This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 9 clinical features across 261 patients, 57 significant findings detected with P value < 0.05 and Q value < 0.25.
-
4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', and 'HISTOLOGICAL_TYPE'.
-
4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
CNMF clustering analysis on RPPA data identified 4 subtypes that correlate to 'Time to Death', 'TUMOR_TISSUE_SITE', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
Consensus hierarchical clustering analysis on RPPA data identified 6 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'HISTOLOGICAL_TYPE', 'RESIDUAL_TUMOR', and 'ETHNICITY'.
-
5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
5 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH', 'TUMOR_TISSUE_SITE', 'GENDER', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 9 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 57 significant findings detected.
Clinical Features |
Time to Death |
YEARS TO BIRTH |
TUMOR TISSUE SITE |
GENDER |
RADIATION THERAPY |
HISTOLOGICAL TYPE |
RESIDUAL TUMOR |
RACE | ETHNICITY |
Statistical Tests | logrank test | Kruskal-Wallis (anova) | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test |
Copy Number Ratio CNMF subtypes |
0.127 (0.181) |
5.2e-07 (3.96e-05) |
3e-05 (0.000129) |
0.00556 (0.0114) |
0.325 (0.38) |
1e-05 (4.74e-05) |
0.177 (0.23) |
0.263 (0.32) |
0.541 (0.567) |
METHLYATION CNMF |
0.00201 (0.00475) |
8.8e-07 (3.96e-05) |
1e-05 (4.74e-05) |
0.00918 (0.0172) |
0.0007 (0.00202) |
1e-05 (4.74e-05) |
0.131 (0.185) |
0.874 (0.883) |
0.433 (0.47) |
RPPA CNMF subtypes |
3.8e-05 (0.000155) |
0.149 (0.201) |
1e-05 (4.74e-05) |
0.102 (0.15) |
0.00041 (0.00123) |
1e-05 (4.74e-05) |
0.0206 (0.0343) |
0.896 (0.896) |
0.272 (0.322) |
RPPA cHierClus subtypes |
0.00174 (0.00423) |
0.000968 (0.00262) |
1e-05 (4.74e-05) |
0.0115 (0.0204) |
0.00032 (0.00103) |
1e-05 (4.74e-05) |
0.00252 (0.00582) |
0.369 (0.421) |
0.264 (0.32) |
RNAseq CNMF subtypes |
0.0135 (0.0233) |
0.000272 (0.000942) |
1e-05 (4.74e-05) |
0.00072 (0.00202) |
0.00018 (0.000675) |
1e-05 (4.74e-05) |
3e-05 (0.000129) |
0.703 (0.719) |
0.375 (0.422) |
RNAseq cHierClus subtypes |
0.0597 (0.0927) |
6.25e-05 (0.000245) |
1e-05 (4.74e-05) |
0.00684 (0.0134) |
0.00985 (0.0181) |
1e-05 (4.74e-05) |
0.00037 (0.00115) |
0.113 (0.163) |
0.487 (0.515) |
MIRSEQ CNMF |
0.563 (0.582) |
0.141 (0.195) |
0.00032 (0.00103) |
0.00763 (0.0146) |
0.004 (0.00857) |
1e-05 (4.74e-05) |
0.0465 (0.0747) |
0.368 (0.421) |
0.185 (0.238) |
MIRSEQ CHIERARCHICAL |
0.442 (0.474) |
0.00357 (0.00784) |
0.0002 (0.00072) |
0.0116 (0.0204) |
0.198 (0.251) |
1e-05 (4.74e-05) |
0.00134 (0.00345) |
0.242 (0.303) |
0.0167 (0.0284) |
MIRseq Mature CNMF subtypes |
0.00468 (0.0098) |
0.0478 (0.0755) |
1e-05 (4.74e-05) |
0.0909 (0.136) |
0.0259 (0.0423) |
1e-05 (4.74e-05) |
0.0799 (0.122) |
0.422 (0.463) |
0.267 (0.32) |
MIRseq Mature cHierClus subtypes |
0.176 (0.23) |
0.00612 (0.0122) |
1e-05 (4.74e-05) |
0.0017 (0.00423) |
0.00099 (0.00262) |
1e-05 (4.74e-05) |
0.00292 (0.00657) |
0.145 (0.198) |
0.417 (0.463) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 95 | 60 | 39 | 63 |
P value = 0.127 (logrank test), Q value = 0.18
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 257 | 98 | 0.5 - 188.2 (31.1) |
subtype1 | 95 | 41 | 0.6 - 150.3 (31.5) |
subtype2 | 60 | 21 | 0.7 - 171.1 (34.7) |
subtype3 | 39 | 9 | 0.5 - 188.2 (37.0) |
subtype4 | 63 | 27 | 1.1 - 123.8 (27.9) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 5.2e-07 (Kruskal-Wallis (anova)), Q value = 4e-05
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 256 | 60.8 (14.7) |
subtype1 | 95 | 66.3 (12.8) |
subtype2 | 60 | 52.8 (16.0) |
subtype3 | 39 | 58.1 (12.4) |
subtype4 | 62 | 62.0 (14.0) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 3e-05 (Fisher's exact test), Q value = 0.00013
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 2 | 1 | 2 | 1 | 28 | 2 | 1 | 2 | 1 | 2 | 10 | 2 | 4 | 2 | 17 | 5 | 44 | 4 | 2 | 5 | 8 | 2 | 1 | 73 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
subtype1 | 0 | 2 | 0 | 0 | 1 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 | 4 | 17 | 0 | 0 | 2 | 3 | 1 | 1 | 38 | 0 | 1 | 2 | 0 | 0 | 4 | 3 |
subtype2 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 5 | 2 | 2 | 1 | 1 | 0 | 7 | 0 | 1 | 3 | 2 | 0 | 0 | 18 | 1 | 0 | 2 | 1 | 1 | 0 | 2 |
subtype3 | 1 | 1 | 0 | 1 | 0 | 1 | 7 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 4 | 3 | 0 | 0 | 2 | 1 | 0 | 9 | 2 | 0 | 0 | 1 | 0 | 1 | 0 |
subtype4 | 0 | 2 | 0 | 0 | 1 | 0 | 13 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 1 | 1 | 7 | 1 | 16 | 1 | 1 | 0 | 1 | 0 | 0 | 8 | 0 | 1 | 1 | 2 | 0 | 2 | 0 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.00556 (Fisher's exact test), Q value = 0.011
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 139 | 118 |
subtype1 | 44 | 51 |
subtype2 | 26 | 34 |
subtype3 | 27 | 12 |
subtype4 | 42 | 21 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.325 (Fisher's exact test), Q value = 0.38
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 179 | 72 |
subtype1 | 63 | 30 |
subtype2 | 46 | 13 |
subtype3 | 29 | 8 |
subtype4 | 41 | 21 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 59 | 2 | 1 | 103 | 9 | 24 | 28 | 2 | 2 | 6 | 21 |
subtype1 | 32 | 0 | 0 | 21 | 3 | 10 | 16 | 0 | 0 | 0 | 13 |
subtype2 | 27 | 2 | 1 | 10 | 2 | 5 | 1 | 2 | 2 | 6 | 2 |
subtype3 | 0 | 0 | 0 | 32 | 3 | 1 | 2 | 0 | 0 | 0 | 1 |
subtype4 | 0 | 0 | 0 | 40 | 1 | 8 | 9 | 0 | 0 | 0 | 5 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.177 (Fisher's exact test), Q value = 0.23
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 152 | 69 | 9 | 26 |
subtype1 | 49 | 35 | 4 | 7 |
subtype2 | 40 | 14 | 1 | 5 |
subtype3 | 26 | 5 | 2 | 5 |
subtype4 | 37 | 15 | 2 | 9 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.263 (Fisher's exact test), Q value = 0.32
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 18 | 224 |
subtype1 | 4 | 4 | 85 |
subtype2 | 2 | 3 | 54 |
subtype3 | 0 | 4 | 33 |
subtype4 | 0 | 7 | 52 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.541 (Fisher's exact test), Q value = 0.57
Table S10. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 220 |
subtype1 | 2 | 86 |
subtype2 | 2 | 48 |
subtype3 | 1 | 34 |
subtype4 | 0 | 52 |
Figure S9. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'

