9 FZD9 240 0.52 0.24 YES
10 CXXC4 CXXC4 CXXC4 314 0.49 0.26 YES
11 PRICKLE1 PRICKLE1 PRICKLE1 370 0.48 0.28 YES
12 FZD2 FZD2 FZD2 554 0.43 0.29 YES
13 FZD3 FZD3 FZD3 606 0.41 0.3 YES
14 LEF1 LEF1 LEF1 622 0.41 0.32 YES
15 WNT11 WNT11 WNT11 739 0.38 0.33 YES
16 NKD1 NKD1 NKD1 768 0.38 0.35 YES
17 FZD8 FZD8 FZD8 862 0.36 0.36 YES
18 DAAM2 DAAM2 DAAM2 869 0.36 0.37 YES
19 RAC3 RAC3 RAC3 902 0.36 0.39 YES
20 CAMK2B CAMK2B CAMK2B 1022 0.34 0.4 YES
21 WNT4 WNT4 WNT4 1034 0.34 0.41 YES
22 WNT3A WNT3A WNT3A 1136 0.32 0.42 YES
23 WNT6 WNT6 WNT6 1174 0.32 0.43 YES
24 LRP5 LRP5 LRP5 1194 0.32 0.45 YES
25 WNT5B WNT5B WNT5B 1467 0.28 0.44 YES
26 DKK2 DKK2 DKK2 1553 0.28 0.45 YES
27 WNT7A WNT7A WNT7A 1585 0.27 0.46 YES
28 LRP6 LRP6 LRP6 1683 0.26 0.47 YES
29 WNT7B WNT7B WNT7B 1702 0.26 0.48 YES
30 SFRP1 SFRP1 SFRP1 1733 0.26 0.49 YES
31 CCND1 CCND1 CCND1 1851 0.25 0.5 YES
32 CER1 CER1 CER1 1990 0.24 0.5 YES
33 FZD1 FZD1 FZD1 2084 0.23 0.5 YES
34 BTRC BTRC BTRC 2241 0.22 0.5 YES
35 TP53 TP53 TP53 2354 0.21 0.51 YES
36 CHP2 CHP2 CHP2 2533 0.2 0.51 NO
37 SFRP2 SFRP2 SFRP2 2694 0.19 0.51 NO
38 CTNNBIP1 CTNNBIP1 CTNNBIP1 2974 0.17 0.5 NO
39 WNT3 WNT3 WNT3 3088 0.17 0.5 NO
40 NFATC2 NFATC2 NFATC2 3325 0.16 0.49 NO
41 WNT16 WNT16 WNT16 3521 0.15 0.49 NO
42 TCF7L1 TCF7L1 TCF7L1 3522 0.15 0.5 NO
43 PRKCG PRKCG PRKCG 3766 0.14 0.49 NO
44 MAPK8 MAPK8 MAPK8 3822 0.13 0.49 NO
45 FZD4 FZD4 FZD4 4392 0.12 0.46 NO
46 TCF7L2 TCF7L2 TCF7L2 4509 0.11 0.46 NO
47 NFATC4 NFATC4 NFATC4 4555 0.11 0.47 NO
48 FZD7 FZD7 FZD7 4559 0.11 0.47 NO
49 PRKX PRKX PRKX 4776 0.1 0.46 NO
50 AXIN2 AXIN2 AXIN2 4796 0.1 0.47 NO
51 SENP2 SENP2 SENP2 4970 0.098 0.46 NO
52 NFAT5 NFAT5 NFAT5 4988 0.097 0.47 NO
53 CSNK2A1 CSNK2A1 CSNK2A1 4995 0.097 0.47 NO
54 NFATC3 NFATC3 NFATC3 5116 0.093 0.47 NO
55 APC APC APC 5142 0.093 0.47 NO
56 PPP3CA PPP3CA PPP3CA 5240 0.09 0.47 NO
57 MMP7 MMP7 MMP7 5369 0.087 0.47 NO
