Correlation between gene mutation status and selected clinical features
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 55 genes and 5 clinical features across 507 patients, 2 significant findings detected with Q value < 0.25.

  • MAP3K1 mutation correlated to 'AGE'.

  • FGFR2 mutation correlated to 'Time to Death'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 55 genes and 5 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 2 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER RADIATIONS
RADIATION
REGIMENINDICATION
NEOADJUVANT
THERAPY
nMutated (%) nWild-Type logrank test t-test Fisher's exact test Fisher's exact test Fisher's exact test
MAP3K1 38 (7%) 469 0.916
(1.00)
0.000845
(0.231)
1
(1.00)
0.346
(1.00)
1
(1.00)
FGFR2 4 (1%) 503 2.21e-05
(0.00604)
0.219
(1.00)
1
(1.00)
1
(1.00)
0.645
(1.00)
GATA3 54 (11%) 453 0.812
(1.00)
0.00918
(1.00)
0.493
(1.00)
0.147
(1.00)
0.381
(1.00)
RUNX1 18 (4%) 489 0.236
(1.00)
0.481
(1.00)
1
(1.00)
0.422
(1.00)
1
(1.00)
AKT1 12 (2%) 495 0.223
(1.00)
0.548
(1.00)
1
(1.00)
0.194
(1.00)
0.769
(1.00)
PIK3CA 178 (35%) 329 0.455
(1.00)
0.0485
(1.00)
1
(1.00)
1
(1.00)
0.85
(1.00)
TP53 184 (36%) 323 0.966
(1.00)
0.186
(1.00)
0.0914
(1.00)
0.47
(1.00)
0.64
(1.00)
MAP2K4 20 (4%) 487 0.0878
(1.00)
0.134
(1.00)
1
(1.00)
0.611
(1.00)
0.166
(1.00)
CDH1 33 (7%) 474 0.909
(1.00)
0.0619
(1.00)
1
(1.00)
0.84
(1.00)
0.588
(1.00)
PTEN 17 (3%) 490 0.896
(1.00)
0.579
(1.00)
1
(1.00)
1
(1.00)
0.453
(1.00)
PIK3R1 14 (3%) 493 0.213
(1.00)
0.88
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
MLL3 37 (7%) 470 0.301
(1.00)
0.0094
(1.00)
1
(1.00)
0.566
(1.00)
0.166
(1.00)
TBX3 13 (3%) 494 0.235
(1.00)
0.0275
(1.00)
1
(1.00)
1
(1.00)
0.572
(1.00)
CBFB 8 (2%) 499 0.632
(1.00)
0.367
(1.00)
1
(1.00)
1
(1.00)
0.479
(1.00)
CTCF 13 (3%) 494 0.149
(1.00)
0.365
(1.00)
1
(1.00)
1
(1.00)
0.78
(1.00)
SF3B1 10 (2%) 497 0.386
(1.00)
0.378
(1.00)
1
(1.00)
1
(1.00)
0.534
(1.00)
FOXA1 8 (2%) 499 0.0014
(0.381)
0.0133
(1.00)
1
(1.00)
1
(1.00)
0.479
(1.00)
C9ORF102 5 (1%) 502 0.468
(1.00)
0.382
(1.00)
1
(1.00)
0.618
(1.00)
0.409
(1.00)
TBL1XR1 8 (2%) 499 0.811
(1.00)
0.0425
(1.00)
1
(1.00)
0.69
(1.00)
1
(1.00)
KLRG2 3 (1%) 504 0.307
(1.00)
1
(1.00)
0.184
(1.00)
0.572
(1.00)
GPS2 6 (1%) 501 0.242
(1.00)
0.986
(1.00)
1
(1.00)
0.668
(1.00)
1
(1.00)
VASN 6 (1%) 501 0.13
(1.00)
0.858
(1.00)
1
(1.00)
0.668
(1.00)
1
(1.00)
NCOR1 17 (3%) 490 0.624
(1.00)
0.53
(1.00)
1
(1.00)
0.58
(1.00)
0.142
(1.00)
ZFP36L1 7 (1%) 500 0.951
(1.00)
0.0859
(1.00)
1
(1.00)
0.198
(1.00)
0.248
(1.00)
AFF2 13 (3%) 494 0.887
(1.00)
0.0186
(1.00)
1
(1.00)
0.357
(1.00)
1
(1.00)
ERBB2 7 (1%) 500 0.298
(1.00)
0.208
(1.00)
1
(1.00)
0.68
(1.00)
0.045
(1.00)
C1ORF65 7 (1%) 500 0.254
(1.00)
0.656
(1.00)
1
(1.00)
0.0935
(1.00)
0.456
(1.00)
RPGR 10 (2%) 497 0.783
(1.00)
0.81
(1.00)
1
(1.00)
0.735
(1.00)
0.748
(1.00)
DALRD3 6 (1%) 501 0.613
(1.00)
0.0641
(1.00)
1
(1.00)
0.353
(1.00)
0.696
(1.00)
MYB 8 (2%) 499 0.219
(1.00)
0.255
(1.00)
1
(1.00)
0.224
(1.00)
0.285
(1.00)
RB1 9 (2%) 498 0.69