Table S11. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 55 | 57 | 73 | 76 |
P value = 0.00201 (logrank test), Q value = 0.0047
Table S12. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 261 | 99 | 0.5 - 188.2 (31.1) |
subtype1 | 55 | 12 | 0.7 - 150.3 (31.5) |
subtype2 | 57 | 23 | 0.7 - 188.2 (27.8) |
subtype3 | 73 | 24 | 0.5 - 123.8 (37.0) |
subtype4 | 76 | 40 | 0.6 - 171.1 (24.6) |
Figure S10. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 8.8e-07 (Kruskal-Wallis (anova)), Q value = 4e-05
Table S13. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 260 | 60.9 (14.7) |
subtype1 | 55 | 63.1 (14.3) |
subtype2 | 57 | 52.5 (17.1) |
subtype3 | 72 | 59.1 (11.5) |
subtype4 | 76 | 67.2 (12.3) |
Figure S11. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S14. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 2 | 1 | 2 | 1 | 29 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 17 | 5 | 45 | 4 | 2 | 5 | 8 | 2 | 1 | 74 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
subtype1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 4 | 0 | 12 | 0 | 0 | 2 | 0 | 0 | 0 | 18 | 0 | 1 | 2 | 0 | 0 | 3 | 3 |
subtype2 | 1 | 1 | 2 | 0 | 1 | 1 | 7 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 1 | 8 | 1 | 1 | 2 | 3 | 0 | 0 | 17 | 0 | 0 | 0 | 2 | 1 | 0 | 1 |
subtype3 | 0 | 0 | 0 | 1 | 1 | 0 | 18 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 1 | 0 | 3 | 0 | 6 | 3 | 1 | 0 | 4 | 1 | 1 | 23 | 3 | 0 | 1 | 0 | 0 | 1 | 0 |
subtype4 | 0 | 5 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 10 | 4 | 19 | 0 | 0 | 1 | 1 | 1 | 0 | 16 | 0 | 1 | 2 | 2 | 0 | 3 | 1 |
Figure S12. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.00918 (Fisher's exact test), Q value = 0.017
Table S15. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 142 | 119 |
subtype1 | 23 | 32 |
subtype2 | 35 | 22 |
subtype3 | 49 | 24 |
subtype4 | 35 | 41 |
Figure S13. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'

P value = 7e-04 (Fisher's exact test), Q value = 0.002
Table S16. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 181 | 74 |
subtype1 | 35 | 18 |
subtype2 | 44 | 13 |
subtype3 | 59 | 10 |
subtype4 | 43 | 33 |
Figure S14. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 59 | 2 | 1 | 105 | 9 | 25 | 29 | 2 | 2 | 6 | 21 |
subtype1 | 23 | 0 | 1 | 4 | 4 | 5 | 9 | 0 | 0 | 0 | 9 |
subtype2 | 22 | 2 | 0 | 11 | 4 | 5 | 2 | 2 | 2 | 6 | 1 |
subtype3 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 14 | 0 | 0 | 17 | 1 | 15 | 18 | 0 | 0 | 0 | 11 |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.131 (Fisher's exact test), Q value = 0.18
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 155 | 70 | 9 | 26 |
subtype1 | 27 | 20 | 1 | 6 |
subtype2 | 33 | 13 | 3 | 8 |
subtype3 | 54 | 13 | 1 | 5 |
subtype4 | 41 | 24 | 4 | 7 |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.874 (Fisher's exact test), Q value = 0.88
Table S19. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 18 | 228 |
subtype1 | 2 | 2 | 50 |
subtype2 | 1 | 4 | 51 |
subtype3 | 1 | 7 | 61 |
subtype4 | 2 | 5 | 66 |
Figure S17. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'RACE'

P value = 0.433 (Fisher's exact test), Q value = 0.47
Table S20. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 223 |
subtype1 | 1 | 50 |
subtype2 | 2 | 44 |
subtype3 | 0 | 62 |
subtype4 | 2 | 67 |
Figure S18. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'ETHNICITY'

