This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 29 arm-level results and 6 clinical features across 206 patients, no significant finding detected with Q value < 0.25.
-
No arm-level cnvs related to clinical features.
Clinical Features |
Time to Death |
AGE | GENDER |
HISTOLOGICAL TYPE |
RADIATIONS RADIATION REGIMENINDICATION |
NEOADJUVANT THERAPY |
||
nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | |
1q gain | 6 (3%) | 200 |
1 (1.00) |
0.422 (1.00) |
0.649 (1.00) |
0.264 (1.00) |
0.348 (1.00) |
1 (1.00) |
4p gain | 4 (2%) | 202 |
0.0143 (1.00) |
0.118 (1.00) |
1 (1.00) |
0.793 (1.00) |
0.247 (1.00) |
1 (1.00) |
4q gain | 4 (2%) | 202 |
0.0143 (1.00) |
0.118 (1.00) |
1 (1.00) |
0.793 (1.00) |
0.247 (1.00) |
1 (1.00) |
5p gain | 7 (3%) | 199 |
0.0143 (1.00) |
0.0757 (1.00) |
1 (1.00) |
0.51 (1.00) |
0.394 (1.00) |
1 (1.00) |
5q gain | 7 (3%) | 199 |
0.0143 (1.00) |
0.0757 (1.00) |
1 (1.00) |
0.51 (1.00) |
0.394 (1.00) |
1 (1.00) |
7p gain | 9 (4%) | 197 |
1 (1.00) |
0.0797 (1.00) |
1 (1.00) |
0.393 (1.00) |
1 (1.00) |
1 (1.00) |
7q gain | 11 (5%) | 195 |
1 (1.00) |
0.0451 (1.00) |
0.732 (1.00) |
0.136 (1.00) |
1 (1.00) |
1 (1.00) |
12p gain | 7 (3%) | 199 |
1 (1.00) |
0.356 (1.00) |
0.68 (1.00) |
0.51 (1.00) |
1 (1.00) |
1 (1.00) |
12q gain | 7 (3%) | 199 |
1 (1.00) |
0.356 (1.00) |
0.68 (1.00) |
0.51 (1.00) |
1 (1.00) |
1 (1.00) |
14q gain | 4 (2%) | 202 |
1 (1.00) |
0.545 (1.00) |
0.574 (1.00) |
0.793 (1.00) |
1 (1.00) |
1 (1.00) |
16p gain | 7 (3%) | 199 |
1 (1.00) |
0.501 (1.00) |
0.194 (1.00) |
0.427 (1.00) |
1 (1.00) |
1 (1.00) |
16q gain | 5 (2%) | 201 |
1 (1.00) |
0.34 (1.00) |
0.331 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
17p gain | 6 (3%) | 200 |
1 (1.00) |
0.536 (1.00) |
0.342 (1.00) |
0.582 (1.00) |
1 (1.00) |
1 (1.00) |
17q gain | 7 (3%) | 199 |
1 (1.00) |
0.745 (1.00) |
0.194 (1.00) |
0.802 (1.00) |
1 (1.00) |
1 (1.00) |
19q gain | 3 (1%) | 203 |
0.0143 (1.00) |
0.0175 (1.00) |
1 (1.00) |
0.55 (1.00) |
0.191 (1.00) |
1 (1.00) |
20p gain | 3 (1%) | 203 |
1 (1.00) |
0.587 (1.00) |
0.571 (1.00) |
0.55 (1.00) |
1 (1.00) |
1 (1.00) |
20q gain | 3 (1%) | 203 |
1 (1.00) |
0.587 (1.00) |
0.571 (1.00) |
0.55 (1.00) |
1 (1.00) |
1 (1.00) |
2p loss | 6 (3%) | 200 |
1 (1.00) |
0.194 (1.00) |
1 (1.00) |
0.367 (1.00) |
1 (1.00) |
1 (1.00) |
2q loss | 5 (2%) | 201 |
1 (1.00) |
0.0266 (1.00) |
1 (1.00) |
0.157 (1.00) |
1 (1.00) |
1 (1.00) |
3q loss | 3 (1%) | 203 |
1 (1.00) |
0.202 (1.00) |
1 (1.00) |
0.0914 (1.00) |
1 (1.00) |
1 (1.00) |
9q loss | 4 (2%) | 202 |
1 (1.00) |
0.0782 (1.00) |
1 (1.00) |
0.218 (1.00) |
0.247 (1.00) |
1 (1.00) |
11p loss | 4 (2%) | 202 |
0.0143 (1.00) |
0.0299 (1.00) |
0.273 (1.00) |
0.275 (1.00) |
0.247 (1.00) |
1 (1.00) |
11q loss | 5 (2%) | 201 |
0.0143 (1.00) |
0.0178 (1.00) |
0.109 (1.00) |
0.157 (1.00) |
0.299 (1.00) |
1 (1.00) |
13q loss | 7 (3%) | 199 |
0.0143 (1.00) |
0.131 (1.00) |
0.377 (1.00) |
0.026 (1.00) |
0.394 (1.00) |
1 (1.00) |
17p loss | 3 (1%) | 203 |
1 (1.00) |
0.846 (1.00) |
0.571 (1.00) |
0.55 (1.00) |
0.0124 (1.00) |
1 (1.00) |
18p loss | 3 (1%) | 203 |
1 (1.00) |
0.955 (1.00) |
0.571 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
18q loss | 3 (1%) | 203 |
1 (1.00) |
0.955 (1.00) |
0.571 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
21q loss | 4 (2%) | 202 |
1 (1.00) |
0.00416 (0.724) |
0.273 (1.00) |
0.793 (1.00) |
1 (1.00) |
1 (1.00) |
22q loss | 30 (15%) | 176 |
1 (1.00) |
0.625 (1.00) |
0.652 (1.00) |
0.0622 (1.00) |
0.23 (1.00) |
1 (1.00) |
-
Mutation data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = THCA.clin.merged.picked.txt
-
Number of patients = 206
-
Number of significantly arm-level cnvs = 29
-
Number of selected clinical features = 6
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.