Significant over-representation of pathway gene sets for a given gene list
Adrenocortical Carcinoma (Primary solid tumor)
28 January 2016  |  analyses__2016_01_28
Maintainer Information
Citation Information
Maintained by Juok Cho (Broad Institute)
Cite as Broad Institute TCGA Genome Data Analysis Center (2016): Significant over-representation of pathway gene sets for a given gene list. Broad Institute of MIT and Harvard. doi:10.7908/C1DJ5F0K
Overview
Introduction

This pipeline inspects significant overlapping pathway gene sets for a given gene list using a hypergeometric test. For the gene set database, we uses GSEA MSigDB Class2: Canonical Pathways DB as a gene set data. Further details about the MsigDB gene sets, please visit The Broad Institute GSEA MsigDB

Summary

For a given gene list, a hypergeometric test was tried to find significant overlapping canonical pathways using 1320 gene sets. In terms of FDR adjusted p.values, no significant overlapping gene sets are found.

Results
For a given gene list, there is no significant overlapping canonical pathway gene sets
Methods & Data
Input
  • Gene set database = c2.cp.v4.0.symbols.gmt

Hypergeometric Test

For a given gene list, it uses a hypergeometric test to get a significance of each overlapping pathway gene set. The hypergeometric p-value is obtained by R library function phyper() and is defined as a probability of randomly drawing x or more successes(gene matches) from the population consisting N genes in k(the input genes) total draws.

  • a cumulative p-value using the R function phyper():

    • ex). a probability to see at least x genes in the group is defined as p(X>=x) = 1 - p(X<=x)= 1 - phyper(x-1, m, n, k, lower.tail=FALSE, log.p=FALSE) that is, f(x| N, m, k) = (m) C (k) * ((N-m) C (n-k)) / ((N) C (n))

  • The hypergeometric test is identical to the corresponding one-tailed version of Fisher's exact test.

    • ex). Fisher' exact test = matrix(c(n.Found, n.GS-n.Found, n.drawn-n.Found, n.NotGS- (n.drawn-n.Found)), nrow=2, dimnames = list(inputGenes = c("Found", "NotFound"),GeneUniverse = c("GS", "nonGS")) )

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Johnson, N.L., et al, Univariate Discrete Distributions, Second Edition, Wiley (1992)
[2] Berkopec, Aleš, HyperQuick algorithm for discrete hypergeometric distribution, Journal of Discrete Algorithms:341-347 (2007)
[3] Tamayo, et al, Molecular Signatures Database, MSigDB, PNAS:15545-15550 (2005)