58 WNT10A WNT10A WNT10A 5438 0.085 0.47 NO
59 PPP2R1B PPP2R1B PPP2R1B 5472 0.084 0.47 NO
60 MAP3K7 MAP3K7 MAP3K7 5517 0.083 0.47 NO
61 CTBP2 CTBP2 CTBP2 5712 0.079 0.46 NO
62 PPP3CB PPP3CB PPP3CB 5714 0.079 0.46 NO
63 PPARD PPARD PPARD 5744 0.078 0.47 NO
64 MAPK10 MAPK10 MAPK10 5772 0.078 0.47 NO
65 CSNK1E CSNK1E CSNK1E 5814 0.077 0.47 NO
66 CHD8 CHD8 CHD8 5890 0.075 0.47 NO
67 NFATC1 NFATC1 NFATC1 5908 0.075 0.47 NO
68 WNT9A WNT9A WNT9A 6082 0.071 0.47 NO
69 PRKCA PRKCA PRKCA 6097 0.071 0.47 NO
70 DVL2 DVL2 DVL2 6239 0.068 0.46 NO
71 CSNK2A2 CSNK2A2 CSNK2A2 6285 0.068 0.46 NO
72 CTNNB1 CTNNB1 CTNNB1 6511 0.063 0.45 NO
73 TBL1XR1 TBL1XR1 TBL1XR1 6689 0.06 0.45 NO
74 EP300 EP300 EP300 6879 0.056 0.44 NO
75 WNT10B WNT10B WNT10B 6945 0.055 0.44 NO
76 PLCB4 PLCB4 PLCB4 7056 0.053 0.44 NO
77 JUN JUN JUN 7420 0.046 0.42 NO
78 DVL1 DVL1 DVL1 7494 0.045 0.42 NO
79 CTBP1 CTBP1 CTBP1 7723 0.041 0.4 NO
80 CCND3 CCND3 CCND3 7789 0.04 0.4 NO
81 PPP2R1A PPP2R1A PPP2R1A 7808 0.04 0.4 NO
82 FBXW11 FBXW11 FBXW11 7903 0.039 0.4 NO
83 CREBBP CREBBP CREBBP 8040 0.036 0.39 NO
84 PPP3R1 PPP3R1 PPP3R1 8109 0.035 0.39 NO
85 CSNK1A1L CSNK1A1L CSNK1A1L 8311 0.032 0.38 NO
86 PRICKLE2 PRICKLE2 PRICKLE2 8497 0.029 0.37 NO
87 FRAT2 FRAT2 FRAT2 8517 0.029 0.37 NO
88 DVL3 DVL3 DVL3 8623 0.027 0.37 NO
89 PSEN1 PSEN1 PSEN1 8667 0.027 0.37 NO
90 SMAD2 SMAD2 SMAD2 8669 0.027 0.37 NO
91 MYC MYC MYC 8716 0.026 0.37 NO
92 PPP2R5D PPP2R5D PPP2R5D 8721 0.026 0.37 NO
93 FZD5 FZD5 FZD5 8973 0.022 0.36 NO
94 WNT8B WNT8B WNT8B 9106 0.02 0.35 NO
95 SIAH1 SIAH1 SIAH1 9112 0.02 0.35 NO
96 TCF7 TCF7 TCF7 9174 0.019 0.35 NO
97 ROCK2 ROCK2 ROCK2 9344 0.016 0.34 NO
98 PRKACG PRKACG PRKACG 9467 0.014 0.33 NO
99 CSNK2B CSNK2B CSNK2B 9738 0.01 0.32 NO
100 WNT1 WNT1 WNT1 9871 0.0084 0.31 NO
101 SMAD4 SMAD4 SMAD4 10283 0.0018 0.29 NO
102 NLK NLK NLK 10341 0.00097 0.28 NO
103 PPP2CB PPP2CB PPP2CB 10417 -0.000072 0.28 NO
