This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 10 different clustering approaches and 8 clinical features across 48 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.
-
CNMF clustering analysis on RPPA data identified 6 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 6 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.
-
4 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.
Clinical Features |
Time to Death |
YEARS TO BIRTH |
TUMOR TISSUE SITE |
GENDER |
RADIATION THERAPY |
HISTOLOGICAL TYPE |
RACE | ETHNICITY |
Statistical Tests | logrank test | Kruskal-Wallis (anova) | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test |
Copy Number Ratio CNMF subtypes |
0.515 (0.777) |
0.654 (0.894) |
0.428 (0.713) |
0.387 (0.709) |
1 (1.00) |
0.256 (0.571) |
0.0713 (0.408) |
0.59 (0.842) |
METHLYATION CNMF |
0.93 (1.00) |
0.654 (0.894) |
0.151 (0.483) |
0.975 (1.00) |
0.127 (0.46) |
0.0415 (0.332) |
0.257 (0.571) |
0.339 (0.66) |
RPPA CNMF subtypes |
0.346 (0.66) |
0.933 (1.00) |
0.457 (0.717) |
0.746 (0.947) |
0.322 (0.645) |
0.183 (0.523) |
0.19 (0.523) |
0.399 (0.709) |
RPPA cHierClus subtypes |
0.306 (0.628) |
0.572 (0.842) |
0.393 (0.709) |
0.902 (1.00) |
0.83 (1.00) |
0.427 (0.713) |
0.277 (0.599) |
1 (1.00) |
RNAseq CNMF subtypes |
0.917 (1.00) |
0.437 (0.713) |
0.0405 (0.332) |
0.446 (0.714) |
0.226 (0.547) |
0.0365 (0.332) |
0.21 (0.542) |
0.083 (0.415) |
RNAseq cHierClus subtypes |
0.302 (0.628) |
0.682 (0.897) |
0.0603 (0.402) |
0.974 (1.00) |
0.0886 (0.415) |
0.0795 (0.415) |
0.854 (1.00) |
0.209 (0.542) |
MIRSEQ CNMF |
0.684 (0.897) |
0.855 (1.00) |
0.103 (0.424) |
0.581 (0.842) |
0.0671 (0.408) |
0.233 (0.549) |
0.73 (0.942) |
0.0365 (0.332) |
MIRSEQ CHIERARCHICAL |
0.511 (0.777) |
0.888 (1.00) |
0.901 (1.00) |
0.171 (0.523) |
0.138 (0.481) |
0.0401 (0.332) |
0.982 (1.00) |
0.0177 (0.332) |
MIRseq Mature CNMF subtypes |
0.986 (1.00) |
0.798 (0.997) |
0.411 (0.713) |
0.186 (0.523) |
0.0398 (0.332) |
0.0197 (0.332) |
0.145 (0.483) |
0.0189 (0.332) |
MIRseq Mature cHierClus subtypes |
0.969 (1.00) |
0.223 (0.547) |
0.0472 (0.343) |
0.659 (0.894) |
0.0934 (0.415) |
0.125 (0.46) |
0.106 (0.424) |
0.0272 (0.332) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 20 | 7 | 21 |
P value = 0.515 (logrank test), Q value = 0.78
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 47 | 9 | 0.0 - 211.2 (27.4) |
subtype1 | 19 | 5 | 0.0 - 211.2 (32.0) |
subtype2 | 7 | 2 | 1.9 - 196.6 (24.0) |
subtype3 | 21 | 2 | 4.1 - 128.1 (27.4) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.654 (Kruskal-Wallis (anova)), Q value = 0.89
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 48 | 56.3 (13.9) |
subtype1 | 20 | 53.9 (14.7) |
subtype2 | 7 | 56.0 (14.2) |
subtype3 | 21 | 58.7 (13.4) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.428 (Fisher's exact test), Q value = 0.71
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | SOFT TISSUE (MUSCLE LIGAMENTS SUBCUTANEOUS) | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 2 |
subtype1 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 2 |
subtype2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 1 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.387 (Fisher's exact test), Q value = 0.71
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 26 | 22 |
subtype1 | 12 | 8 |
subtype2 | 2 | 5 |
subtype3 | 12 | 9 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 40 | 7 |
subtype1 | 16 | 3 |
subtype2 | 6 | 1 |
subtype3 | 18 | 3 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.256 (Fisher's exact test), Q value = 0.57
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 41 | 3 | 4 |
subtype1 | 15 | 2 | 3 |
subtype2 | 6 | 0 | 1 |
subtype3 | 20 | 1 | 0 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.0713 (Fisher's exact test), Q value = 0.41
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 18 | 1 | 29 |
subtype1 | 5 | 1 | 14 |
subtype2 | 1 | 0 | 6 |
subtype3 | 12 | 0 | 9 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.59 (Fisher's exact test), Q value = 0.84
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 12 | 36 |
subtype1 | 4 | 16 |
subtype2 | 1 | 6 |
subtype3 | 7 | 14 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S10. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 9 | 13 | 19 | 7 |
P value = 0.93 (logrank test), Q value = 1
Table S11. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 47 | 9 | 0.0 - 211.2 (27.4) |
subtype1 | 9 | 2 | 1.9 - 150.5 (35.5) |
subtype2 | 13 | 2 | 4.3 - 128.1 (41.2) |
subtype3 | 18 | 4 | 0.0 - 211.2 (23.5) |
subtype4 | 7 | 1 | 19.6 - 196.6 (31.7) |
Figure S9. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.654 (Kruskal-Wallis (anova)), Q value = 0.89
Table S12. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 48 | 56.3 (13.9) |
subtype1 | 9 | 52.1 (19.2) |
subtype2 | 13 | 53.6 (15.4) |
subtype3 | 19 | 59.8 (11.3) |
subtype4 | 7 | 56.9 (9.5) |
Figure S10. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.151 (Fisher's exact test), Q value = 0.48
Table S13. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | SOFT TISSUE (MUSCLE LIGAMENTS SUBCUTANEOUS) | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 2 |
subtype1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
subtype2 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
subtype3 | 2 | 0 | 2 | 3 | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 1 | 0 |
subtype4 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Figure S11. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.975 (Fisher's exact test), Q value = 1
Table S14. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 26 | 22 |
subtype1 | 4 | 5 |
subtype2 | 7 | 6 |
subtype3 | 11 | 8 |
subtype4 | 4 | 3 |
Figure S12. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'GENDER'

