This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 73 arm-level results and 3 clinical features across 144 patients, no significant finding detected with Q value < 0.25.
-
No arm-level cnvs related to clinical features.
Clinical Features |
Time to Death |
AGE | GENDER | ||
nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | |
1p gain | 22 (15%) | 122 |
0.159 (1.00) |
0.126 (1.00) |
0.335 (1.00) |
1q gain | 51 (35%) | 93 |
0.575 (1.00) |
0.96 (1.00) |
1 (1.00) |
2p gain | 13 (9%) | 131 |
0.999 (1.00) |
0.0375 (1.00) |
0.138 (1.00) |
2q gain | 11 (8%) | 133 |
0.452 (1.00) |
0.145 (1.00) |
0.328 (1.00) |
3p gain | 14 (10%) | 130 |
0.931 (1.00) |
0.813 (1.00) |
0.565 (1.00) |
3q gain | 19 (13%) | 125 |
0.553 (1.00) |
0.534 (1.00) |
0.608 (1.00) |
4p gain | 15 (10%) | 129 |
0.253 (1.00) |
0.0471 (1.00) |
0.778 (1.00) |
4q gain | 12 (8%) | 132 |
0.382 (1.00) |
0.0848 (1.00) |
1 (1.00) |
5p gain | 16 (11%) | 128 |
0.0382 (1.00) |
0.572 (1.00) |
0.58 (1.00) |
5q gain | 4 (3%) | 140 |
0.674 (1.00) |
0.0236 (1.00) |
0.297 (1.00) |
6p gain | 50 (35%) | 94 |
0.776 (1.00) |
0.364 (1.00) |
0.273 (1.00) |
6q gain | 9 (6%) | 135 |
0.907 (1.00) |
0.94 (1.00) |
1 (1.00) |
7p gain | 65 (45%) | 79 |
0.982 (1.00) |
0.896 (1.00) |
0.73 (1.00) |
7q gain | 64 (44%) | 80 |
0.668 (1.00) |
0.561 (1.00) |
1 (1.00) |
8p gain | 29 (20%) | 115 |
0.648 (1.00) |
0.559 (1.00) |
0.195 (1.00) |
8q gain | 44 (31%) | 100 |
0.895 (1.00) |
0.203 (1.00) |
0.351 (1.00) |
11p gain | 8 (6%) | 136 |
0.759 (1.00) |
0.51 (1.00) |
0.26 (1.00) |
11q gain | 5 (3%) | 139 |
0.401 (1.00) |
0.604 (1.00) |
0.161 (1.00) |
12p gain | 14 (10%) | 130 |
0.694 (1.00) |
0.183 (1.00) |
0.379 (1.00) |
12q gain | 5 (3%) | 139 |
0.951 (1.00) |
0.575 (1.00) |
0.656 (1.00) |
13q gain | 25 (17%) | 119 |
0.366 (1.00) |
0.353 (1.00) |
0.493 (1.00) |
14q gain | 13 (9%) | 131 |
0.732 (1.00) |
0.982 (1.00) |
1 (1.00) |
15q gain | 18 (12%) | 126 |
0.884 (1.00) |
0.387 (1.00) |
1 (1.00) |
16p gain | 11 (8%) | 133 |
0.991 (1.00) |
0.703 (1.00) |
1 (1.00) |
16q gain | 10 (7%) | 134 |
0.824 (1.00) |
0.953 (1.00) |
1 (1.00) |
17p gain | 11 (8%) | 133 |
0.387 (1.00) |
0.81 (1.00) |
1 (1.00) |
17q gain | 19 (13%) | 125 |
0.471 (1.00) |
0.066 (1.00) |
0.608 (1.00) |
18p gain | 17 (12%) | 127 |
0.858 (1.00) |
0.166 (1.00) |
0.293 (1.00) |
18q gain | 9 (6%) | 135 |
0.866 (1.00) |
0.494 (1.00) |
0.721 (1.00) |
19p gain | 10 (7%) | 134 |
0.152 (1.00) |
0.287 (1.00) |
0.326 (1.00) |
19q gain | 12 (8%) | 132 |
0.463 (1.00) |
0.308 (1.00) |
0.114 (1.00) |
20p gain | 46 (32%) | 98 |
0.778 (1.00) |
0.815 (1.00) |
0.71 (1.00) |
20q gain | 57 (40%) | 87 |
0.364 (1.00) |
0.895 (1.00) |
0.479 (1.00) |
21q gain | 19 (13%) | 125 |
0.638 (1.00) |
0.544 (1.00) |
0.608 (1.00) |
22q gain | 40 (28%) | 104 |
0.102 (1.00) |
0.647 (1.00) |
0.331 (1.00) |
Xq gain | 3 (2%) | 141 |
0.624 (1.00) |
0.0653 (1.00) |
0.552 (1.00) |