104 SKP1 SKP1 SKP1 10437 -0.00041 0.28 NO
105 CHP CHP CHP 10632 -0.0036 0.27 NO
106 GSK3B GSK3B GSK3B 10675 -0.0042 0.27 NO
107 PPP2R5C PPP2R5C PPP2R5C 10804 -0.006 0.26 NO
108 RAC1 RAC1 RAC1 11257 -0.013 0.24 NO
109 FRAT1 FRAT1 FRAT1 11400 -0.015 0.23 NO
110 PPP3R2 PPP3R2 PPP3R2 11477 -0.016 0.22 NO
111 AXIN1 AXIN1 AXIN1 11506 -0.017 0.22 NO
112 CAMK2D CAMK2D CAMK2D 11635 -0.019 0.22 NO
113 CUL1 CUL1 CUL1 11681 -0.02 0.22 NO
114 PPP2CA PPP2CA PPP2CA 11774 -0.021 0.21 NO
115 SMAD3 SMAD3 SMAD3 11956 -0.024 0.2 NO
116 CSNK1A1 CSNK1A1 CSNK1A1 12073 -0.027 0.2 NO
117 PRKACA PRKACA PRKACA 12112 -0.027 0.2 NO
118 WNT2B WNT2B WNT2B 12142 -0.028 0.2 NO
119 TBL1X TBL1X TBL1X 12200 -0.029 0.2 NO
120 RUVBL1 RUVBL1 RUVBL1 12611 -0.036 0.17 NO
121 RBX1 RBX1 RBX1 12694 -0.038 0.17 NO
122 CACYBP CACYBP CACYBP 12903 -0.043 0.16 NO
123 PPP2R5E PPP2R5E PPP2R5E 13067 -0.046 0.15 NO
124 MAPK9 MAPK9 MAPK9 13254 -0.05 0.15 NO
125 PPP2R5B PPP2R5B PPP2R5B 13339 -0.052 0.14 NO
126 VANGL1 VANGL1 VANGL1 13471 -0.055 0.14 NO
127 PLCB3 PLCB3 PLCB3 13702 -0.06 0.13 NO
128 RHOA RHOA RHOA 13795 -0.063 0.13 NO
129 DAAM1 DAAM1 DAAM1 14211 -0.074 0.11 NO
130 PLCB1 PLCB1 PLCB1 14218 -0.074 0.11 NO
131 PRKACB PRKACB PRKACB 14396 -0.08 0.1 NO
132 PPP3CC PPP3CC PPP3CC 14449 -0.082 0.1 NO
133 DKK1 DKK1 DKK1 14533 -0.085 0.1 NO
134 PORCN PORCN PORCN 14636 -0.088 0.1 NO
135 SOX17 SOX17 SOX17 14769 -0.094 0.099 NO
136 WNT2 WNT2 WNT2 14930 -0.099 0.095 NO
137 ROCK1 ROCK1 ROCK1 15020 -0.1 0.095 NO
138 CAMK2G CAMK2G CAMK2G 15116 -0.11 0.094 NO
139 PLCB2 PLCB2 PLCB2 15187 -0.11 0.095 NO
140 SFRP4 SFRP4 SFRP4 15255 -0.11 0.097 NO
141 PPP2R5A PPP2R5A PPP2R5A 15484 -0.12 0.09 NO
142 FOSL1 FOSL1 FOSL1 15750 -0.14 0.081 NO
143 CAMK2A CAMK2A CAMK2A 16154 -0.16 0.066 NO
144 FZD6 FZD6 FZD6 16736 -0.21 0.044 NO
145 WNT9B WNT9B WNT9B 16945 -0.23 0.043 NO
146 RAC2 RAC2 RAC2 17197 -0.27 0.041 NO
147 PRKCB PRKCB PRKCB 17350 -0.29 0.045 NO