P value = 0.127 (Fisher's exact test), Q value = 0.46
Table S15. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 40 | 7 |
subtype1 | 6 | 3 |
subtype2 | 10 | 3 |
subtype3 | 17 | 1 |
subtype4 | 7 | 0 |
Figure S13. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.0415 (Fisher's exact test), Q value = 0.33
Table S16. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 41 | 3 | 4 |
subtype1 | 6 | 0 | 3 |
subtype2 | 12 | 0 | 1 |
subtype3 | 16 | 3 | 0 |
subtype4 | 7 | 0 | 0 |
Figure S14. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.257 (Fisher's exact test), Q value = 0.57
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 18 | 1 | 29 |
subtype1 | 3 | 0 | 6 |
subtype2 | 2 | 1 | 10 |
subtype3 | 9 | 0 | 10 |
subtype4 | 4 | 0 | 3 |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'RACE'

P value = 0.339 (Fisher's exact test), Q value = 0.66
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 12 | 36 |
subtype1 | 2 | 7 |
subtype2 | 5 | 8 |
subtype3 | 5 | 14 |
subtype4 | 0 | 7 |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'ETHNICITY'

Table S19. Description of clustering approach #3: 'RPPA CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 6 | 5 | 5 | 6 | 6 | 5 |
P value = 0.346 (logrank test), Q value = 0.66
Table S20. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 32 | 6 | 0.0 - 211.2 (24.7) |
subtype1 | 5 | 1 | 4.3 - 31.7 (14.0) |
subtype2 | 5 | 2 | 1.9 - 45.1 (18.2) |
subtype3 | 5 | 1 | 4.1 - 26.0 (22.3) |
subtype4 | 6 | 0 | 23.6 - 196.6 (34.7) |
subtype5 | 6 | 1 | 25.1 - 211.2 (33.8) |
subtype6 | 5 | 1 | 0.0 - 70.1 (12.8) |
Figure S17. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.933 (Kruskal-Wallis (anova)), Q value = 1
Table S21. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 33 | 54.8 (14.2) |
subtype1 | 6 | 59.2 (13.7) |
subtype2 | 5 | 55.0 (15.7) |
subtype3 | 5 | 57.8 (12.3) |
subtype4 | 6 | 53.7 (16.8) |
subtype5 | 6 | 53.0 (16.2) |
subtype6 | 5 | 50.0 (14.7) |
Figure S18. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.457 (Fisher's exact test), Q value = 0.72
Table S22. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 1 |
subtype1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 |
subtype2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
subtype4 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
subtype6 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S19. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.746 (Fisher's exact test), Q value = 0.95
Table S23. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 15 | 18 |
subtype1 | 2 | 4 |
subtype2 | 2 | 3 |
subtype3 | 4 | 1 |
subtype4 | 3 | 3 |
subtype5 | 2 | 4 |
subtype6 | 2 | 3 |
Figure S20. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.322 (Fisher's exact test), Q value = 0.64
Table S24. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 27 | 5 |
subtype1 | 6 | 0 |
subtype2 | 3 | 2 |
subtype3 | 5 | 0 |
subtype4 | 4 | 2 |
subtype5 | 5 | 1 |
subtype6 | 4 | 0 |
Figure S21. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.183 (Fisher's exact test), Q value = 0.52
Table S25. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 27 | 2 | 4 |
subtype1 | 6 | 0 | 0 |
subtype2 | 4 | 0 | 1 |
subtype3 | 5 | 0 | 0 |
subtype4 | 5 | 0 | 1 |
subtype5 | 4 | 0 | 2 |
subtype6 | 3 | 2 | 0 |
Figure S22. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.19 (Fisher's exact test), Q value = 0.52
Table S26. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | WHITE |
---|---|---|
ALL | 16 | 17 |
subtype1 | 3 | 3 |
subtype2 | 2 | 3 |
subtype3 | 5 | 0 |
subtype4 | 3 | 3 |
subtype5 | 2 | 4 |
subtype6 | 1 | 4 |
Figure S23. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.399 (Fisher's exact test), Q value = 0.71
Table S27. Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 7 | 26 |
subtype1 | 0 | 6 |
subtype2 | 2 | 3 |
subtype3 | 0 | 5 |
subtype4 | 2 | 4 |
subtype5 | 1 | 5 |
subtype6 | 2 | 3 |
Figure S24. Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S28. Description of clustering approach #4: 'RPPA cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 6 | 15 | 12 |
P value = 0.306 (logrank test), Q value = 0.63
Table S29. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 32 | 6 | 0.0 - 211.2 (24.7) |
subtype1 | 6 | 1 | 0.0 - 70.1 (8.6) |
subtype2 | 14 | 2 | 12.7 - 211.2 (31.4) |
subtype3 | 12 | 3 | 1.9 - 196.6 (23.2) |
Figure S25. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.572 (Kruskal-Wallis (anova)), Q value = 0.84
Table S30. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 33 | 54.8 (14.2) |