(1.00)
0.305
(1.00)
1
(1.00)
0.455
(1.00)
0.318
(1.00)
CCDC146 6 (1%) 501 0.609
(1.00)
0.772
(1.00)
1
(1.00)
0.353
(1.00)
0.238
(1.00)
CDKN1B 5 (1%) 502 0.469
(1.00)
0.982
(1.00)
1
(1.00)
1
(1.00)
0.409
(1.00)
LYSMD3 4 (1%) 503 0.736
(1.00)
0.58
(1.00)
1
(1.00)
1
(1.00)
0.645
(1.00)
ZNF268 4 (1%) 503 0.638
(1.00)
0.726
(1.00)
1
(1.00)
0.303
(1.00)
1
(1.00)
UBC 7 (1%) 500 0.292
(1.00)
0.548
(1.00)
1
(1.00)
1
(1.00)
0.132
(1.00)
NEK5 8 (2%) 499 0.672
(1.00)
0.106
(1.00)
1
(1.00)
0.456
(1.00)
0.479
(1.00)
PRRX1 5 (1%) 502 0.505
(1.00)
0.785
(1.00)
1
(1.00)
0.13
(1.00)
0.653
(1.00)
GPR32 5 (1%) 502 0.733
(1.00)
0.155
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
KCNT2 9 (2%) 498 0.717
(1.00)
0.251
(1.00)
1
(1.00)
0.455
(1.00)
0.742
(1.00)
KRT38 3 (1%) 504 0.518
(1.00)
0.359
(1.00)
1
(1.00)
1
(1.00)
0.572
(1.00)
KRAS 4 (1%) 503 0.532
(1.00)
0.209
(1.00)
1
(1.00)
0.579
(1.00)
0.146
(1.00)
SAAL1 4 (1%) 503 0.0658
(1.00)
0.957
(1.00)
1
(1.00)
1
(1.00)
0.645
(1.00)
AVPI1 4 (1%) 503 0.672
(1.00)
0.5
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
SRGAP1 8 (2%) 499 0.959
(1.00)
0.584
(1.00)
1
(1.00)
1
(1.00)
0.479
(1.00)
CHGB 7 (1%) 500 0.0351
(1.00)
0.23
(1.00)
1
(1.00)
1
(1.00)
0.248
(1.00)
ATN1 8 (2%) 499 0.235
(1.00)
0.72
(1.00)
1
(1.00)
0.456
(1.00)
0.479
(1.00)
HIST1H2BC 4 (1%) 503 0.556
(1.00)
0.657
(1.00)
1
(1.00)
1
(1.00)
0.312
(1.00)
PPEF1 7 (1%) 500 0.7
(1.00)
0.533
(1.00)
1
(1.00)
0.68
(1.00)
0.705
(1.00)
DCAF4L2 7 (1%) 500 0.595
(1.00)
0.625
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
CBLB 9 (2%) 498 0.367
(1.00)
0.556
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
HIST1H1C 4 (1%) 503 0.766
(1.00)
0.979
(1.00)
0.0466
(1.00)
0.579
(1.00)
1
(1.00)
HLA-DRB1 4 (1%) 503 0.551
(1.00)
0.616
(1.00)
1
(1.00)
0.579
(1.00)
0.312
(1.00)
TRIM6-TRIM34 4 (1%) 503 0.803
(1.00)
0.853
(1.00)
1
(1.00)
0.0647
(1.00)
0.312
(1.00)
SLC22A20 7 (1%) 500 0.776
(1.00)
0.84
(1.00)
1
(1.00)
0.399
(1.00)
0.456
(1.00)
'MAP3K1 MUTATION STATUS' versus 'AGE'

P value = 0.000845 (t-test), Q value = 0.23

Table S1.  Gene #9: 'MAP3K1 MUTATION STATUS' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 507 57.8 (13.1)
MAP3K1 MUTATED 38 64.7 (12.3)
MAP3K1 WILD-TYPE 469 57.2 (13.1)

Figure S1.  Get High-res Image Gene #9: 'MAP3K1 MUTATION STATUS' versus Clinical Feature #2: 'AGE'

'FGFR2 MUTATION STATUS' versus 'Time to Death'

P value = 2.21e-05 (logrank test), Q value = 0.006

Table S2.  Gene #55: 'FGFR2 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 476 64 0.1 - 223.4 (24.4)
FGFR2 MUTATED 4 1 1.1 - 15.1 (10.8)
FGFR2 WILD-TYPE 472 63 0.1 - 223.4 (24.5)

Figure S2.  Get High-res Image Gene #55: 'FGFR2 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

Methods & Data
Input
  • Mutation data file = BRCA.mutsig.cluster.txt

  • Clinical data file = BRCA.clin.merged.picked.txt

  • Number of patients = 507

  • Number of significantly mutated genes = 55

  • Number of selected clinical features = 5

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)