Figure S49.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: BIOCARTA WNT PATHWAY.

Figure S50.  Get High-res Image For the top 5 core enriched genes in the pathway: BIOCARTA WNT PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: WNT SIGNALING

Table S26.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 COL9A3 COL9A3 COL9A3 3 0.91 0.12 YES
2 COL2A1 COL2A1 COL2A1 26 0.73 0.21 YES
3 CACNA1G CACNA1G CACNA1G 149 0.57 0.28 YES
4 CNTN2 CNTN2 CNTN2 357 0.48 0.33 YES
5 COL9A1 COL9A1 COL9A1 475 0.45 0.38 YES
6 COL9A2 COL9A2 COL9A2 540 0.43 0.43 YES
7 ST8SIA2 ST8SIA2 ST8SIA2 657 0.4 0.48 YES
8 CACNA1I CACNA1I CACNA1I 950 0.35 0.51 YES
9 GFRA1 GFRA1 GFRA1 988 0.34 0.55 YES
10 GFRA2 GFRA2 GFRA2 1188 0.32 0.58 YES
11 COL4A5 COL4A5 COL4A5 1333 0.3 0.61 YES
12 NCAN NCAN NCAN 1338 0.3 0.65 YES
13 NCAM1 NCAM1 NCAM1 1389 0.29 0.69 YES
14 COL5A1 COL5A1 COL5A1 2572 0.19 0.65 NO
15 AGRN AGRN AGRN 2662 0.19 0.67 NO
16 CACNB3 CACNB3 CACNB3 3036 0.17 0.67 NO
17 GDNF GDNF GDNF 3556 0.14 0.66 NO
18 COL1A1 COL1A1 COL1A1 4211 0.12 0.64 NO
19 PSPN PSPN PSPN 4782 0.1 0.62 NO
20 NRTN NRTN NRTN 4829 0.1 0.63 NO
21 CACNA1H CACNA1H CACNA1H 5037 0.096 0.63 NO
22 COL5A2 COL5A2 COL5A2 5202 0.091 0.63 NO
23 CACNA1S CACNA1S CACNA1S 5214 0.091 0.64 NO
24 COL1A2 COL1A2 COL1A2 7001 0.054 0.55 NO
25 CACNB2 CACNB2 CACNB2 8016 0.037 0.5 NO
26 CACNB1 CACNB1 CACNB1 8450 0.03 0.48 NO
27 COL4A4 COL4A4 COL4A4 10079 0.0051 0.39 NO
28 COL3A1 COL3A1 COL3A1 10196 0.0033 0.39 NO
29 COL4A3 COL4A3 COL4A3 10483 -0.001 0.37 NO
30 CACNB4 CACNB4 CACNB4 10565 -0.0022 0.37 NO
31 PRNP PRNP PRNP 11193 -0.012 0.33 NO
32 COL6A3 COL6A3 COL6A3 11196 -0.012 0.34 NO
33 COL4A1 COL4A1 COL4A1 12567 -0.036 0.26 NO
34 COL4A2 COL4A2 COL4A2 12681 -0.038 0.26 NO
35 COL6A1 COL6A1 COL6A1 12716 -0.038 0.27 NO
36 COL6A2 COL6A2 COL6A2 13029 -0.045 0.26 NO
37 ST8SIA4 ST8SIA4 ST8SIA4 14238 -0.075 0.2 NO
38 ARTN ARTN ARTN 15865 -0.14 0.13 NO

Figure S51.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: WNT SIGNALING.

Figure S52.  Get High-res Image For the top 5 core enriched genes in the pathway: WNT SIGNALING, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: ST WNT BETA CATENIN PATHWAY