subtype1 | 6 | 55.2 (16.9) |
subtype2 | 15 | 52.3 (14.7) |
subtype3 | 12 | 57.8 (12.6) |
Figure S26. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.393 (Fisher's exact test), Q value = 0.71
Table S31. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 1 |
subtype1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
subtype2 | 1 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 2 | 1 | 0 |
subtype3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Figure S27. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.902 (Fisher's exact test), Q value = 1
Table S32. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 15 | 18 |
subtype1 | 3 | 3 |
subtype2 | 6 | 9 |
subtype3 | 6 | 6 |
Figure S28. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.83 (Fisher's exact test), Q value = 1
Table S33. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 27 | 5 |
subtype1 | 5 | 0 |
subtype2 | 12 | 3 |
subtype3 | 10 | 2 |
Figure S29. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.427 (Fisher's exact test), Q value = 0.71
Table S34. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 27 | 2 | 4 |
subtype1 | 5 | 1 | 0 |
subtype2 | 12 | 0 | 3 |
subtype3 | 10 | 1 | 1 |
Figure S30. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.277 (Fisher's exact test), Q value = 0.6
Table S35. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | WHITE |
---|---|---|
ALL | 16 | 17 |
subtype1 | 1 | 5 |
subtype2 | 8 | 7 |
subtype3 | 7 | 5 |
Figure S31. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 1 (Fisher's exact test), Q value = 1
Table S36. Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 7 | 26 |
subtype1 | 1 | 5 |
subtype2 | 3 | 12 |
subtype3 | 3 | 9 |
Figure S32. Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S37. Description of clustering approach #5: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of samples | 10 | 12 | 9 | 3 | 8 | 6 |
P value = 0.917 (logrank test), Q value = 1
Table S38. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 47 | 9 | 0.0 - 211.2 (27.4) |
subtype1 | 9 | 2 | 0.0 - 211.2 (27.4) |
subtype2 | 12 | 2 | 1.9 - 128.1 (33.6) |
subtype3 | 9 | 1 | 4.1 - 57.2 (14.0) |
subtype4 | 3 | 1 | 8.2 - 52.0 (32.3) |
subtype5 | 8 | 2 | 0.6 - 116.8 (33.8) |
subtype6 | 6 | 1 | 12.8 - 70.1 (38.6) |
Figure S33. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.437 (Kruskal-Wallis (anova)), Q value = 0.71
Table S39. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 48 | 56.3 (13.9) |
subtype1 | 10 | 57.2 (10.4) |
subtype2 | 12 | 57.2 (13.3) |
subtype3 | 9 | 57.8 (12.0) |
subtype4 | 3 | 62.3 (6.1) |
subtype5 | 8 | 59.1 (18.3) |
subtype6 | 6 | 43.7 (17.2) |
Figure S34. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0405 (Fisher's exact test), Q value = 0.33
Table S40. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | SOFT TISSUE (MUSCLE LIGAMENTS SUBCUTANEOUS) | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 2 |
subtype1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 2 |
subtype2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
subtype3 | 2 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
subtype4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype5 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
subtype6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S35. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.446 (Fisher's exact test), Q value = 0.71
Table S41. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 26 | 22 |
subtype1 | 4 | 6 |
subtype2 | 6 | 6 |
subtype3 | 4 | 5 |
subtype4 | 3 | 0 |
subtype5 | 6 | 2 |
subtype6 | 3 | 3 |
Figure S36. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.226 (Fisher's exact test), Q value = 0.55
Table S42. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 40 | 7 |
subtype1 | 8 | 1 |
subtype2 | 10 | 2 |
subtype3 | 8 | 1 |
subtype4 | 3 | 0 |
subtype5 | 8 | 0 |
subtype6 | 3 | 3 |
Figure S37. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.0365 (Fisher's exact test), Q value = 0.33
Table S43. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 41 | 3 | 4 |
subtype1 | 9 | 1 | 0 |
subtype2 | 12 | 0 | 0 |
subtype3 | 8 | 1 | 0 |
subtype4 | 3 | 0 | 0 |
subtype5 | 6 | 1 | 1 |
subtype6 | 3 | 0 | 3 |
Figure S38. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.21 (Fisher's exact test), Q value = 0.54
Table S44. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 18 | 1 | 29 |
subtype1 | 4 | 0 | 6 |
subtype2 | 5 | 1 | 6 |
subtype3 | 6 | 0 | 3 |