Table S21. Description of clustering approach #3: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 60 | 45 | 61 | 57 |
P value = 3.8e-05 (logrank test), Q value = 0.00016
Table S22. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 223 | 84 | 0.5 - 188.2 (30.4) |
subtype1 | 60 | 17 | 8.6 - 136.4 (32.7) |
subtype2 | 45 | 27 | 1.1 - 112.0 (19.7) |
subtype3 | 61 | 17 | 0.5 - 188.2 (35.9) |
subtype4 | 57 | 23 | 0.6 - 171.1 (25.4) |
Figure S19. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.149 (Kruskal-Wallis (anova)), Q value = 0.2
Table S23. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 222 | 61.9 (14.3) |
subtype1 | 60 | 60.7 (15.3) |
subtype2 | 45 | 63.6 (16.0) |
subtype3 | 60 | 59.6 (11.6) |
subtype4 | 57 | 64.2 (14.2) |
Figure S20. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S24. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 6 | 1 | 2 | 1 | 22 | 2 | 1 | 1 | 1 | 11 | 2 | 4 | 2 | 15 | 5 | 41 | 3 | 2 | 7 | 2 | 1 | 65 | 2 | 2 | 5 | 4 | 7 | 4 |
subtype1 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 4 | 1 | 0 | 1 | 2 | 1 | 15 | 0 | 1 | 0 | 0 | 0 | 25 | 0 | 0 | 2 | 1 | 0 | 3 |
subtype2 | 1 | 2 | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 4 | 3 | 13 | 0 | 1 | 2 | 1 | 0 | 5 | 0 | 0 | 0 | 1 | 1 | 0 |
subtype3 | 0 | 0 | 0 | 1 | 1 | 14 | 1 | 1 | 1 | 1 | 3 | 0 | 0 | 0 | 2 | 0 | 3 | 3 | 0 | 5 | 1 | 1 | 18 | 2 | 0 | 1 | 1 | 1 | 0 |
subtype4 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 1 | 7 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 2 | 2 | 1 | 5 | 1 |
Figure S21. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.102 (Fisher's exact test), Q value = 0.15
Table S25. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 117 | 106 |
subtype1 | 27 | 33 |
subtype2 | 23 | 22 |
subtype3 | 40 | 21 |
subtype4 | 27 | 30 |
Figure S22. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.00041 (Fisher's exact test), Q value = 0.0012
Table S26. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 156 | 62 |
subtype1 | 43 | 17 |
subtype2 | 23 | 21 |
subtype3 | 52 | 6 |
subtype4 | 38 | 18 |
Figure S23. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S27. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 54 | 1 | 82 | 9 | 23 | 29 | 1 | 1 | 4 | 19 |
subtype1 | 30 | 0 | 3 | 2 | 15 | 4 | 1 | 0 | 0 | 5 |
subtype2 | 7 | 0 | 16 | 2 | 2 | 10 | 0 | 1 | 3 | 4 |
subtype3 | 1 | 0 | 57 | 2 | 0 | 1 | 0 | 0 | 0 | 0 |
subtype4 | 16 | 1 | 6 | 3 | 6 | 14 | 0 | 0 | 1 | 10 |
Figure S24. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0206 (Fisher's exact test), Q value = 0.034
Table S28. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 128 | 65 | 7 | 22 |
subtype1 | 35 | 22 | 1 | 2 |
subtype2 | 20 | 14 | 3 | 8 |
subtype3 | 41 | 10 | 1 | 9 |
subtype4 | 32 | 19 | 2 | 3 |
Figure S25. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.896 (Fisher's exact test), Q value = 0.9
Table S29. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 13 | 196 |
subtype1 | 1 | 2 | 57 |
subtype2 | 1 | 4 | 39 |
subtype3 | 2 | 4 | 53 |
subtype4 | 2 | 3 | 47 |
Figure S26. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.272 (Fisher's exact test), Q value = 0.32
Table S30. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 3 | 191 |
subtype1 | 2 | 55 |
subtype2 | 1 | 35 |
subtype3 | 0 | 52 |
subtype4 | 0 | 49 |
Figure S27. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'