Table S27.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 COL9A3 COL9A3 COL9A3 3 0.91 0.093 YES
2 COL2A1 COL2A1 COL2A1 26 0.73 0.17 YES
3 CACNA1G CACNA1G CACNA1G 149 0.57 0.22 YES
4 CNTN2 CNTN2 CNTN2 357 0.48 0.25 YES
5 SPTBN2 SPTBN2 SPTBN2 359 0.48 0.3 YES
6 COL9A1 COL9A1 COL9A1 475 0.45 0.34 YES
7 COL9A2 COL9A2 COL9A2 540 0.43 0.38 YES
8 ST8SIA2 ST8SIA2 ST8SIA2 657 0.4 0.42 YES
9 CACNA1I CACNA1I CACNA1I 950 0.35 0.44 YES
10 GFRA1 GFRA1 GFRA1 988 0.34 0.47 YES
11 GFRA2 GFRA2 GFRA2 1188 0.32 0.49 YES
12 COL4A5 COL4A5 COL4A5 1333 0.3 0.51 YES
13 NCAN NCAN NCAN 1338 0.3 0.54 YES
14 NCAM1 NCAM1 NCAM1 1389 0.29 0.57 YES
15 COL5A1 COL5A1 COL5A1 2572 0.19 0.52 NO
16 SPTBN4 SPTBN4 SPTBN4 2635 0.19 0.54 NO
17 AGRN AGRN AGRN 2662 0.19 0.56 NO
18 CACNB3 CACNB3 CACNB3 3036 0.17 0.55 NO
19 SPTBN5 SPTBN5 SPTBN5 3396 0.15 0.55 NO
20 GDNF GDNF GDNF 3556 0.14 0.56 NO
21 COL1A1 COL1A1 COL1A1 4211 0.12 0.53 NO
22 PSPN PSPN PSPN 4782 0.1 0.51 NO
23 NRTN NRTN NRTN 4829 0.1 0.52 NO
24 NRAS NRAS NRAS 4870 0.1 0.53 NO
25 CACNA1H CACNA1H CACNA1H 5037 0.096 0.53 NO
26 COL5A2 COL5A2 COL5A2 5202 0.091 0.53 NO
27 CACNA1S CACNA1S CACNA1S 5214 0.091 0.54 NO
28 KRAS KRAS KRAS 5433 0.085 0.53 NO
29 FGFR1 FGFR1 FGFR1 5777 0.078 0.52 NO
30 SPTBN1 SPTBN1 SPTBN1 6731 0.059 0.48 NO
31 COL1A2 COL1A2 COL1A2 7001 0.054 0.46 NO
32 SOS1 SOS1 SOS1 7453 0.046 0.44 NO
33 PTK2 PTK2 PTK2 7517 0.045 0.45 NO
34 CREB1 CREB1 CREB1 7961 0.038 0.43 NO
35 CACNB2 CACNB2 CACNB2 8016 0.037 0.43 NO
36 CACNB1 CACNB1 CACNB1 8450 0.03 0.4 NO
37 CDK1 CDK1 CDK1 9191 0.018 0.37 NO
38 COL4A4 COL4A4 COL4A4 10079 0.0051 0.32 NO
39 COL3A1 COL3A1 COL3A1 10196 0.0033 0.31 NO
40 COL4A3 COL4A3 COL4A3 10483 -0.001 0.3 NO
41 MAP2K2 MAP2K2 MAP2K2 10505 -0.0014 0.3 NO
42 CACNB4 CACNB4 CACNB4 10565 -0.0022 0.29 NO
43 PRNP PRNP PRNP 11193 -0.012 0.26 NO
44 COL6A3 COL6A3 COL6A3 11196 -0.012 0.26 NO
45 RAF1 RAF1 RAF1 11521 -0.017 0.24 NO
46 MAPK1 MAPK1 MAPK1 12006 -0.026 0.22 NO
47 SPTB SPTB SPTB 12229 -0.029 0.21 NO
48 HRAS HRAS HRAS 12385 -0.033 0.2 NO
49 COL4A1 COL4A1 COL4A1 12567 -0.036 0.2 NO
50 MAPK3 MAPK3 MAPK3 12593 -0.036 0.2 NO
51 COL4A2 COL4A2 COL4A2 12681 -0.038 0.2 NO
52 COL6A1 COL6A1 COL6A1 12716 -0.038 0.2 NO
53 MAP2K1 MAP2K1 MAP2K1 13011 -0.045 0.19 NO
54 COL6A2 COL6A2 COL6A2 13029 -0.045 0.19 NO
55 YWHAB YWHAB YWHAB 13088 -0.046 0.2 NO
56 GRB2 GRB2 GRB2 13151 -0.048 0.2 NO
57 SPTAN1 SPTAN1 SPTAN1 13405 -0.053 0.19 NO
58 FYN FYN FYN 13637 -0.059 0.18 NO
59 ST8SIA4 ST8SIA4 ST8SIA4 14238 -0.075 0.16 NO
60 SRC SRC SRC 15289 -0.11 0.11 NO
61 ARTN ARTN ARTN 15865 -0.14 0.092 NO
62 SPTA1 SPTA1 SPTA1 15912 -0.15 0.1 NO
63 RPS6KA5 RPS6KA5 RPS6KA5 16559 -0.2 0.089 NO

Figure S53.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: ST WNT BETA CATENIN PATHWAY.

Figure S54.  Get High-res Image For the top 5 core enriched genes in the pathway: ST WNT BETA CATENIN PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: PID NOTCH PATHWAY