subtype4 | 1 | 0 | 2 |
subtype5 | 2 | 0 | 6 |
subtype6 | 0 | 0 | 6 |
Figure S39. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.083 (Fisher's exact test), Q value = 0.42
Table S45. Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 12 | 36 |
subtype1 | 0 | 10 |
subtype2 | 3 | 9 |
subtype3 | 2 | 7 |
subtype4 | 1 | 2 |
subtype5 | 2 | 6 |
subtype6 | 4 | 2 |
Figure S40. Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S46. Description of clustering approach #6: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 22 | 11 | 7 | 8 |
P value = 0.302 (logrank test), Q value = 0.63
Table S47. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 47 | 9 | 0.0 - 211.2 (27.4) |
subtype1 | 21 | 3 | 0.6 - 211.2 (31.7) |
subtype2 | 11 | 2 | 1.9 - 128.1 (41.2) |
subtype3 | 7 | 2 | 0.0 - 52.0 (23.3) |
subtype4 | 8 | 2 | 9.8 - 57.2 (23.8) |
Figure S41. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.682 (Kruskal-Wallis (anova)), Q value = 0.9
Table S48. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 48 | 56.3 (13.9) |
subtype1 | 22 | 57.5 (13.3) |
subtype2 | 11 | 57.8 (13.8) |
subtype3 | 7 | 57.9 (11.2) |
subtype4 | 8 | 49.5 (18.2) |
Figure S42. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0603 (Fisher's exact test), Q value = 0.4
Table S49. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | SOFT TISSUE (MUSCLE LIGAMENTS SUBCUTANEOUS) | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 2 |
subtype1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 2 |
subtype2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
subtype3 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype4 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Figure S43. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.974 (Fisher's exact test), Q value = 1
Table S50. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 26 | 22 |
subtype1 | 11 | 11 |
subtype2 | 6 | 5 |
subtype3 | 4 | 3 |
subtype4 | 5 | 3 |
Figure S44. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.0886 (Fisher's exact test), Q value = 0.42
Table S51. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 40 | 7 |
subtype1 | 21 | 1 |
subtype2 | 9 | 2 |
subtype3 | 5 | 1 |
subtype4 | 5 | 3 |
Figure S45. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.0795 (Fisher's exact test), Q value = 0.42
Table S52. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 41 | 3 | 4 |
subtype1 | 19 | 2 | 1 |
subtype2 | 11 | 0 | 0 |
subtype3 | 6 | 1 | 0 |
subtype4 | 5 | 0 | 3 |
Figure S46. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.854 (Fisher's exact test), Q value = 1
Table S53. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 18 | 1 | 29 |
subtype1 | 8 | 0 | 14 |
subtype2 | 4 | 1 | 6 |
subtype3 | 3 | 0 | 4 |
subtype4 | 3 | 0 | 5 |
Figure S47. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.209 (Fisher's exact test), Q value = 0.54
Table S54. Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 12 | 36 |
subtype1 | 3 | 19 |
subtype2 | 3 | 8 |
subtype3 | 2 | 5 |
subtype4 | 4 | 4 |
Figure S48. Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S55. Description of clustering approach #7: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 16 | 16 | 15 |
P value = 0.684 (logrank test), Q value = 0.9
Table S56. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 46 | 9 | 0.0 - 211.2 (26.7) |
subtype1 | 15 | 3 | 0.0 - 211.2 (27.4) |
subtype2 | 16 | 4 | 1.9 - 116.8 (33.8) |
subtype3 | 15 | 2 | 9.8 - 128.1 (24.6) |
Figure S49. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.855 (Kruskal-Wallis (anova)), Q value = 1
Table S57. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 47 | 56.3 (14.1) |
subtype1 | 16 | 56.4 (13.1) |
subtype2 | 16 | 57.6 (15.2) |
subtype3 | 15 | 54.7 (14.8) |
Figure S50. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.103 (Fisher's exact test), Q value = 0.42
Table S58. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | SOFT TISSUE (MUSCLE LIGAMENTS SUBCUTANEOUS) | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 1 |
subtype1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 2 | 0 |
subtype2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
subtype3 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Figure S51. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.581 (Fisher's exact test), Q value = 0.84
Table S59. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 25 | 22 |
subtype1 | 7 | 9 |
subtype2 | 10 | 6 |
subtype3 | 8 | 7 |
Figure S52. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'GENDER'