Table S31. Description of clustering approach #4: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 25 | 36 | 50 | 68 | 22 | 22 |
P value = 0.00174 (logrank test), Q value = 0.0042
Table S32. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 223 | 84 | 0.5 - 188.2 (30.4) |
subtype1 | 25 | 7 | 4.6 - 136.4 (32.7) |
subtype2 | 36 | 11 | 6.3 - 150.3 (36.6) |
subtype3 | 50 | 23 | 0.6 - 188.2 (19.6) |
subtype4 | 68 | 21 | 0.5 - 159.3 (36.1) |
subtype5 | 22 | 10 | 1.1 - 86.8 (33.9) |
subtype6 | 22 | 12 | 0.7 - 71.3 (21.2) |
Figure S28. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000968 (Kruskal-Wallis (anova)), Q value = 0.0026
Table S33. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 222 | 61.9 (14.3) |
subtype1 | 25 | 62.4 (14.9) |
subtype2 | 36 | 63.6 (12.6) |
subtype3 | 50 | 68.3 (13.8) |
subtype4 | 67 | 58.0 (11.6) |
subtype5 | 22 | 62.8 (14.8) |
subtype6 | 22 | 54.7 (18.8) |
Figure S29. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S34. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 6 | 1 | 2 | 1 | 22 | 2 | 1 | 1 | 1 | 11 | 2 | 4 | 2 | 15 | 5 | 41 | 3 | 2 | 7 | 2 | 1 | 65 | 2 | 2 | 5 | 4 | 7 | 4 |
subtype1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 1 | 0 | 0 | 9 | 0 | 0 | 2 | 1 | 0 | 1 |
subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 | 3 | 1 | 6 | 0 | 1 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 2 | 1 |
subtype3 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 9 | 4 | 14 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 2 | 1 | 3 | 2 | 1 |
subtype4 | 0 | 0 | 0 | 1 | 1 | 16 | 1 | 0 | 1 | 1 | 3 | 0 | 1 | 0 | 2 | 0 | 5 | 3 | 0 | 5 | 1 | 1 | 21 | 2 | 0 | 1 | 0 | 1 | 1 |
subtype5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 1 | 0 |
subtype6 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Figure S30. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.0115 (Fisher's exact test), Q value = 0.02
Table S35. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 117 | 106 |
subtype1 | 10 | 15 |
subtype2 | 12 | 24 |
subtype3 | 24 | 26 |
subtype4 | 46 | 22 |
subtype5 | 11 | 11 |
subtype6 | 14 | 8 |
Figure S31. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.00032 (Fisher's exact test), Q value = 0.001
Table S36. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 156 | 62 |
subtype1 | 16 | 9 |
subtype2 | 27 | 9 |
subtype3 | 27 | 22 |
subtype4 | 58 | 7 |
subtype5 | 17 | 5 |
subtype6 | 11 | 10 |
Figure S32. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S37. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 54 | 1 | 82 | 9 | 23 | 29 | 1 | 1 | 4 | 19 |
subtype1 | 10 | 0 | 1 | 0 | 10 | 1 | 0 | 0 | 0 | 3 |
subtype2 | 23 | 0 | 0 | 1 | 5 | 5 | 0 | 0 | 0 | 2 |
subtype3 | 4 | 0 | 12 | 2 | 6 | 15 | 0 | 0 | 0 | 11 |
subtype4 | 3 | 0 | 62 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
subtype5 | 12 | 0 | 2 | 0 | 0 | 5 | 0 | 0 | 1 | 2 |
subtype6 | 2 | 1 | 5 | 6 | 2 | 2 | 0 | 1 | 3 | 0 |
Figure S33. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.00252 (Fisher's exact test), Q value = 0.0058
Table S38. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 128 | 65 | 7 | 22 |
subtype1 | 15 | 9 | 0 | 1 |
subtype2 | 18 | 14 | 1 | 2 |
subtype3 | 27 | 16 | 1 | 6 |
subtype4 | 49 | 12 | 1 | 6 |
subtype5 | 9 | 11 | 2 | 0 |
subtype6 | 10 | 3 | 2 | 7 |
Figure S34. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.369 (Fisher's exact test), Q value = 0.42
Table S39. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 13 | 196 |
subtype1 | 0 | 1 | 24 |
subtype2 | 0 | 0 | 36 |
subtype3 | 2 | 5 | 39 |
subtype4 | 3 | 5 | 57 |
subtype5 | 1 | 0 | 21 |
subtype6 | 0 | 2 | 19 |
Figure S35. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.264 (Fisher's exact test), Q value = 0.32
Table S40. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 3 | 191 |
subtype1 | 1 | 23 |
subtype2 | 0 | 33 |
subtype3 | 2 | 41 |
subtype4 | 0 | 59 |
subtype5 | 0 | 19 |
subtype6 | 0 | 16 |
Figure S36. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'

Table S41. Description of clustering approach #5: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 116 | 78 | 65 |
P value = 0.0135 (logrank test), Q value = 0.023
Table S42. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 259 | 98 | 0.5 - 188.2 (31.1) |
subtype1 | 116 | 40 | 0.6 - 171.1 (31.0) |
subtype2 | 78 | 27 | 0.5 - 159.3 (36.7) |
subtype3 | 65 | 31 | 0.7 - 188.2 (21.7) |
Figure S37. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000272 (Kruskal-Wallis (anova)), Q value = 0.00094
Table S43. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 60.7 (14.6) |
subtype1 | 116 | 64.9 (13.4) |
subtype2 | 77 | 57.9 (11.5) |
subtype3 | 65 | 56.5 (17.8) |
Figure S38. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S44. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 2 | 1 | 2 | 1 | 29 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 17 | 5 | 45 | 4 | 2 | 5 | 8 | 2 | 1 | 72 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
subtype1 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 5 | 1 | 0 | 2 | 13 | 4 | 31 | 0 | 0 | 2 | 0 | 0 | 0 | 35 | 0 | 2 | 3 | 2 | 0 | 4 | 4 |
subtype2 | 0 | 0 | 0 | 1 | 1 | 0 | 22 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 1 | 0 | 3 | 0 | 6 | 4 | 1 | 0 | 5 | 1 | 1 | 22 | 3 | 0 | 1 | 0 | 0 | 1 | 0 |
subtype3 | 1 | 3 | 2 | 0 | 1 | 1 | 6 | 0 | 1 | 1 | 1 | 0 | 3 | 1 | 3 | 0 | 1 | 1 | 8 | 0 | 1 | 3 | 3 | 1 | 0 | 15 | 0 | 0 | 1 | 2 | 1 | 2 | 1 |
Figure S39. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.00072 (Fisher's exact test), Q value = 0.002
Table S45. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 141 | 118 |
subtype1 | 50 | 66 |
subtype2 | 55 | 23 |
subtype3 | 36 | 29 |
Figure S40. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.00018 (Fisher's exact test), Q value = 0.00067
Table S46. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 179 | 74 |
subtype1 | 67 | 47 |
subtype2 | 64 | 10 |
subtype3 | 48 | 17 |
Figure S41. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S47. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 58 | 2 | 1 | 104 | 9 | 25 | 29 | 2 | 2 | 6 | 21 |
subtype1 | 38 | 0 | 1 | 12 | 1 | 23 | 25 | 0 | 0 | 0 | 16 |
subtype2 | 1 | 0 | 0 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 19 | 2 | 0 | 15 | 8 | 2 | 4 | 2 | 2 | 6 | 5 |
Figure S42. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 3e-05 (Fisher's exact test), Q value = 0.00013
Table S48. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 154 | 69 | 9 | 26 |
subtype1 | 69 | 40 | 3 | 4 |
subtype2 | 57 | 13 | 1 | 7 |
subtype3 | 28 | 16 | 5 | 15 |
Figure S43. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.703 (Fisher's exact test), Q value = 0.72
Table S49. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 18 | 226 |
subtype1 | 3 | 6 | 103 |
subtype2 | 2 | 8 | 64 |
subtype3 | 1 | 4 | 59 |
Figure S44. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.375 (Fisher's exact test), Q value = 0.42
Table S50. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 222 |
subtype1 | 3 | 104 |
subtype2 | 0 | 66 |
subtype3 | 2 | 52 |
Figure S45. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'

