This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 72 arm-level results and 3 clinical features across 138 patients, no significant finding detected with Q value < 0.25.
-
No arm-level cnvs related to clinical features.
Table 1. Get Full Table Overview of the association between significant copy number variation of 72 arm-level results and 3 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, no significant finding detected.
|
Clinical Features |
Time to Death |
AGE | GENDER | ||
| nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | |
| 1p gain | 19 (14%) | 119 |
0.148 (1.00) |
0.137 (1.00) |
1 (1.00) |
| 1q gain | 46 (33%) | 92 |
0.214 (1.00) |
0.721 (1.00) |
1 (1.00) |
| 2p gain | 13 (9%) | 125 |
0.219 (1.00) |
||
| 2q gain | 11 (8%) | 127 |
0.336 (1.00) |
||
| 3p gain | 15 (11%) | 123 |
0.52 (1.00) |
0.587 (1.00) |
0.572 (1.00) |
| 3q gain | 19 (14%) | 119 |
0.33 (1.00) |
0.414 (1.00) |
0.435 (1.00) |
| 4p gain | 12 (9%) | 126 |
0.297 (1.00) |
0.0972 (1.00) |
1 (1.00) |
| 4q gain | 10 (7%) | 128 |
1 (1.00) |
||
| 5p gain | 15 (11%) | 123 |
0.258 (1.00) |
||
| 5q gain | 4 (3%) | 134 |
1 (1.00) |
||
| 6p gain | 47 (34%) | 91 |
0.401 (1.00) |
0.586 (1.00) |
0.253 (1.00) |
| 6q gain | 9 (7%) | 129 |
1 (1.00) |
||
| 7p gain | 65 (47%) | 73 |
0.0973 (1.00) |
0.414 (1.00) |
1 (1.00) |
| 7q gain | 63 (46%) | 75 |
0.28 (1.00) |
0.22 (1.00) |
0.721 (1.00) |
| 8p gain | 28 (20%) | 110 |
0.58 (1.00) |
0.853 (1.00) |
0.372 (1.00) |
| 8q gain | 42 (30%) | 96 |
0.155 (1.00) |
0.556 (1.00) |
0.556 (1.00) |
| 11p gain | 8 (6%) | 130 |
0.269 (1.00) |
||
| 11q gain | 4 (3%) | 134 |
0.301 (1.00) |
||
| 12p gain | 10 (7%) | 128 |
0.496 (1.00) |
||
| 12q gain | 5 (4%) | 133 |
0.665 (1.00) |
||
| 13q gain | 24 (17%) | 114 |
0.474 (1.00) |
0.55 (1.00) |
1 (1.00) |
| 14q gain | 11 (8%) | 127 |
1 (1.00) |
||
| 15q gain | 16 (12%) | 122 |
0.78 (1.00) |
||
| 16p gain | 10 (7%) | 128 |
0.731 (1.00) |
||
| 16q gain | 9 (7%) | 129 |
1 (1.00) |
||
| 17p gain | 10 (7%) | 128 |
0.731 (1.00) |
||
| 17q gain | 16 (12%) | 122 |
0.401 (1.00) |
||
| 18p gain | 16 (12%) | 122 |
0.541 (1.00) |
0.489 (1.00) |
0.78 (1.00) |
| 18q gain | 9 (7%) | 129 |
0.867 (1.00) |
0.931 (1.00) |
1 (1.00) |
| 19p gain | 8 (6%) | 130 |
1 (1.00) |
||
| 19q gain | 10 (7%) | 128 |
0.0835 (1.00) |
||
| 20p gain | 41 (30%) | 97 |
0.654 (1.00) |
0.432 (1.00) |
0.558 (1.00) |
| 20q gain | 49 (36%) | 89 |
0.654 (1.00) |
0.432 (1.00) |
0.707 (1.00) |
| 21q gain | 15 (11%) | 123 |
