
m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

The Power
of Babble

July | August 2016Volume 14 | Issue 4

Scaling
Synchronization

in Multicore
Programs

Functionality
At Scale

:::::

Facebook's React
JavaScript Library

Complete table of contents on the following two pages

acmqueue | july-august 2016 2

Web Security and Mobile
Web Computing 80
In this installment of Research for Practice Jean
Yang presents three papers that propose a variety of
techniques using information flow to build secure web
applications. Then Vijay Janapa Reddi and Yuhao Zhu
have rounded up three papers that propose changes for
the next generation of mobile web computing.
BY PETER BAILIS

JULY-AUGUST

2016

Volume 14 Issue 4

RFP

2

case study

Functional
at Scale 39
Applying concepts from
functional programming to
modern server software
can result in more elegant
ways of dealing with the
complexity inherent in
distributed computing.
Twitter serves as an
example of this approach.
BY MARIUS ERIKSEN

React: Facebook’s
Functional Turn
on Writing
JavaScript 96
Developers can now build
UI components with this
open source library, which
both simplifies coding and
improves performance.
BY PETE HUNT
PAUL O’SHANNESSY
DAVE SMITH
TERRY COATTA

Scaling
Synchronization
in Multicore
Programs 56
Synchronization of
updates to shared
mutable data limits
scalability, but with
more advanced methods,
performance can
increase to acceptable
levels for multicore
programs.
BY ADAM MORRISON

Features

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
ncontents

acmqueue | july-august 2016 3

JULY-AUGUST

 2016

ESCAPING THE SINGULARITY
The Power of Babble 5
The need to communicate
in the ever-changing world
of metadata is important
but not at the expense of
innovation.
BY PAT HELLAND

The Soft Side of Software
Fresh Starts 15
The technology industry,
perhaps more than any
other field, rewards those
who keep learning, growing,
and changing.
BY KATE MATSUDAIRA

Everything Sysadmin
10 Optimizations on
Linear Search 20
What is the fastest
algorithm to find the
largest number in an
unsorted array? Here’s the
operational answer to that
(unrealistic) question.
BY THOMAS A. LIMONCELLI

Kode Vicious
Cloud Calipers 34
Enough already with naming
the next generation, and in
the cloud we trust?
BY GEORGE NEVILLE-NEIL

I I
I

I

columns / departments
contents

n
m

n

m
n

m
n

m
n

m
n

Volume 14 Issue 4

EXECUTIVE DIRECTOR / CEO
Bobby Schnabel
DEPUTY EXECUTIVE DIRECTOR / COO
Patricia Ryan

ACM Executive committee
PRESIDENT

Vicki L. Hanson
VICE-PRESIDENT

Cherri M. Pancake
SECRETARY/TREASURER

Elizabeth Churchill
PAST PRESIDENT

Alexander L. Wolf

Practitioner Board
BOARD CO-CHAIRS
Terry Coatta
Stephen Ibaraki
BOARD MEMBERS
Samy Al Bahra
Eve Andersson
Steve Bourne
Karin Breitman
Alain Chesnais
Ben Fried
Theo Schlossnagle
Jim Waldo

Queue editorial Board
BOARD CHAIR / EDITOR-IN-CHIEF

Stephen Bourne
BOARD MEMBERS
Eric Allman
Peter Bailis
Terry Coatta
Stuart Feldman
Camille Fournier
Benjamin Fried
Pat Hanrahan
Tom Killalea
Tom Limoncelli
Kate Matsudaira
Marshall Kirk McKusick
Erik Meijer
George Neville-Neil
Theo Schlossnagle
Jim Waldo
Meredith Whittaker

SUBSCRIPTIONS
A one-year subscription
(six bi-monthly issues) to the
digital magazine is $19.99 (free
to ACM Professional Members)
and available through your
favorite merchant store
(Mac App Store/Google play).
A browser-based version is
available through the acmqueue
website (queue.acm.org)

SINGLE COPIES
Single copies are available
through the same venues and
are $6.99 each (free to ACM
Professional Members).

ACM, the world’s largest educational and scientific
computing society, delivers resources that advance
computing as a science and profession. ACM provides
the computing field’s premier Digital Library and serves
its members and the computing profession with leading-
edge publications, conferences, and career resources.

