Thyroid Adenocarcinoma: Correlation between copy number variations of arm-level result and selected clinical features
Maintained by TCGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.

Summary

Testing the association between copy number variation 29 arm-level results and 6 clinical features across 206 patients, no significant finding detected with Q value < 0.25.

  • No arm-level cnvs related to clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between significant copy number variation of 29 arm-level results and 6 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, no significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER HISTOLOGICAL
TYPE
RADIATIONS
RADIATION
REGIMENINDICATION
NEOADJUVANT
THERAPY
nCNV (%) nWild-Type logrank test t-test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
1q gain 6 (3%) 200 1
(1.00)
0.422
(1.00)
0.649
(1.00)
0.264
(1.00)
0.348
(1.00)
1
(1.00)
4p gain 4 (2%) 202 0.0143
(1.00)
0.118
(1.00)
1
(1.00)
0.793
(1.00)
0.247
(1.00)
1
(1.00)
4q gain 4 (2%) 202 0.0143
(1.00)
0.118
(1.00)
1
(1.00)
0.793
(1.00)
0.247
(1.00)
1
(1.00)
5p gain 7 (3%) 199 0.0143
(1.00)
0.0757
(1.00)
1
(1.00)
0.51
(1.00)
0.394
(1.00)
1
(1.00)
5q gain 7 (3%) 199 0.0143
(1.00)
0.0757
(1.00)
1
(1.00)
0.51
(1.00)
0.394
(1.00)
1
(1.00)
7p gain 9 (4%) 197 1
(1.00)
0.0797
(1.00)
1
(1.00)
0.393
(1.00)
1
(1.00)
1
(1.00)
7q gain 11 (5%) 195 1
(1.00)
0.0451
(1.00)
0.732
(1.00)
0.136
(1.00)
1
(1.00)
1
(1.00)
12p gain 7 (3%) 199 1
(1.00)
0.356
(1.00)
0.68
(1.00)
0.51
(1.00)
1
(1.00)
1
(1.00)
12q gain 7 (3%) 199 1
(1.00)
0.356
(1.00)
0.68
(1.00)
0.51
(1.00)
1
(1.00)
1
(1.00)
14q gain 4 (2%) 202 1
(1.00)
0.545
(1.00)
0.574
(1.00)
0.793
(1.00)
1
(1.00)
1
(1.00)
16p gain 7 (3%) 199 1
(1.00)
0.501
(1.00)
0.194
(1.00)
0.427
(1.00)
1
(1.00)
1
(1.00)
16q gain 5 (2%) 201 1
(1.00)
0.34
(1.00)
0.331
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
17p gain 6 (3%) 200 1
(1.00)
0.536
(1.00)
0.342
(1.00)
0.582
(1.00)
1
(1.00)
1
(1.00)
17q gain 7 (3%) 199 1
(1.00)
0.745
(1.00)
0.194
(1.00)
0.802
(1.00)
1
(1.00)
1
(1.00)
19q gain 3 (1%) 203 0.0143
(1.00)
0.0175
(1.00)
1
(1.00)
0.55
(1.00)
0.191
(1.00)
1
(1.00)
20p gain 3 (1%) 203 1
(1.00)
0.587
(1.00)
0.571
(1.00)
0.55
(1.00)
1
(1.00)
1
(1.00)
20q gain 3 (1%) 203 1
(1.00)
0.587
(1.00)
0.571
(1.00)
0.55
(1.00)
1
(1.00)
1
(1.00)
2p loss 6 (3%) 200 1
(1.00)
0.194
(1.00)
1
(1.00)
0.367
(1.00)
1
(1.00)
1
(1.00)
2q loss 5 (2%) 201 1
(1.00)
0.0266
(1.00)
1
(1.00)
0.157
(1.00)
1
(1.00)
1
(1.00)
3q loss 3 (1%) 203 1
(1.00)
0.202
(1.00)
1
(1.00)
0.0914
(1.00)
1
(1.00)
1
(1.00)
9q loss 4 (2%) 202 1
(1.00)
0.0782
(1.00)
1
(1.00)
0.218
(1.00)
0.247
(1.00)
1
(1.00)
11p loss 4 (2%) 202 0.0143
(1.00)
0.0299
(1.00)
0.273
(1.00)
0.275
(1.00)
0.247
(1.00)
1
(1.00)
11q loss 5 (2%) 201 0.0143
(1.00)
0.0178
(1.00)
0.109
(1.00)
0.157
(1.00)
0.299
(1.00)
1
(1.00)
13q loss 7 (3%) 199 0.0143
(1.00)
0.131
(1.00)
0.377
(1.00)
0.026
(1.00)
0.394
(1.00)
1
(1.00)
17p loss 3 (1%) 203 1
(1.00)
0.846
(1.00)
0.571
(1.00)
0.55
(1.00)
0.0124
(1.00)
1
(1.00)
18p loss 3 (1%) 203 1
(1.00)
0.955
(1.00)
0.571
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
18q loss 3 (1%) 203 1
(1.00)
0.955
(1.00)
0.571
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
21q loss 4 (2%) 202 1
(1.00)
0.00416
(0.724)
0.273
(1.00)
0.793
(1.00)
1
(1.00)
1
(1.00)
22q loss 30 (15%) 176 1
(1.00)
0.625
(1.00)
0.652
(1.00)
0.0622
(1.00)
0.23
(1.00)
1
(1.00)
Methods & Data
Input
  • Mutation data file = broad_values_by_arm.mutsig.cluster.txt

  • Clinical data file = THCA.clin.merged.picked.txt

  • Number of patients = 206

  • Number of significantly arm-level cnvs = 29

  • Number of selected clinical features = 6

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)