Table S51. Description of clustering approach #6: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Number of samples | 48 | 21 | 50 | 47 | 31 | 29 | 33 |
P value = 0.0597 (logrank test), Q value = 0.093
Table S52. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 259 | 98 | 0.5 - 188.2 (31.1) |
subtype1 | 48 | 18 | 3.2 - 150.3 (34.5) |
subtype2 | 21 | 4 | 5.3 - 102.0 (29.0) |
subtype3 | 50 | 17 | 0.5 - 123.0 (38.4) |
subtype4 | 47 | 21 | 0.7 - 188.2 (27.0) |
subtype5 | 31 | 14 | 0.6 - 112.0 (18.1) |
subtype6 | 29 | 9 | 8.6 - 159.3 (26.9) |
subtype7 | 33 | 15 | 1.1 - 171.1 (19.7) |
Figure S46. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 6.25e-05 (Kruskal-Wallis (anova)), Q value = 0.00024
Table S53. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 60.7 (14.6) |
subtype1 | 48 | 66.8 (12.3) |
subtype2 | 21 | 61.5 (11.7) |
subtype3 | 50 | 60.0 (12.0) |
subtype4 | 47 | 54.5 (18.3) |
subtype5 | 31 | 67.8 (14.0) |
subtype6 | 28 | 54.1 (9.9) |
subtype7 | 33 | 60.2 (15.4) |
Figure S47. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S54. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 2 | 1 | 2 | 1 | 29 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 17 | 5 | 45 | 4 | 2 | 5 | 8 | 2 | 1 | 72 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
subtype1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 11 | 0 | 0 | 1 | 0 | 0 | 0 | 23 | 0 | 0 | 1 | 1 | 0 | 3 | 1 |
subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 1 | 2 | 0 | 0 | 0 | 1 |
subtype3 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 3 | 0 | 6 | 2 | 1 | 0 | 4 | 1 | 1 | 21 | 2 | 0 | 1 | 0 | 0 | 1 | 0 |
subtype4 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 7 | 0 | 1 | 2 | 3 | 1 | 0 | 12 | 0 | 0 | 1 | 2 | 1 | 1 | 0 |
subtype5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 2 | 2 |
subtype6 | 0 | 0 | 0 | 0 | 0 | 1 | 20 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype7 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 1 | 2 | 2 | 8 | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Figure S48. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.00684 (Fisher's exact test), Q value = 0.013
Table S55. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 141 | 118 |
subtype1 | 21 | 27 |
subtype2 | 10 | 11 |
subtype3 | 30 | 20 |
subtype4 | 25 | 22 |
subtype5 | 15 | 16 |
subtype6 | 25 | 4 |
subtype7 | 15 | 18 |
Figure S49. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.00985 (Fisher's exact test), Q value = 0.018
Table S56. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 179 | 74 |
subtype1 | 32 | 15 |
subtype2 | 13 | 8 |
subtype3 | 40 | 8 |
subtype4 | 32 | 15 |
subtype5 | 18 | 13 |
subtype6 | 25 | 2 |
subtype7 | 19 | 13 |
Figure S50. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S57. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 58 | 2 | 1 | 104 | 9 | 25 | 29 | 2 | 2 | 6 | 21 |
subtype1 | 22 | 0 | 0 | 0 | 0 | 14 | 7 | 0 | 0 | 0 | 5 |
subtype2 | 9 | 0 | 0 | 1 | 0 | 3 | 5 | 0 | 0 | 0 | 3 |
subtype3 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 16 | 0 | 0 | 7 | 8 | 2 | 2 | 1 | 2 | 6 | 3 |
subtype5 | 3 | 0 | 0 | 9 | 0 | 5 | 9 | 1 | 0 | 0 | 4 |
subtype6 | 1 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype7 | 7 | 2 | 1 | 9 | 1 | 1 | 6 | 0 | 0 | 0 | 6 |
Figure S51. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.00037 (Fisher's exact test), Q value = 0.0011
Table S58. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 154 | 69 | 9 | 26 |
subtype1 | 26 | 21 | 1 | 0 |
subtype2 | 12 | 6 | 0 | 3 |
subtype3 | 38 | 11 | 0 | 1 |
subtype4 | 21 | 11 | 5 | 9 |
subtype5 | 19 | 8 | 1 | 3 |
subtype6 | 20 | 2 | 1 | 6 |
subtype7 | 18 | 10 | 1 | 4 |
Figure S52. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.113 (Fisher's exact test), Q value = 0.16
Table S59. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 18 | 226 |
subtype1 | 1 | 1 | 46 |
subtype2 | 1 | 2 | 18 |
subtype3 | 0 | 5 | 44 |
subtype4 | 1 | 2 | 43 |
subtype5 | 1 | 0 | 26 |
subtype6 | 2 | 3 | 21 |
subtype7 | 0 | 5 | 28 |
Figure S53. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.487 (Fisher's exact test), Q value = 0.52
Table S60. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 222 |
subtype1 | 1 | 45 |
subtype2 | 1 | 19 |
subtype3 | 0 | 46 |
subtype4 | 2 | 37 |
subtype5 | 1 | 25 |
subtype6 | 0 | 21 |
subtype7 | 0 | 29 |
Figure S54. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'