Queue STAFF
EXECUTIVE EDITOR

James Maurer
MANAGING EDITOR

WEB EDITOR

Matt Slaybaugh
COPY EDITORS

Susie Holly
Vicki Rosenzweig

ART DIRECTION

Reuter & Associates

CONTACT POINTS
feedback@

queue.acm.org
editor@

queue.acm.org
acmhelp@acm.org

http://queue.acm.org

(ISSN 1542-7730) is
published bi-monthly by

ACM, 2 Penn Plaza,
 Suite 701, New York, NY

10121-0701. USA
T (212) 869-7440
F (212) 869-0481

acmqueue | july-august 2016 4

queue.acm.org
mailto:feedback@queue.acm.org
mailto:feedback@queue.acm.org
mailto:editor@queue.acm.org
mailto:editor@queue.acm.org
http://queue.acm.org

acmqueue | july-august 2016 5

M
etadata defines the shape, the form, and
how to understand our data. It is following
the trend taken by natural languages in our
increasingly interconnected world. While many
concepts can be communicated using shared

metadata, no one can keep up with the number of disparate
new concepts needed to have a common understanding.

English is the lingua franca of the world, yet there
are many facets of humanity and the concepts held by
different people that simply cannot be captured in English
no matter how pervasive the language. In fact, English
itself has nooks, crannies, dialects, meetups, and teenager
slang that innovate and extend its permutations with
usages that usually do not converge. My personal idiolect
shifts depending on whether I am speaking to a computer
science audience, my team at work with its contextual
usages, my wife, my grandkids, or the waiter at a local
restaurant. Different communities of people extend
English in different ways.

Computer systems have an emerging and increasing
common metadata for interoperability. XML and now JSON
fill similar roles by making the parsing of messages easy
and common. It’s great we are no longer arguing over ASCII
versus EBCDIC, but that’s hardly the most challenging
problem of understanding.

As we move up the stack of understanding, new

The Power of Babble
Expect to be
constantly
and pleasantly
befuddledPAT HELLAND

1 of 10 TEXT
ONLY

* It’s Not Your Grandmother’s
Database Anymore

*
ESCAPING THE
singularity

acmqueue | july-august 2016 6

subtleties constantly emerge. Just when we think we
understand, the other guy has some crazy new ideas!

As much as we would like to have complete
understanding of each other, independent innovation is far
more important than crisp and clear communication. Our
economic future depends on the “power of babble”.

THE APOCALYPSE OF TWO ELEPHANTS
To facilitate communications, the computing industry,
various companies, and other organizations try to
establish standard forms of communication. We see
TCP, IP, Ethernet and other communication standards
as well as XML, JSON, and even ASCII making it easier
to communicate. Above this, there are vertical specific
standards (e.g. health care and manufacturing standards).
Many companies have internal communication standards
as well.

Dave Clark of MIT observed that successful standards
happen only if they are lucky enough to slide into a trough
of inactivity after a flurry of research and before huge
investments in productization (figure 1). This observation is
known as the Apocalypse of the Two Elephants (although
Clark actually didn’t name it that).1

Standards that happen in this trough are effective
and experience little competition. If a standard doesn’t
emerge here or the trough is squished by the two humps
overlapping, it’s a much murkier road forward.

The best de jure standards are rubber stamps
over de facto standards.

2 of 10

IESCAPING THE
singularity

acmqueue | july-august 2016 7

If there’s no de facto standard to start from, then the
de jure standard typically contains the union of all ideas
discussed by the committee. Natural selection relegates
these standards and their clutter to history books.

THE DIALECTS OF THE BUSINESS WORLD
Computer systems and applications tend to be developed
independently to support the special needs of their users.
In the past, each system would be bespoke and support
detailed specifications. Increasingly, shared application
platforms are leveraged, either on premises or in the
cloud. In these common apps, there is common metadata—
at least as far as the apps have a common heritage.