P value = 0.0671 (Fisher's exact test), Q value = 0.41
Table S60. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 40 | 6 |
subtype1 | 13 | 2 |
subtype2 | 16 | 0 |
subtype3 | 11 | 4 |
Figure S53. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.233 (Fisher's exact test), Q value = 0.55
Table S61. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 40 | 3 | 4 |
subtype1 | 12 | 3 | 1 |
subtype2 | 15 | 0 | 1 |
subtype3 | 13 | 0 | 2 |
Figure S54. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.73 (Fisher's exact test), Q value = 0.94
Table S62. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 18 | 1 | 28 |
subtype1 | 5 | 0 | 11 |
subtype2 | 7 | 1 | 8 |
subtype3 | 6 | 0 | 9 |
Figure S55. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'RACE'

P value = 0.0365 (Fisher's exact test), Q value = 0.33
Table S63. Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 12 | 35 |
subtype1 | 4 | 12 |
subtype2 | 1 | 15 |
subtype3 | 7 | 8 |
Figure S56. Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'ETHNICITY'

Table S64. Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 9 | 12 | 8 | 12 | 6 |
P value = 0.511 (logrank test), Q value = 0.78
Table S65. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 46 | 9 | 0.0 - 211.2 (26.7) |
subtype1 | 9 | 1 | 4.3 - 211.2 (31.1) |
subtype2 | 12 | 3 | 1.9 - 116.8 (24.9) |
subtype3 | 7 | 2 | 0.0 - 196.6 (14.0) |
subtype4 | 12 | 2 | 9.8 - 128.1 (35.3) |
subtype5 | 6 | 1 | 4.1 - 98.1 (31.8) |
Figure S57. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.888 (Kruskal-Wallis (anova)), Q value = 1
Table S66. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 47 | 56.3 (14.1) |
subtype1 | 9 | 56.3 (10.4) |
subtype2 | 12 | 58.8 (12.6) |
subtype3 | 8 | 57.4 (9.1) |
subtype4 | 12 | 56.2 (18.9) |
subtype5 | 6 | 49.8 (18.3) |
Figure S58. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.901 (Fisher's exact test), Q value = 1
Table S67. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | SOFT TISSUE (MUSCLE LIGAMENTS SUBCUTANEOUS) | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 1 |
subtype1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
subtype2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
subtype3 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 |
subtype4 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
subtype5 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Figure S59. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.171 (Fisher's exact test), Q value = 0.52
Table S68. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 25 | 22 |
subtype1 | 2 | 7 |
subtype2 | 8 | 4 |
subtype3 | 4 | 4 |
subtype4 | 6 | 6 |
subtype5 | 5 | 1 |
Figure S60. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'GENDER'

P value = 0.138 (Fisher's exact test), Q value = 0.48
Table S69. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 40 | 6 |
subtype1 | 9 | 0 |
subtype2 | 10 | 2 |
subtype3 | 7 | 0 |
subtype4 | 8 | 4 |
subtype5 | 6 | 0 |
Figure S61. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.0401 (Fisher's exact test), Q value = 0.33
Table S70. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 40 | 3 | 4 |
subtype1 | 9 | 0 | 0 |
subtype2 | 10 | 0 | 2 |