Table S61. Description of clustering approach #7: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 107 | 51 | 101 |
P value = 0.563 (logrank test), Q value = 0.58
Table S62. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 259 | 98 | 0.5 - 188.2 (31.1) |
subtype1 | 107 | 43 | 0.6 - 188.2 (29.5) |
subtype2 | 51 | 18 | 3.1 - 150.3 (32.0) |
subtype3 | 101 | 37 | 0.5 - 159.3 (31.1) |
Figure S55. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.141 (Kruskal-Wallis (anova)), Q value = 0.19
Table S63. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 60.9 (14.7) |
subtype1 | 107 | 60.3 (17.1) |
subtype2 | 51 | 64.5 (13.3) |
subtype3 | 100 | 59.6 (12.4) |
Figure S56. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.00032 (Fisher's exact test), Q value = 0.001
Table S64. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 2 | 1 | 2 | 1 | 28 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 16 | 5 | 45 | 4 | 2 | 5 | 8 | 2 | 1 | 74 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
subtype1 | 1 | 3 | 2 | 0 | 1 | 0 | 6 | 1 | 1 | 0 | 0 | 0 | 7 | 1 | 2 | 1 | 5 | 2 | 15 | 0 | 1 | 4 | 3 | 1 | 0 | 36 | 0 | 1 | 2 | 3 | 1 | 2 | 4 |
subtype2 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 7 | 2 | 17 | 0 | 0 | 1 | 0 | 0 | 0 | 11 | 0 | 1 | 2 | 1 | 0 | 2 | 1 |
subtype3 | 0 | 1 | 0 | 1 | 1 | 1 | 21 | 1 | 0 | 2 | 1 | 2 | 4 | 1 | 1 | 0 | 4 | 1 | 13 | 4 | 1 | 0 | 5 | 1 | 1 | 27 | 3 | 0 | 1 | 0 | 0 | 3 | 0 |
Figure S57. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.00763 (Fisher's exact test), Q value = 0.015
Table S65. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 140 | 119 |
subtype1 | 47 | 60 |
subtype2 | 27 | 24 |
subtype3 | 66 | 35 |
Figure S58. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'

P value = 0.004 (Fisher's exact test), Q value = 0.0086
Table S66. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 180 | 73 |
subtype1 | 79 | 28 |
subtype2 | 26 | 24 |
subtype3 | 75 | 21 |
Figure S59. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S67. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 59 | 2 | 1 | 104 | 9 | 25 | 29 | 2 | 2 | 6 | 20 |
subtype1 | 41 | 2 | 0 | 16 | 5 | 9 | 14 | 2 | 2 | 6 | 10 |
subtype2 | 13 | 0 | 0 | 5 | 3 | 11 | 11 | 0 | 0 | 0 | 8 |
subtype3 | 5 | 0 | 1 | 83 | 1 | 5 | 4 | 0 | 0 | 0 | 2 |
Figure S60. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0465 (Fisher's exact test), Q value = 0.075
Table S68. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 154 | 69 | 9 | 26 |
subtype1 | 55 | 36 | 6 | 10 |
subtype2 | 28 | 15 | 0 | 7 |
subtype3 | 71 | 18 | 3 | 9 |
Figure S61. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.368 (Fisher's exact test), Q value = 0.42
Table S69. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 18 | 227 |
subtype1 | 1 | 5 | 100 |
subtype2 | 1 | 4 | 44 |
subtype3 | 4 | 9 | 83 |
Figure S62. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'RACE'

P value = 0.185 (Fisher's exact test), Q value = 0.24
Table S70. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 222 |
subtype1 | 3 | 92 |
subtype2 | 2 | 45 |
subtype3 | 0 | 85 |
Figure S63. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'ETHNICITY'

Table S71. Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 84 | 38 | 115 | 22 |
P value = 0.442 (logrank test), Q value = 0.47
Table S72. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 259 | 98 | 0.5 - 188.2 (31.1) |
subtype1 | 84 | 34 | 0.6 - 171.1 (29.2) |
subtype2 | 38 | 12 | 0.7 - 150.3 (32.4) |
subtype3 | 115 | 42 | 0.5 - 159.3 (33.3) |
subtype4 | 22 | 10 | 1.1 - 188.2 (29.5) |
Figure S64. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.00357 (Kruskal-Wallis (anova)), Q value = 0.0078
Table S73. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 258 | 60.9 (14.7) |
subtype1 | 84 | 63.5 (14.4) |
subtype2 | 38 | 64.2 (14.2) |
subtype3 | 114 | 60.2 (12.7) |
subtype4 | 22 | 48.6 (20.1) |
Figure S65. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 2e-04 (Fisher's exact test), Q value = 0.00072
Table S74. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | HEAD AND NECK - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - PANCREAS | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | SUPERFICIAL TRUNK - FLANK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 2 | 1 | 2 | 1 | 28 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 4 | 2 | 16 | 5 | 45 | 4 | 2 | 5 | 8 | 2 | 1 | 74 | 3 | 2 | 5 | 4 | 1 | 7 | 5 |
subtype1 | 0 | 1 | 0 | 0 | 1 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 1 | 3 | 2 | 15 | 0 | 1 | 4 | 1 | 1 | 0 | 33 | 0 | 1 | 2 | 1 | 0 | 2 | 3 |
subtype2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 2 | 0 | 0 | 2 | 2 |
subtype3 | 0 | 4 | 0 | 1 | 1 | 0 | 22 | 1 | 0 | 1 | 1 | 2 | 4 | 1 | 1 | 0 | 7 | 1 | 17 | 4 | 1 | 0 | 5 | 1 | 1 | 29 | 3 | 1 | 1 | 2 | 0 | 3 | 0 |
subtype4 | 1 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
Figure S66. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.0116 (Fisher's exact test), Q value = 0.02
Table S75. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 140 | 119 |
subtype1 | 35 | 49 |
subtype2 | 18 | 20 |
subtype3 | 72 | 43 |
subtype4 | 15 | 7 |
Figure S67. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'

P value = 0.198 (Fisher's exact test), Q value = 0.25
Table S76. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 180 | 73 |
subtype1 | 60 | 24 |
subtype2 | 22 | 16 |
subtype3 | 83 | 26 |
subtype4 | 15 | 7 |
Figure S68. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S77. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | GIANT CELL 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA WITH GIANT CELLS | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 59 | 2 | 1 | 104 | 9 | 25 | 29 | 2 | 2 | 6 | 20 |
subtype1 | 37 | 2 | 0 | 12 | 1 | 10 | 15 | 0 | 0 | 0 | 7 |
subtype2 | 11 | 0 | 0 | 4 | 5 | 7 | 6 | 1 | 0 | 0 | 4 |
subtype3 | 7 | 0 | 1 | 84 | 0 | 8 | 7 | 0 | 0 | 0 | 8 |
subtype4 | 4 | 0 | 0 | 4 | 3 | 0 | 1 | 1 | 2 | 6 | 1 |
Figure S69. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.00134 (Fisher's exact test), Q value = 0.0034
Table S78. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 154 | 69 | 9 | 26 |
subtype1 | 41 | 35 | 3 | 5 |
subtype2 | 23 | 6 | 0 | 8 |
subtype3 | 77 | 25 | 3 | 10 |
subtype4 | 13 | 3 | 3 | 3 |
Figure S70. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.242 (Fisher's exact test), Q value = 0.3
Table S79. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 6 | 18 | 227 |
subtype1 | 1 | 2 | 79 |
subtype2 | 1 | 2 | 34 |
subtype3 | 4 | 12 | 94 |
subtype4 | 0 | 2 | 20 |
Figure S71. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'RACE'