When applications are independently developed, they
have disparate concepts and representations. Many of
these purchased applications are designed for extensions.
As the specific customer gloms extensions onto the side

3 of 10

IESCAPING THE
singularity

research

standards

billion dollar
investment

ac
tiv

ity

time

FIGURE 1: The Apocalypse of Two Elephants

1

acmqueue | july-august 2016 8

of the app, this impacts the shape, form, and meaning of its
internal and shared data.

When there’s a common application lineage,
there’s a common understanding of its data. Popular
ERP (enterprise resource planning), CRM (customer
relationship management), and HRM (human resources
management) applications have their ways of solving
business problems, and different companies that have
adopted these solutions may find it easier to interoperate.

INTERNECINE INTEROP
Still, challenges of understanding may exist even across
departments or divisions of the same company. A large
conglomerate may sell many products, including light
bulbs, dishwashers, locomotives, and nuclear power
plants. I would hazard a guess that it doesn’t have a single
canonical customer record type.

Of course, mergers and divestitures impact a company’s
metadata. I know from personal experience how hard it
is to change my mailing address with a bank or insurance
company. They can’t seem to track down all the systems
that record my address even over the course of a year.
It’s not a big surprise that they have a hard time managing
their metadata.

WHAT’D YOU SAY?
Whenever there are two representations of data, either
somebody adapts or the fidelity of the translation suffers.
In many cases, the adaptation is driven by economic
power. When a manufacturer wants to sell something to
a huge retailer, it may be told exactly the shape, form, and

4 of 10

I

W
henever
there
are
two
rep-

resentations
of data, either
somebody
adapts or the
fidelity of
the translation
suffers.

ESCAPING THE
singularity

acmqueue | july-august 2016 9

semantics of the messaging between the companies. To
get the business, the manufacturer will figure it out!

The dog wags the tail. In any communication partnership,
the onus to adapt rests on the side that most needs the
relationship to work.

Translating between two data representations may very
likely be lossy. Not all of the information in one form can be
moved to the other form. It’s highly likely that some stuff
will be nulled out or possibly translated into a form that
doesn’t precisely map.

Each translation is lossy. By the time the translation
occurs, a loss of knowledge has occurred. The best results
will be from dedicated transformations designed to take
exactly one source and translate it as best as possible
to exactly one target. This is the least lossy form of
translation. Unfortunately, this results in a boatload of
translators. Creating a specific conversion for each source
and destination pair results in great conversion fidelity but
also results in N2 converters (see figure 2).

What to do? Many times, we simply capture a canonical
representation and do two data translations: first, a lossy
translation into the canonical representation; then, a lossy
translation from the canonical representation into the
target representation. This is double-lossy and just doesn’t
supply as good a result.

Why do the translation to a canonical form? Because
only 2N translators are needed for N sources, and that’s a
heck of a lot fewer than N2, as N gets large. Using canonical
metadata as a common translation reduces the number of

5 of 10

IESCAPING THE
singularity

acmqueue | july-august 2016 10

converters but results in a double-lossy conversion (see
figure 3).

In most cases, people use canonical metadata to bound
complexity but add specific source-to-target translators
when the lossiness is too large.

WHAT COLOR ARE YOUR ROSE-COLORED GLASSES?
We all see stuff couched in terms of a set of assumptions.
This is a worldview that allows us to interpret incoming
information. This interpretation may be right or wrong, but,
more importantly, it is right or wrong for our subjective
usage.

Computer systems are invariably designed for a certain
company, department, or group. The data is typically cast
into a meaning and use that are appropriate for one side
but lose their deeper meaning through the translation.

6 of 10

I

service

service

service service

service service

serviceservice

serviceservice

service service

12 services, 12 x 11 = 132 message transformers

FIGURE 2: Least-lossy conversion

ESCAPING THE
singularity

2

acmqueue | july-august 2016 11

Sometimes, the meaning and understanding of some
data are deeply couched in cultural issues. Any translation
to a new environment and culture simply loses all meaning.
Reading about daily life in Medieval Europe doesn’t help
much unless you study the relationships between serfs and
lord as well as between men and women. Only then can you
understand the actions described in the book. Similarly,
in any discussion of privacy, cultural expectations must
be addressed. In North America and Europe, protecting
against the damage that may result by disclosing a medical
challenge is paramount. In India, the essential need to
vet a prospective spouse for your child is deemed more

7 of 10

I

service

service

service service

service service

serviceservice

serviceservice

service servicecanonical

12 services, 2 x N; 2 x 12 = 24 message transformers

FIGURE 3: “Double-lossy” conversion

ESCAPING THE
singularity

3

acmqueue | july-august 2016 12

important than holding an illness private. Communication
cannot take place without understanding the assumptions
and interpreting through that lens.