subtype3 | 5 | 3 | 0 |
subtype4 | 11 | 0 | 1 |
subtype5 | 5 | 0 | 1 |
Figure S62. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.982 (Fisher's exact test), Q value = 1
Table S71. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 18 | 1 | 28 |
subtype1 | 4 | 0 | 5 |
subtype2 | 4 | 1 | 7 |
subtype3 | 3 | 0 | 5 |
subtype4 | 4 | 0 | 8 |
subtype5 | 3 | 0 | 3 |
Figure S63. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'RACE'

P value = 0.0177 (Fisher's exact test), Q value = 0.33
Table S72. Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 12 | 35 |
subtype1 | 0 | 9 |
subtype2 | 3 | 9 |
subtype3 | 2 | 6 |
subtype4 | 7 | 5 |
subtype5 | 0 | 6 |
Figure S64. Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'ETHNICITY'

Table S73. Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 9 | 10 | 9 | 14 |
P value = 0.986 (logrank test), Q value = 1
Table S74. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 41 | 9 | 0.0 - 211.2 (27.4) |
subtype1 | 8 | 1 | 0.0 - 196.6 (18.7) |
subtype2 | 10 | 2 | 1.9 - 111.6 (33.4) |
subtype3 | 9 | 2 | 8.2 - 128.1 (26.0) |
subtype4 | 14 | 4 | 4.1 - 211.2 (33.8) |
Figure S65. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.798 (Kruskal-Wallis (anova)), Q value = 1
Table S75. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 55.1 (14.0) |
subtype1 | 9 | 58.2 (10.7) |
subtype2 | 10 | 53.8 (19.3) |
subtype3 | 9 | 57.2 (12.5) |
subtype4 | 14 | 52.6 (13.2) |
Figure S66. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.411 (Fisher's exact test), Q value = 0.71
Table S76. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 1 |
subtype1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 |
subtype2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype4 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 |
Figure S67. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.186 (Fisher's exact test), Q value = 0.52
Table S77. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 22 | 20 |
subtype1 | 3 | 6 |
subtype2 | 6 | 4 |
subtype3 | 3 | 6 |
subtype4 | 10 | 4 |
Figure S68. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.0398 (Fisher's exact test), Q value = 0.33
Table S78. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 36 | 5 |
subtype1 | 8 | 0 |
subtype2 | 8 | 2 |
subtype3 | 6 | 3 |
subtype4 | 14 | 0 |
Figure S69. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.0197 (Fisher's exact test), Q value = 0.33
Table S79. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 36 | 3 | 3 |
subtype1 | 6 | 3 | 0 |
subtype2 | 8 | 0 | 2 |
subtype3 | 9 | 0 | 0 |
subtype4 | 13 | 0 | 1 |
Figure S70. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.145 (Fisher's exact test), Q value = 0.48
Table S80. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 16 | 1 | 25 |
subtype1 | 3 | 0 | 6 |
subtype2 | 1 | 0 | 9 |
subtype3 | 5 | 0 | 4 |
subtype4 | 7 | 1 | 6 |
Figure S71. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.0189 (Fisher's exact test), Q value = 0.33
Table S81. Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 10 | 32 |
subtype1 | 2 | 7 |
subtype2 | 4 | 6 |
subtype3 | 4 | 5 |
subtype4 | 0 | 14 |
Figure S72. Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'ETHNICITY'