0.501 (1.00) |
0.62 (1.00) |
0.258 (1.00) |
| 22q gain | 37 (27%) | 101 |
0.57 (1.00) |
0.34 (1.00) |
0.311 (1.00) |
| Xq gain | 3 (2%) | 135 |
0.551 (1.00) |
||
| 1p loss | 11 (8%) | 127 |
1 (1.00) |
||
| 1q loss | 6 (4%) | 132 |
1 (1.00) |
||
| 2p loss | 14 (10%) | 124 |
0.774 (1.00) |
||
| 2q loss | 14 (10%) | 124 |
1 (1.00) |
||
| 3p loss | 10 (7%) | 128 |
1 (1.00) |
||
| 3q loss | 10 (7%) | 128 |
0.528 (1.00) |
0.546 (1.00) |
0.301 (1.00) |
| 4p loss | 11 (8%) | 127 |
0.18 (1.00) |
||
| 4q loss | 13 (9%) | 125 |
0.125 (1.00) |
||
| 5p loss | 17 (12%) | 121 |
0.914 (1.00) |
0.898 (1.00) |
1 (1.00) |
| 5q loss | 30 (22%) | 108 |
0.497 (1.00) |
0.527 (1.00) |
0.827 (1.00) |
| 6p loss | 12 (9%) | 126 |
0.214 (1.00) |
||
| 6q loss | 54 (39%) | 84 |
0.0543 (1.00) |
0.411 (1.00) |
0.145 (1.00) |
| 8p loss | 17 (12%) | 121 |
0.177 (1.00) |
||
| 9p loss | 80 (58%) | 58 |
0.33 (1.00) |
0.812 (1.00) |
0.273 (1.00) |
| 9q loss | 59 (43%) | 79 |
0.33 (1.00) |
0.575 (1.00) |
0.0104 (1.00) |
| 10p loss | 59 (43%) | 79 |
0.32 (1.00) |
0.442 (1.00) |
0.274 (1.00) |
| 10q loss | 67 (49%) | 71 |
0.964 (1.00) |
0.0336 (1.00) |
0.209 (1.00) |
| 11p loss | 35 (25%) | 103 |
0.58 (1.00) |
0.105 (1.00) |
0.00351 (0.466) |
| 11q loss | 37 (27%) | 101 |
0.891 (1.00) |
0.455 (1.00) |
0.0258 (1.00) |
| 12p loss | 10 (7%) | 128 |
0.731 (1.00) |
||
| 12q loss | 16 (12%) | 122 |
0.78 (1.00) |
||
| 13q loss | 19 (14%) | 119 |
0.314 (1.00) |
0.453 (1.00) |
0.435 (1.00) |
| 14q loss | 34 (25%) | 104 |
0.506 (1.00) |
0.623 (1.00) |
0.677 (1.00) |
| 15q loss | 11 (8%) | 127 |
1 (1.00) |
||
| 16p loss | 11 (8%) | 127 |
0.528 (1.00) |
0.546 (1.00) |
0.506 (1.00) |
| 16q loss | 26 (19%) | 112 |
0.837 (1.00) |
0.63 (1.00) |
1 (1.00) |
| 17p loss | 30 (22%) | 108 |
0.667 (1.00) |
||
| 17q loss | 14 (10%) | 124 |
1 (1.00) |
||
| 18p loss | 26 (19%) | 112 |
1 (1.00) |
||
| 18q loss | 25 (18%) | 113 |
0.816 (1.00) |
||
| 19p loss | 10 (7%) | 128 |
0.00242 (0.325) |
||
| 19q loss | 13 (9%) | 125 |
0.0317 (1.00) |
||
| 20p loss | 6 (4%) | 132 |
0.663 (1.00) |
||
| 21q loss | 19 (14%) | 119 |
0.795 (1.00) |
||
| 22q loss | 8 (6%) | 130 |
1 (1.00) |
||
| Xq loss | 3 (2%) | 135 |
0.258 (1.00) |
-
Mutation data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = SKCM.clin.merged.picked.txt
-
Number of patients = 138
-
Number of significantly arm-level cnvs = 72
-
Number of selected clinical features = 3
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.