The artificial language Esperanto was created in 1887
with the hope of achieving a common shared natural
language for all people. Some folks grabbed hold and used
it to write and share. Some say a few million speak it today.

The use of Esperanto has been waning, however. Each
of the roughly 6,000 languages spoken by different
communities in the world has its own flavor and nuance.
You can say certain things in one language that you just
can’t say in another one.

DIVERSE AND HOMOGENEOUS
The words and phrases people use and the metadata that
applications use follow a similar pattern. With a common
codebase DNA and history, some meanings are the same.
As time, evolution, and commingling occur, it’s harder to
understand one another.

New software applications either in the cloud or
on premises sometimes offer enough business benefit
that enterprises adapt their ways of doing business to
fit the application. The new user adopts the canonical
representation of data and business processes by sheer
hard work. When the business value of the software is high
enough, mapping to it is cost effective. Now the enterprise
is much more closely aligned to the new approach and to
interoperating with other enterprises sharing the new data
and process.

Next, the enterprise will begin to extend the system
using extensibility features. These extensions can then

8 of 10

IESCAPING THE
singularity

acmqueue | july-august 2016 13

become a source of misunderstanding, but they bring
business value to the enterprise.

The United States, Canada, and many other Western
countries have tremendous diversity in their populations.
New arrivals bring new customs. They work to understand
the existing customs in their new home. While there
are many differences at first, in a few short years the
immigrants fit in. Their children are deeply ingrained in
the new country, even though they still like some of that
food their mom cooked at home. That food becomes as
American (or English or German) as pizza, tacos, and
falafel. Similarly, the base metadata continues to move and
adjust as it assimilates those new messages and fields that
made no sense at all a short time ago.

RELISHING DIVERSITY
While not understanding another party is a pain, it
probably means that innovation and growth have occurred.
Economic forces will drive when and where it’s worth the
bother to invest in deeper understanding.

Playing loose with understanding allows for better
cohesion, as exemplified by Amazon’s product catalog and
the search results from Google or Bing. Remember that
in many cases, cultural and contextual issues will drive
how something is interpreted. Extensible data does not
have a prearranged understanding. Translating between
representations is lossy and frequently involves a painful
tradeoff between expensive handcrafted translators and
even lossier multiple translations.

Personally, as the years have gone by, I’ve gotten much
more relaxed about the things I don’t know and don’t

9 of 10

IESCAPING THE
singularity

acmqueue | july-august 2016 14

understand. A lot of stuff confuses me! As we interoperate
across disparate boundaries, it would do us well to
remember that the less stressed we are about perfect
understanding and agreement, the better we will all get
along. Moving forward, I expect to be constantly and
pleasantly befuddled by the power of babble.

References
1. Clark, D. 2009. The Apocalypse of Two Elephants, or

“what I really said.” Advanced Network Architecture. MIT
CSAIL; http://groups.csail.mit.edu/ana/People/DDC/.

Pat Helland has been implementing transaction systems,
databases, application platforms, distributed systems,
fault-tolerant systems, and messaging systems since 1978.
For recreation, he occasionally writes technical papers. He
currently works at Salesforce.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

I
10 of 10

CONTENTS2

ESCAPING THE
singularity

http://groups.csail.mit.edu/ana/People/DDC/

acmqueue | july-august 2016 15

I
love fresh starts. Growing up,
one of my favorite things was
starting a new school year. From the fresh school
supplies (I am still a sucker for pen and paper) to the
promise of a new class of students, teachers, and

lessons, I couldn’t wait for summer to be over and to go
back to school.

The same thing happens with new jobs (and to some
extent, new teams and new projects). They reinvigorate
you, excite you, and get you going.