Table S28.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 APC2 APC2 APC2 116 0.59 0.042 YES
2 FZD10 FZD10 FZD10 117 0.59 0.091 YES
3 HHIP HHIP HHIP 179 0.55 0.13 YES
4 WNT5A WNT5A WNT5A 183 0.55 0.18 YES
5 FZD9 FZD9 FZD9 240 0.52 0.22 YES
6 SMO SMO SMO 243 0.52 0.26 YES
7 PTCH1 PTCH1 PTCH1 246 0.52 0.3 YES
8 BMP4 BMP4 BMP4 504 0.44 0.32 YES
9 FZD2 FZD2 FZD2 554 0.43 0.36 YES
10 FZD3 FZD3 FZD3 606 0.41 0.39 YES
11 LEF1 LEF1 LEF1 622 0.41 0.42 YES
12 WNT11 WNT11 WNT11 739 0.38 0.45 YES
13 GLI1 GLI1 GLI1 752 0.38 0.48 YES
14 FZD8 FZD8 FZD8 862 0.36 0.5 YES
15 GLI2 GLI2 GLI2 1028 0.34 0.52 YES
16 WNT4 WNT4 WNT4 1034 0.34 0.55 YES
17 WNT3A WNT3A WNT3A 1136 0.32 0.57 YES
18 WNT6 WNT6 WNT6 1174 0.32 0.59 YES
19 BMP2 BMP2 BMP2 1455 0.29 0.6 YES
20 WNT5B WNT5B WNT5B 1467 0.28 0.62 YES
21 WNT7A WNT7A WNT7A 1585 0.27 0.64 YES
22 WNT7B WNT7B WNT7B 1702 0.26 0.65 YES
23 PTCH2 PTCH2 PTCH2 1931 0.24 0.66 YES
24 FZD1 FZD1 FZD1 2084 0.23 0.67 YES
25 TP53 TP53 TP53 2354 0.21 0.67 YES
26 WNT3 WNT3 WNT3 3088 0.17 0.65 NO
27 SUFU SUFU SUFU 3317 0.16 0.65 NO
28 WNT16 WNT16 WNT16 3521 0.15 0.65 NO
29 TCF7L1 TCF7L1 TCF7L1 3522 0.15 0.66 NO
30 FZD4 FZD4 FZD4 4392 0.12 0.62 NO
31 TCF7L2 TCF7L2 TCF7L2 4509 0.11 0.62 NO
32 FZD7 FZD7 FZD7 4559 0.11 0.63 NO
33 STK36 STK36 STK36 4739 0.1 0.63 NO
34 AXIN2 AXIN2 AXIN2 4796 0.1 0.64 NO
35 APC APC APC 5142 0.093 0.62 NO
36 WNT10A WNT10A WNT10A 5438 0.085 0.61 NO
37 GLI3 GLI3 GLI3 5820 0.077 0.6 NO
38 WNT9A WNT9A WNT9A 6082 0.071 0.59 NO
39 DVL2 DVL2 DVL2 6239 0.068 0.59 NO
40 CTNNB1 CTNNB1 CTNNB1 6511 0.063 0.58 NO
41 WNT10B WNT10B WNT10B 6945 0.055 0.56 NO
42 DVL1 DVL1 DVL1 7494 0.045 0.53 NO
43 DVL3 DVL3 DVL3 8623 0.027 0.47 NO
44 FZD5 FZD5 FZD5 8973 0.022 0.45 NO
45 WNT8B WNT8B WNT8B 9106 0.02 0.45 NO
46 TCF7 TCF7 TCF7 9174 0.019 0.45 NO
47 WNT1 WNT1 WNT1 9871 0.0084 0.41 NO
48 GSK3B GSK3B GSK3B 10675 -0.0042 0.36 NO
49 AXIN1 AXIN1 AXIN1 11506 -0.017 0.32 NO
50 WNT2B WNT2B WNT2B 12142 -0.028 0.29 NO
51 WNT2 WNT2 WNT2 14930 -0.099 0.14 NO
52 FZD6 FZD6 FZD6 16736 -0.21 0.06 NO
53 WNT9B WNT9B WNT9B 16945 -0.23 0.068 NO

Figure S55.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: PID NOTCH PATHWAY.

Figure S56.  Get High-res Image For the top 5 core enriched genes in the pathway: PID NOTCH PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: PID PS1PATHWAY