P value = 0.0167 (Fisher's exact test), Q value = 0.028
Table S80. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 5 | 222 |
subtype1 | 2 | 75 |
subtype2 | 1 | 36 |
subtype3 | 0 | 97 |
subtype4 | 2 | 14 |
Figure S72. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'ETHNICITY'

Table S81. Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 60 | 27 | 48 | 23 | 40 |
P value = 0.00468 (logrank test), Q value = 0.0098
Table S82. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 198 | 76 | 0.5 - 188.2 (27.9) |
subtype1 | 60 | 23 | 0.6 - 188.2 (23.0) |
subtype2 | 27 | 7 | 3.2 - 150.3 (33.4) |
subtype3 | 48 | 17 | 0.5 - 123.0 (36.1) |
subtype4 | 23 | 15 | 0.7 - 71.3 (22.9) |
subtype5 | 40 | 14 | 3.1 - 171.1 (24.4) |
Figure S73. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0478 (Kruskal-Wallis (anova)), Q value = 0.076
Table S83. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 197 | 61.2 (14.9) |
subtype1 | 60 | 57.7 (18.1) |
subtype2 | 27 | 65.9 (11.6) |
subtype3 | 47 | 60.2 (10.9) |
subtype4 | 23 | 57.7 (15.7) |
subtype5 | 40 | 66.8 (13.2) |
Figure S74. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S84. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 1 | 1 | 2 | 1 | 21 | 1 | 1 | 1 | 2 | 8 | 2 | 4 | 1 | 13 | 4 | 42 | 2 | 2 | 3 | 5 | 1 | 52 | 2 | 2 | 4 | 2 | 5 | 4 |
subtype1 | 1 | 2 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 2 | 1 | 9 | 0 | 1 | 3 | 2 | 1 | 22 | 0 | 0 | 1 | 1 | 1 | 2 |
subtype2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 1 | 0 | 0 |
subtype3 | 0 | 0 | 0 | 1 | 1 | 1 | 11 | 0 | 0 | 1 | 2 | 2 | 0 | 1 | 0 | 2 | 0 | 6 | 1 | 1 | 0 | 2 | 0 | 13 | 2 | 0 | 0 | 0 | 1 | 0 |
subtype4 | 0 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 6 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype5 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 7 | 2 | 13 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 3 | 0 | 3 | 2 |
Figure S75. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.0909 (Fisher's exact test), Q value = 0.14
Table S85. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 111 | 87 |
subtype1 | 29 | 31 |
subtype2 | 12 | 15 |
subtype3 | 33 | 15 |
subtype4 | 16 | 7 |
subtype5 | 21 | 19 |
Figure S76. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.0259 (Fisher's exact test), Q value = 0.042
Table S86. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 133 | 62 |
subtype1 | 45 | 15 |
subtype2 | 18 | 8 |
subtype3 | 36 | 10 |
subtype4 | 15 | 8 |
subtype5 | 19 | 21 |
Figure S77. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S87. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 43 | 2 | 72 | 8 | 21 | 28 | 2 | 1 | 5 | 16 |
subtype1 | 23 | 2 | 7 | 4 | 6 | 7 | 2 | 1 | 3 | 5 |
subtype2 | 15 | 0 | 0 | 0 | 5 | 5 | 0 | 0 | 0 | 2 |
subtype3 | 1 | 0 | 46 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 2 | 0 | 13 | 1 | 2 | 2 | 0 | 0 | 2 | 1 |
subtype5 | 2 | 0 | 6 | 3 | 7 | 14 | 0 | 0 | 0 | 8 |
Figure S78. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0799 (Fisher's exact test), Q value = 0.12
Table S88. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 115 | 56 | 8 | 18 |
subtype1 | 30 | 22 | 2 | 6 |
subtype2 | 12 | 10 | 3 | 2 |
subtype3 | 34 | 10 | 0 | 4 |
subtype4 | 12 | 5 | 3 | 3 |
subtype5 | 27 | 9 | 0 | 3 |
Figure S79. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.422 (Fisher's exact test), Q value = 0.46
Table S89. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 4 | 13 | 173 |
subtype1 | 1 | 1 | 57 |
subtype2 | 0 | 2 | 25 |
subtype3 | 1 | 5 | 39 |
subtype4 | 0 | 2 | 20 |
subtype5 | 2 | 3 | 32 |
Figure S80. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.267 (Fisher's exact test), Q value = 0.32
Table S90. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 4 | 172 |
subtype1 | 1 | 51 |
subtype2 | 0 | 27 |
subtype3 | 0 | 43 |
subtype4 | 1 | 18 |
subtype5 | 2 | 33 |
Figure S81. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'ETHNICITY'