The trouble is that starting anew isn’t something
you get to do all the time. For some people it might
happen once a year, once every two years, or once every
four years. Furthermore, learning something new isn’t
always in the best interest of your employer. Of course,
great managers want you constantly to be learning and
advancing your career, but if you are doing your job well,
they also probably like the
idea of keeping you in that role
where they can rely on you
to get the work done. Putting
you into a position where you
will have to work hard to learn
new skills isn’t always best
for your company—and so it
probably doesn’t happen often.

Fresh Starts
Just because
you have been
doing it
the same way
doesn’t mean
you are doing it
the right way

KATE MATSUDAIRA

1 of 5 TEXT
ONLY THE SOFT SIDE OF

software

acmqueue | july-august 2016 16

Wouldn’t it be great if you frequently were in a position
where you were pushed to grow outside of your comfort
zone? Where you had to start new and fresh?

Well, the good news is that you can. In fact, you can
make your current position one that focuses on your
growth and extends the boundaries of your knowledge—
and that is all up to you.

In technology and computer science, almost more than
any other field, a growth mindset is mandatory for success.
In this field the tools and best practices are constantly
evolving—there is always something new to learn. For
many people this high rate of change can be overwhelming,
but for the right person this can mean opportunity. When
you are willing to dive in and learn new skills, it puts you
ahead of the game; and when you are strategic about what
skills you learn, it can help you grow your career even
faster.

No matter where you are in your career, there is more
to learn. All of us can always use an excuse to get more
invigorated and excited by our jobs. Here are three steps
you can take to develop your current role and make
tomorrow (or even the rest of today) a fresh start.

Create a learning plan
When you have been doing a job for a while, there isn’t as
much for you to learn in your day-to-day. Sure, there are
always opportunities to improve little things, but your rate
of knowledge acquisition slows down the longer you have
been in a position. This makes it even more important to
have a learning plan. You should have a list of things you
plan to learn with some concrete tasks associated with

2 of 5

ITHE SOFT SIDE OF
software

acmqueue | july-august 2016 17

each. If you need some inspiration on what should be on
this list, here are some questions to ponder:

3 To be promoted to the next level in your job, what do
you need to accomplish? Are there any skills you need to
acquire or improve?

3 If you think 10 years into the future, what do you want
to do? Do you know anyone doing that now? What do they
know that you don’t?

3 Look back over your past performance reviews. Are
there any areas where you could continue to develop and
improve? If you ask others for feedback, what would they
say and how can you do better?

Build better relationships
Most of us spend more time with our coworkers than
our families. When you have great relationships with the
people you work with every day, you tend to be happier—
and you tend to be more productive and collaborative.
Also, when people like you and want to help you, then
you are more likely to get promoted and discover
opportunities. Here are two ideas for improving your
working relationships:

3 Improve your communication skills. When you get
better at writing emails, or verbal presentation, you help
share information, and this creates better decision-making
across your whole team.

3 Take someone to lunch. If you work with someone
you don’t know very well, or haven’t had the best working
relationship with, make the first move and ask this person
to lunch or coffee. This is a great way to get to know people

3 of 5

I

W
hen you
have
great
rela-
tion-

ships with the
people you work
with everyday,
you tend to be
happier—
and you tend
to be more
productive and
collaborative.

THE SOFT SIDE OF
software

acmqueue | july-august 2016 18

and understand their points of view. Working relationships
are usually strained because two sides are making
incorrect assumptions, and the first step is opening the
lines of communication. Be open, practice your listening
skills, and offer to foot the bill—for the cost of a lunch you
would be amazed at how much that gesture can improve
your work life.

Make better use of your down time
One of my favorite time-management tricks is using spare
minutes to maximize your learning. When you can make
the most of the small moments and learn things that help
advance your career, then you will be one step ahead.
This can be as simple as nixing social-media checks and
replacing them with 10-15 minutes of reading articles or
websites that help increase your knowledge. Here are
some other ideas to get more out of those little moments:

3 Be on time. When you can start on time and end on
time, you make the most of meetings (plus it is a sign of
respect when you show up when you say you will), and you
will have more freedom to do what you want to do.