Table S29.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 DLK1 DLK1 DLK1 61 0.66 0.14 YES
2 DTX4 DTX4 DTX4 284 0.5 0.24 YES
3 CNTN1 CNTN1 CNTN1 300 0.5 0.34 YES
4 DTX1 DTX1 DTX1 326 0.49 0.45 YES
5 NEURL NEURL NEURL 656 0.4 0.52 YES
6 DLL1 DLL1 DLL1 683 0.4 0.6 YES
7 DNER DNER DNER 1870 0.25 0.59 NO
8 MIB1 MIB1 MIB1 3609 0.14 0.53 NO
9 JAG2 JAG2 JAG2 3712 0.14 0.55 NO
10 ADAM17 ADAM17 ADAM17 4481 0.11 0.53 NO
11 APH1A APH1A APH1A 5090 0.094 0.52 NO
12 RPS27A RPS27A RPS27A 5573 0.082 0.51 NO
13 MIB2 MIB2 MIB2 6850 0.057 0.45 NO
14 PSEN2 PSEN2 PSEN2 7295 0.049 0.44 NO
15 APH1B APH1B APH1B 7921 0.038 0.41 NO
16 ADAM10 ADAM10 ADAM10 8144 0.035 0.41 NO
17 PSEN1 PSEN1 PSEN1 8667 0.027 0.39 NO
18 NUMB NUMB NUMB 9721 0.011 0.33 NO
19 NCSTN NCSTN NCSTN 10412 0.000046 0.29 NO
20 DLL4 DLL4 DLL4 11152 -0.011 0.25 NO
21 UBA52 UBA52 UBA52 11191 -0.012 0.25 NO
22 PSENEN PSENEN PSENEN 12203 -0.029 0.2 NO
23 JAG1 JAG1 JAG1 14893 -0.098 0.078 NO
24 ARRB1 ARRB1 ARRB1 15145 -0.11 0.087 NO
25 DTX2 DTX2 DTX2 15572 -0.13 0.092 NO
26 ARRB2 ARRB2 ARRB2 16963 -0.24 0.066 NO

Figure S57.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: PID PS1PATHWAY.

Figure S58.  Get High-res Image For the top 5 core enriched genes in the pathway: PID PS1PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

genes ES table in pathway: PID WNT SIGNALING PATHWAY

Table S30.  Get Full Table This table shows a Running Enrichment Score (RES) of each gene in this pathway, that is, the enrichment score at this point in the ranked list of genes. All genes are ranked by Signal-to-Noise (S2N), a measure of similarity as default and are used to obtain ES matrix of all genes. In this way, GSEA tool uses expression pattern of not only overlapped genes but also not-overlapped genes to produce ES matrix.