Table S91. Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 59 | 50 | 21 | 43 | 25 |
P value = 0.176 (logrank test), Q value = 0.23
Table S92. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 198 | 76 | 0.5 - 188.2 (27.9) |
subtype1 | 59 | 21 | 0.6 - 171.1 (34.7) |
subtype2 | 50 | 18 | 0.5 - 123.0 (34.3) |
subtype3 | 21 | 9 | 0.7 - 102.0 (22.9) |
subtype4 | 43 | 16 | 3.1 - 150.3 (25.4) |
subtype5 | 25 | 12 | 1.1 - 188.2 (19.6) |
Figure S82. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.00612 (Kruskal-Wallis (anova)), Q value = 0.012
Table S93. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 197 | 61.2 (14.9) |
subtype1 | 59 | 63.5 (13.9) |
subtype2 | 49 | 59.5 (11.7) |
subtype3 | 21 | 65.4 (13.1) |
subtype4 | 43 | 64.9 (13.7) |
subtype5 | 25 | 49.5 (19.8) |
Figure S83. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S94. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | CHEST - BREAST | CHEST - CHEST WALL | CHEST - LUNG/PLEURA | CHEST - MEDIASTINUM | CHEST - OTHER (PLEASE SPECIFY | GYNECOLOGICAL - OVARY | GYNECOLOGICAL - UTERUS | HEAD AND NECK - HEAD | HEAD AND NECK - NECK | LOWER ABDOMINAL/PELVIC - BLADDER | LOWER ABDOMINAL/PELVIC - OTHER (PLEASE SPECIFY | LOWER ABDOMINAL/PELVIC - PELVIC | LOWER ABDOMINAL/PELVIC - SPERMATIC CORD | LOWER EXTREMITY - FOOT/ANKLE | LOWER EXTREMITY - GROIN | LOWER EXTREMITY - LOWER LEG/CALF | LOWER EXTREMITY - OTHER (PLEASE SPECIFY | LOWER EXTREMITY - THIGH/KNEE | RETROPERITONEUM/UPPER ABDOMINAL - COLON | RETROPERITONEUM/UPPER ABDOMINAL - GASTRIC | RETROPERITONEUM/UPPER ABDOMINAL - INTRAABDOMINAL | RETROPERITONEUM/UPPER ABDOMINAL - KIDNEY | RETROPERITONEUM/UPPER ABDOMINAL - OTHER (PLEASE SPECIFY | RETROPERITONEUM/UPPER ABDOMINAL - RETROPERITONEUM | RETROPERITONEUM/UPPER ABDOMINAL - SMALL INTESTINES | SUPERFICIAL TRUNK - ABDOMINAL WALL | SUPERFICIAL TRUNK - BACK | SUPERFICIAL TRUNK - BUTTOCK | UPPER EXTREMITY - SHOULDER/AXILLA | UPPER EXTREMITY - UPPER ARM/ELBOW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 7 | 1 | 1 | 2 | 1 | 21 | 1 | 1 | 1 | 2 | 8 | 2 | 4 | 1 | 13 | 4 | 42 | 2 | 2 | 3 | 5 | 1 | 52 | 2 | 2 | 4 | 2 | 5 | 4 |
subtype1 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 2 | 1 | 10 | 0 | 1 | 1 | 1 | 1 | 28 | 0 | 0 | 1 | 1 | 1 | 1 |
subtype2 | 0 | 0 | 0 | 1 | 1 | 0 | 14 | 0 | 0 | 1 | 2 | 3 | 0 | 1 | 0 | 2 | 0 | 6 | 1 | 1 | 0 | 2 | 0 | 12 | 2 | 0 | 0 | 0 | 1 | 0 |
subtype3 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 6 | 3 | 14 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 2 | 3 | 0 | 3 | 2 |
subtype5 | 1 | 1 | 1 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 1 |
Figure S84. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.0017 (Fisher's exact test), Q value = 0.0042
Table S95. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 111 | 87 |
subtype1 | 23 | 36 |
subtype2 | 36 | 14 |
subtype3 | 12 | 9 |
subtype4 | 21 | 22 |
subtype5 | 19 | 6 |
Figure S85. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.00099 (Fisher's exact test), Q value = 0.0026
Table S96. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 133 | 62 |
subtype1 | 46 | 13 |
subtype2 | 39 | 9 |
subtype3 | 9 | 11 |
subtype4 | 21 | 22 |
subtype5 | 18 | 7 |
Figure S86. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S97. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DEDIFFERENTIATED LIPOSARCOMA | DESMOID TUMOR | LEIOMYOSARCOMA (LMS) | MALIGNANT PERIPHERAL NERVE SHEATH TUMORS (MPNST) | MYXOFIBROSARCOMA | PLEOMORPHIC 'MFH' / UNDIFFERENTIATED PLEOMORPHIC SARCOMA | SARCOMA; SYNOVIAL; POORLY DIFFERENTIATED | SYNOVIAL SARCOMA - BIPHASIC | SYNOVIAL SARCOMA - MONOPHASIC | UNDIFFERENTIATED PLEOMORPHIC SARCOMA (UPS) |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 43 | 2 | 72 | 8 | 21 | 28 | 2 | 1 | 5 | 16 |
subtype1 | 27 | 2 | 10 | 0 | 7 | 7 | 0 | 0 | 0 | 6 |
subtype2 | 1 | 0 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 3 | 0 | 3 | 0 | 6 | 5 | 0 | 0 | 0 | 4 |
subtype4 | 6 | 0 | 4 | 4 | 8 | 15 | 0 | 0 | 0 | 6 |
subtype5 | 6 | 0 | 6 | 4 | 0 | 1 | 2 | 1 | 5 | 0 |
Figure S87. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.00292 (Fisher's exact test), Q value = 0.0066
Table S98. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 115 | 56 | 8 | 18 |
subtype1 | 26 | 27 | 2 | 4 |
subtype2 | 37 | 10 | 0 | 3 |
subtype3 | 10 | 8 | 2 | 1 |
subtype4 | 28 | 7 | 1 | 6 |
subtype5 | 14 | 4 | 3 | 4 |
Figure S88. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RESIDUAL_TUMOR'

P value = 0.145 (Fisher's exact test), Q value = 0.2
Table S99. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 4 | 13 | 173 |
subtype1 | 0 | 1 | 57 |
subtype2 | 1 | 6 | 40 |
subtype3 | 1 | 2 | 16 |
subtype4 | 1 | 2 | 38 |
subtype5 | 1 | 2 | 22 |
Figure S89. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'RACE'

P value = 0.417 (Fisher's exact test), Q value = 0.46
Table S100. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 4 | 172 |
subtype1 | 1 | 53 |
subtype2 | 0 | 45 |
subtype3 | 0 | 17 |
subtype4 | 2 | 40 |
subtype5 | 1 | 17 |
Figure S90. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'ETHNICITY'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/SARC-TP/22542442/SARC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/SARC-TP/22507207/SARC-TP.merged_data.txt
-
Number of patients = 261
-
Number of clustering approaches = 10
-
Number of selected clinical features = 9
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.