3 Keep a reading queue. Whether you use bookmarks,
notes, or some other tool, keep a list of items you want to
read. These can be articles, whitepapers, or books—but
when you have a list it is much easier just to go there to
fill 15 minutes with useful learning than to spend those 15
minutes surfing the web looking for something interesting.

3 Listen to audiobooks or smart podcasts. Whether it is
on your commute or when you are working out, if you can’t
sit and read, try listening to your lessons. There are so

4 of 5

ITHE SOFT SIDE OF
software

acmqueue | july-august 2016 19

I

many great options here, and it is a great way to maximize
time and knowledge.

Of course, there are lots of other great ways to make
your old career new again, but these little ideas could give
you inspiration so that when you come to work tomorrow
you can be excited.

If you have any other thoughts or suggestions, feel free
to leave them in the comments on the website. And if there
is a topic you would like to see covered in this column, let
me know.

Kate Matsudaira is an experienced technology leader. She
worked in big companies such as Microsoft and Amazon and
three successful startups (Decide acquired by eBay, Moz, and
Delve Networks acquired by Limelight) before starting her
own company, Popforms (http://popforms.com/), which was
acquired by Safari Books. Having spent her early career as
a software engineer, she is deeply technical and has done
leading work on distributed systems, cloud computing, and
mobile. She has experience managing entire product teams
and research scientists, and has built her own profitable
business. She is a published author, keynote speaker, and has
been honored with awards such as Seattle’s Top 40 under 40.
She sits on the board of acmqueue and maintains a personal
blog at katemats.com.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

5 of 5

CONTENTS2

THE SOFT SIDE OF
software

http://popforms.com/

acmqueue | july-august 2016 20

A
friend was asked the following question during a
job interview: What is the fastest algorithm to find
the largest number in an unsorted array?

The catch, of course, is that the data is
unsorted. Because of that, each item must be

examined; thus, the best algorithm would require O(N)
comparisons, where N is the number of elements. Any
computer scientist knows this. For that reason, the fastest
algorithm will be a linear search through the list.

End of story.
All the computer scientists may leave the room now.
(looks around)
Are all the computer scientists gone? Good!
Now let’s talk about the operational answer to this

question.
System administrators (DevOps engineers or SREs

or whatever your title) must deal with the operational
aspects of computation, not just the theoretical aspects.
Operations is where the rubber hits the road. As a result,
operations people see things from a different perspective
and can realize opportunities outside of the basic O()
analysis.

Let’s look at the operational aspects of the problem of
trying to improve something that is theoretically optimal
already.

10 Optimizations on
Linear Search The

operations
side of
the storyTHOMAS A. LIMONCELLI

1 of 14 TEXT
ONLY EVERYTHING

sysadmin

acmqueue | july-august 2016 21

1. DON’T OPTIMIZE CODE THAT IS FAST ENOUGH
The first optimization comes from deciding to optimize
time and not the algorithm itself. First, ask whether the
code is fast enough already. If it is, you can optimize your
time by not optimizing this code at all. This requires a
definition of fast enough.

Suppose 200 ms and under is fast enough. Anything that
takes less than 200 ms is perceived to be instantaneous
by the human brain. Therefore, any algorithm that can
complete the task in less than 200 ms is usually good
enough for interactive software.

Donald Knuth famously wrote that premature
optimization is the root of all evil. Optimized solutions are
usually more complex than the solutions they replace;
therefore, you risk introducing bugs into the system. A bird
in hand is worth two in the bush. Why add complexity when
you don’t have to?

My biggest concern with premature optimization is
that it is a distraction from other, more important work.
Your time is precious and finite. Time spent on a premature
optimization is time that could be spent on more important
work.

Prioritizing your work is not about deciding in what
order you will do the items on your to-do list. Rather, it is
deciding which items on your to-do list will be intentionally
dropped on the floor. I have 100 things I would like to do
this week. I am going to complete only about 10 of them.
How I prioritize my work determines which 90 tasks won’t
get done. I repeat this process every week. One of the best
time-management skills you can develop is to learn to let
go of that 90 percent.