Table S82. Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 8 | 15 | 5 | 14 |
P value = 0.969 (logrank test), Q value = 1
Table S83. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 41 | 9 | 0.0 - 211.2 (27.4) |
subtype1 | 7 | 1 | 0.6 - 196.6 (22.3) |
subtype2 | 15 | 4 | 1.9 - 128.1 (42.7) |
subtype3 | 5 | 1 | 10.3 - 38.2 (26.0) |
subtype4 | 14 | 3 | 0.0 - 211.2 (29.2) |
Figure S73. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.223 (Kruskal-Wallis (anova)), Q value = 0.55
Table S84. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 42 | 55.1 (14.0) |
subtype1 | 8 | 58.9 (11.0) |
subtype2 | 15 | 50.5 (17.9) |
subtype3 | 5 | 65.2 (7.5) |
subtype4 | 14 | 54.2 (10.6) |
Figure S74. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

P value = 0.0472 (Fisher's exact test), Q value = 0.34
Table S85. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'
nPatients | ADRENAL | ASCITES/PERITONEUM | BONE | BRAIN | BREAST | COLON | LIVER | OTHER EXTRANODAL SITE | PAROTID GLAND | SMALL INTESTINE | STOMACH | THYROID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALL | 1 | 2 | 4 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 1 |
subtype1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 |
subtype2 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
subtype3 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
subtype4 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 |
Figure S75. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

P value = 0.659 (Fisher's exact test), Q value = 0.89
Table S86. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 22 | 20 |
subtype1 | 3 | 5 |
subtype2 | 8 | 7 |
subtype3 | 2 | 3 |
subtype4 | 9 | 5 |
Figure S76. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'GENDER'

P value = 0.0934 (Fisher's exact test), Q value = 0.42
Table S87. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 36 | 5 |
subtype1 | 8 | 0 |
subtype2 | 11 | 4 |
subtype3 | 4 | 1 |
subtype4 | 13 | 0 |
Figure S77. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RADIATION_THERAPY'

P value = 0.125 (Fisher's exact test), Q value = 0.46
Table S88. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'
nPatients | DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) NOS (ANY ANATOMIC SITE NODAL OR EXTRANODAL) | PRIMARY DLBCL OF THE CNS | PRIMARY MEDIASTINAL (THYMIC) DLBCL |
---|---|---|---|
ALL | 36 | 3 | 3 |
subtype1 | 6 | 2 | 0 |
subtype2 | 12 | 0 | 3 |
subtype3 | 5 | 0 | 0 |
subtype4 | 13 | 1 | 0 |
Figure S78. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'HISTOLOGICAL_TYPE'

P value = 0.106 (Fisher's exact test), Q value = 0.42
Table S89. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RACE'
nPatients | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
---|---|---|---|
ALL | 16 | 1 | 25 |
subtype1 | 3 | 0 | 5 |
subtype2 | 2 | 1 | 12 |
subtype3 | 3 | 0 | 2 |
subtype4 | 8 | 0 | 6 |
Figure S79. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'RACE'

P value = 0.0272 (Fisher's exact test), Q value = 0.33
Table S90. Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'
nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
---|---|---|
ALL | 10 | 32 |
subtype1 | 2 | 6 |
subtype2 | 6 | 9 |
subtype3 | 2 | 3 |
subtype4 | 0 | 14 |
Figure S80. Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'ETHNICITY'

-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/DLBC-TP/22541055/DLBC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/DLBC-TP/22506396/DLBC-TP.merged_data.txt
-
Number of patients = 48
-
Number of clustering approaches = 10
-
Number of selected clinical features = 8
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.