1p loss | 11 (8%) | 133 |
0.198 (1.00) |
0.612 (1.00) |
0.747 (1.00) |
1q loss | 5 (3%) | 139 |
0.678 (1.00) |
0.818 (1.00) |
1 (1.00) |
2p loss | 13 (9%) | 131 |
0.0594 (1.00) |
0.816 (1.00) |
1 (1.00) |
2q loss | 12 (8%) | 132 |
0.1 (1.00) |
0.443 (1.00) |
0.754 (1.00) |
3p loss | 10 (7%) | 134 |
0.302 (1.00) |
0.457 (1.00) |
0.743 (1.00) |
3q loss | 11 (8%) | 133 |
0.52 (1.00) |
0.387 (1.00) |
0.197 (1.00) |
4p loss | 14 (10%) | 130 |
0.974 (1.00) |
0.083 (1.00) |
0.0848 (1.00) |
4q loss | 14 (10%) | 130 |
0.996 (1.00) |
0.28 (1.00) |
0.0848 (1.00) |
5p loss | 21 (15%) | 123 |
0.926 (1.00) |
0.58 (1.00) |
1 (1.00) |
5q loss | 32 (22%) | 112 |
0.955 (1.00) |
0.69 (1.00) |
0.677 (1.00) |
6p loss | 14 (10%) | 130 |
0.917 (1.00) |
0.973 (1.00) |
0.565 (1.00) |
6q loss | 62 (43%) | 82 |
0.619 (1.00) |
0.164 (1.00) |
0.297 (1.00) |
8p loss | 19 (13%) | 125 |
0.923 (1.00) |
0.861 (1.00) |
0.801 (1.00) |
8q loss | 3 (2%) | 141 |
0.268 (1.00) |
0.618 (1.00) |
0.0427 (1.00) |
9p loss | 83 (58%) | 61 |
0.429 (1.00) |
0.55 (1.00) |
0.383 (1.00) |
9q loss | 65 (45%) | 79 |
0.78 (1.00) |
0.0588 (1.00) |
0.0536 (1.00) |
10p loss | 66 (46%) | 78 |
0.209 (1.00) |
0.452 (1.00) |
0.0238 (1.00) |
10q loss | 72 (50%) | 72 |
0.769 (1.00) |
0.0134 (1.00) |
0.0809 (1.00) |
11p loss | 39 (27%) | 105 |
0.155 (1.00) |
0.624 (1.00) |
0.00623 (1.00) |
11q loss | 41 (28%) | 103 |
0.0674 (1.00) |
0.883 (1.00) |
0.0526 (1.00) |
12p loss | 9 (6%) | 135 |
0.603 (1.00) |
0.998 (1.00) |
0.28 (1.00) |
12q loss | 15 (10%) | 129 |
0.821 (1.00) |
0.858 (1.00) |
0.396 (1.00) |
13q loss | 25 (17%) | 119 |
0.94 (1.00) |
0.428 (1.00) |
0.362 (1.00) |
14q loss | 36 (25%) | 108 |
0.556 (1.00) |
0.213 (1.00) |
0.55 (1.00) |
15q loss | 10 (7%) | 134 |
0.631 (1.00) |
0.318 (1.00) |
0.743 (1.00) |
16p loss | 11 (8%) | 133 |
0.222 (1.00) |
0.68 (1.00) |
0.197 (1.00) |
16q loss | 26 (18%) | 118 |
0.00454 (0.994) |
0.841 (1.00) |
0.498 (1.00) |
17p loss | 33 (23%) | 111 |
0.505 (1.00) |
0.476 (1.00) |
1 (1.00) |
17q loss | 13 (9%) | 131 |
0.111 (1.00) |
0.732 (1.00) |
0.772 (1.00) |
18p loss | 30 (21%) | 114 |
0.43 (1.00) |
0.544 (1.00) |
1 (1.00) |
18q loss | 26 (18%) | 118 |
0.244 (1.00) |
0.734 (1.00) |
1 (1.00) |
19p loss | 12 (8%) | 132 |
0.751 (1.00) |
0.433 (1.00) |
0.0263 (1.00) |
19q loss | 14 (10%) | 130 |
0.744 (1.00) |
0.892 (1.00) |
0.0848 (1.00) |
20p loss | 6 (4%) | 138 |
0.301 (1.00) |
0.291 (1.00) |
0.423 (1.00) |
21q loss | 20 (14%) | 124 |
0.799 (1.00) |
0.9 (1.00) |
0.45 (1.00) |
22q loss | 10 (7%) | 134 |
0.67 (1.00) |
0.574 (1.00) |
0.326 (1.00) |
Xq loss | 4 (3%) | 140 |
0.694 (1.00) |
0.641 (1.00) |
0.127 (1.00) |
-
Mutation data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = SKCM-TM.clin.merged.picked.txt
-
Number of patients = 144
-
Number of significantly arm-level cnvs = 73
-
Number of selected clinical features = 3
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.