2 of 14

IEVERYTHING
sysadmin

acmqueue | july-august 2016 22

In the case of the interview question, whether
optimizing is worthwhile relates to the number of data
items. It isn’t worth optimizing if only a small amount of
data is involved. I imagine that if, during the interview,
my friend had asked, “How many elements in the list?”
the interviewer would have told him that it doesn’t
matter. From a theoretical point of view, it doesn’t; from
an operational point of view, however, it makes all the
difference.

Deciding if an optimization is worth your time requires
a quick back-of-the-envelope estimate to determine what
kinds of improvements are possible, how long they might
take to be achieved, and if the optimization will result in a
return on investment. The ability to use rough estimates to
decide whether or not an engineering task is worthwhile
may be one of the most important tools in a system
administrator’s toolbox.

If small is defined to mean any amount of data that
can be processed in under 200 ms, then you would be
surprised at how big small can be.

I conducted some simple benchmarks in Go to find how
much data can be processed in 200 ms. A linear search can
scan 13 million elements in less than 200 ms on a three-
year-old MacBook laptop, and 13 million is no small feat.

This linear search might be buggy, however. It is five
lines long and, not to brag, but I can pack a lot of bugs
into five lines. What if I were to leverage code that has
been heavily tested instead? Most languages have a built-
in sort function that has been tested far more than any
code I’ve ever written. I could find the max by sorting the

3 of 14

I

T
he ability
to use
rough
estimates
to decide

whether or not an
engineering task
is worthwhile
may be one of the
most important
tools in a system
administrator’s
toolbox.

EVERYTHING
sysadmin

acmqueue | july-august 2016 23

list and picking the last element. That would be lazy and
execute more slowly than a linear search, but it would be
very reliable. A few simple benchmarks found that on the
same old laptop, this “lazy algorithm” could sort 700,000
elements and still be under the 200-ms mark.

What about smaller values of N?
If N=16,000, then the entire dataset fits in the L1 cache

of the CPU, assuming the CPU was made in this decade.
This means the CPU can scan the data so fast it will make
your hair flip. If N=64,000, then the data will fit in a
modern L2 cache, and your hair may still do interesting
things. If the computer wasn’t made in this decade, I would
recommend that my friend reconsider working for this
company.

If N is less than 100, then the lazy algorithm runs
imperceptibly fast. In fact, you could repeat the search on
demand rather than storing the value, and unless you were
running the algorithm thousands of times, the perceived
time would be negligible.

The algorithms mentioned so far are satisfactory until
N=700,000 if we are lazy and N=13,000,000 if we aren’t;
13 million 32-bit integers (about 52 MB) is hardly small by
some standards. Yet, in terms of human perception, it can
be searched instantly.

If my friend had known these benchmark numbers, he
could have had some fun during the interview, asking the
interviewer to suggest a large value of N, and replying,
“What? I don’t get out of bed for less than 13 million
integers!” (Of course, this would probably have cost him
the job.)

4 of 14

IEVERYTHING
sysadmin

acmqueue | july-august 2016 24

2. USE SIMD INSTRUCTIONS
Most modern CPUs have SIMD (single instruction, multiple
data) instructions that let you repeat the same operation
over a large swath of memory. They are able to do this very
quickly because they benefit from more efficient memory
access and parallel operations.

According to one simple benchmark (http://
stackoverflow.com/a/2743040/71978), a 2.67-GHz Core i7
saw a 7-8x improvement by using SIMD instructions where
N = 100,000. If the amount of data exceeded the CPU’s
cache size, the benefit dropped to 3.5x.

With SIMD, small becomes about 45 million elements, or
about 180 MB.

3. WORK IN PARALLEL
Even if N is larger than the small quantity, you can keep
within your 200-ms time budget by using multiple CPUs.
Each CPU core can search a shard of the data. With four
CPU cores, small becomes 4N, or nearly 200 million items.

When I was in college, the study of parallel
programming was hypothetical because we didn’t have
access to computers with more than one CPU. In fact,
I didn’t think I would ever be lucky enough to access a
machine with such a fancy architecture. Boy, was I wrong!
Now I have a phone with eight CPU cores, one of which, I
believe, is dedicated exclusively to crushing candy.

Parallel processing is now the norm, not the exception.
Code should be written to take advantage of this.