Rank GENE SYMBOL DESC LIST.LOC S2N RES CORE_ENRICHMENT
1 DLK1 DLK1 DLK1 61 0.66 0.073 YES
2 DTX4 DTX4 DTX4 284 0.5 0.12 YES
3 CNTN1 CNTN1 CNTN1 300 0.5 0.18 YES
4 DTX1 DTX1 DTX1 326 0.49 0.23 YES
5 NEURL NEURL NEURL 656 0.4 0.26 YES
6 DLL1 DLL1 DLL1 683 0.4 0.3 YES
7 HEY1 HEY1 HEY1 802 0.37 0.34 YES
8 TLE1 TLE1 TLE1 1281 0.31 0.35 YES
9 DNER DNER DNER 1870 0.25 0.35 YES
10 HES1 HES1 HES1 2140 0.22 0.36 YES
11 HES5 HES5 HES5 2773 0.18 0.34 YES
12 HEYL HEYL HEYL 2966 0.17 0.35 YES
13 HDAC4 HDAC4 HDAC4 3040 0.17 0.37 YES
14 TLE4 TLE4 TLE4 3226 0.16 0.38 YES
15 MAML2 MAML2 MAML2 3448 0.15 0.38 YES
16 MIB1 MIB1 MIB1 3609 0.14 0.39 YES
17 TLE3 TLE3 TLE3 3707 0.14 0.4 YES
18 JAG2 JAG2 JAG2 3712 0.14 0.42 YES
19 FBXW7 FBXW7 FBXW7 3886 0.13 0.42 YES
20 CDK8 CDK8 CDK8 4177 0.12 0.42 YES
21 TLE2 TLE2 TLE2 4263 0.12 0.43 YES
22 ADAM17 ADAM17 ADAM17 4481 0.11 0.43 YES
23 MAML1 MAML1 MAML1 4517 0.11 0.44 YES
24 KAT2A KAT2A KAT2A 4777 0.1 0.44 NO
25 APH1A APH1A APH1A 5090 0.094 0.43 NO
26 CCNC CCNC CCNC 5572 0.082 0.42 NO
27 RPS27A RPS27A RPS27A 5573 0.082 0.42 NO
28 NCOR2 NCOR2 NCOR2 5595 0.081 0.43 NO
29 HDAC2 HDAC2 HDAC2 6183 0.069 0.41 NO
30 HDAC1 HDAC1 HDAC1 6407 0.065 0.4 NO
31 TBL1XR1 TBL1XR1 TBL1XR1 6689 0.06 0.4 NO
32 HDAC6 HDAC6 HDAC6 6804 0.058 0.4 NO
33 MIB2 MIB2 MIB2 6850 0.057 0.4 NO
34 EP300 EP300 EP300 6879 0.056 0.4 NO
35 PSEN2 PSEN2 PSEN2 7295 0.049 0.39 NO
36 MAML3 MAML3 MAML3 7682 0.042 0.37 NO
37 APH1B APH1B APH1B 7921 0.038 0.36 NO
38 CREBBP CREBBP CREBBP 8040 0.036 0.36 NO
39 ADAM10 ADAM10 ADAM10 8144 0.035 0.36 NO
40 HDAC8 HDAC8 HDAC8 8583 0.028 0.34 NO
41 PSEN1 PSEN1 PSEN1 8667 0.027 0.34 NO
42 MYC MYC MYC 8716 0.026 0.34 NO
43 HDAC3 HDAC3 HDAC3 8958 0.022 0.33 NO
44 NUMB NUMB NUMB 9721 0.011 0.28 NO
45 NCSTN NCSTN NCSTN 10412 0.000046 0.25 NO
46 SKP1 SKP1 SKP1 10437 -0.00041 0.24 NO
47 DLL4 DLL4 DLL4 11152 -0.011 0.21 NO
48 UBA52 UBA52 UBA52 11191 -0.012 0.21 NO
49 HDAC7 HDAC7 HDAC7 11624 -0.019 0.18 NO
50 CUL1 CUL1 CUL1 11681 -0.02 0.18 NO
51 SNW1 SNW1 SNW1 12178 -0.028 0.16 NO
52 HDAC10 HDAC10 HDAC10 12181 -0.028 0.16 NO
53 TBL1X TBL1X TBL1X 12200 -0.029 0.16 NO
54 PSENEN PSENEN PSENEN 12203 -0.029 0.17 NO
55 RBX1 RBX1 RBX1 12694 -0.038 0.15 NO
56 NCOR1 NCOR1 NCOR1 12788 -0.04 0.15 NO
57 HIF1A HIF1A HIF1A 13000 -0.044 0.14 NO
58 HDAC5 HDAC5 HDAC5 13171 -0.048 0.14 NO
59 MAMLD1 MAMLD1 MAMLD1 13550 -0.057 0.12 NO
60 RBPJ RBPJ RBPJ 13553 -0.057 0.13 NO
61 HDAC11 HDAC11 HDAC11 13970 -0.067 0.11 NO
62 HEY2 HEY2 HEY2 14843 -0.096 0.075 NO
63 JAG1 JAG1 JAG1 14893 -0.098 0.084 NO
64 ARRB1 ARRB1 ARRB1 15145 -0.11 0.083 NO
65 DTX2 DTX2 DTX2 15572 -0.13 0.074 NO
66 HDAC9 HDAC9 HDAC9 15808 -0.14 0.078 NO
67 KAT2B KAT2B KAT2B 16810 -0.22 0.048 NO
68 ARRB2 ARRB2 ARRB2 16963 -0.24 0.067 NO

Figure S59.  Get High-res Image This plot shows mRNAseq_cNMF expression data heatmap (on the left) a RunningEnrichmentScore(RES) plot (on the top right) and a Signal2Noise(S2N) plot (on the bottom right) of genes in the pathway: PID WNT SIGNALING PATHWAY.

Figure S60.  Get High-res Image For the top 5 core enriched genes in the pathway: PID WNT SIGNALING PATHWAY, this volcano plot shows how much they are up/down-regulated and significant. The significance was calculated by empirical bayesian fit

Fold change

For the top enriched genes, if you want to check whether they are

Expression level

For the top enriched genes, if you want to check whether they are

An expression pattern of top(30%)/middle(30%)/low(30%) in this subtype against other subtypes is available in a heatmap

Significant gene list

For the top enriched genes, if you want to check whether they are

Methods & Data
Input
  • Gene set database = c2.cp.v4.0.symbols.gmt

  • Expression data file = SARC-TP.uncv2.mRNAseq_RSEM_normalized_log2.txt

  • Phenotype data file = SARC-TP.mergedcluster.txt

GSEA analysis

For the Gene Set Enrichment Analysis (GSEA), Broad GSEA-P-R.1.0 version is used with class2: canonical pathways geneses from MSigDB. Further details about statistics are available inThe Broad GSEA website.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Subramanian, A. et al, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles., Proc. Natl. Acad. Sci. USA 102(43) (2005)