5 of 14

IEVERYTHING
sysadmin

acmqueue | july-august 2016 25

4. HIDE CALCULATION IN ANOTHER FUNCTION
The search for the max value can be hidden in other work.
For example, earlier in the process the data is loaded into
memory. Why not have that code also track the max value
as it iterates through the data? If the data is being loaded
from disk, the time spent waiting for I/O will dominate, and
the additional comparison will be, essentially, free.

If the data is being read from a text file, the work to
convert ASCII digits to 32-bit integers is considerably
more than tracking the largest value seen so far. Adding
max-value tracking would be “error in the noise” of any
benchmarks. Therefore, it is essentially free.

You might point out that this violates the SoC
(separation of concerns) principle. The method that loads
data from the file should just load data from a file. Nothing
else. Having it also track the maximum value along the way
adds complexity. True, but we’ve already decided that the
added complexity is worth the benefit.

Where will this end? If the LoadDataFromFile()
method also calculates the max value, what’s to stop us
from adding other calculations? Should it also calculate
the min, count, total and average? Obviously not. If you
have the count and total, then you can calculate the
average yourself.

5. MAINTAIN THE MAX ALONG THE WAY
What if the max value cannot be tracked as part of loading
the dataset? Perhaps you don’t control the method that
loads the data. If you are using an off-the-shelf JSON
(JavaScript Object Notation) parser, adding the ability to
track the max value would be very difficult. Perhaps the

6 of 14

IEVERYTHING
sysadmin

acmqueue | july-august 2016 26

data is modified after being loaded, or it is generated in
place.

In such situations I would ask why the data structure
holding the data isn’t doing the tracking itself. If data is only
added, never removed or changed, the data structure can
easily track the largest value seen so far. The need for a
linear search has been avoided altogether.

If items are being removed and changed, more
sophisticated data structures are required. A heap makes
the highest value accessible in O(1) time. The data can be
kept in the original order but in a heap or other index on the
side. You will then always have fast access to the highest
value, though you will suffer from additional overhead
maintaining the indexes.

6. HIDE LONG CALCULATIONS FROM USERS
Maybe the process can’t be made any faster, but the delay
can be hidden from the user.

One good place to hide the calculation is when waiting
for user input. You don’t need the entire processing power
of the computer to ask “Are you sure?” and then wait for
a response. Instead, you can use that time to perform
calculations, and no one will be the wiser.

One video-game console manufacturer requires games
to have some kind of user interaction within a few seconds
of starting. Sadly, most games need more time than that
to load and initialize. To meet the vendor’s requirement,
most games first load and display a title screen, then ask
users to click a button to start the game. What users don’t
realize is that while they are sitting in awe of the amazing
title screen, the game is finishing its preparations.

7 of 14

IEVERYTHING
sysadmin

acmqueue | july-august 2016 27

GET OUT OF YOUR SILO
Before discussing the remaining optimizations, let’s discuss
the value of thinking more globally about the problem.
Many optimizations come from end-to-end thinking. Rather
than optimizing the code itself, we should look at the entire
system for inspiration.

To do this requires something scary: talking to people.
Now, I understand that a lot of us go into this business
because we like machines more than people, but the reality
is that operations is a team sport.

Sadly, often the operations team is put in a silo,
expected to work issues out on their own without the
benefit of talking to the people who created the system.
This stems from the days when one company created
software and sold it on floppy disk. The operations people
were in a different silo from the developers because
they were literally in a different company. System
administrators’ only access to developers at the other
company was through customer support, whose job it was
to insulate developers from talking to customers directly.
If that ever did happen, it was called an escalation, an
industry term that means that a customer accidentally
got the support he or she paid for. It is something that the
software industry tries to prevent at all costs.

Most (or at least a growing proportion of) IT operations,
however, deal with software that is developed in-house. In
that situation there is very little excuse to have developers
and operations in separate silos. In fact, they should talk
to each other and collaborate. There should be a name
for this kind of collaboration between developers and
operations... and there is: DevOps.

8 of 14

I

M
any opti-
mizations
come
from end-
to-end

thinking. Rather
than optimizing
the code itself,
we should look at
the entire system
for inspiration.

EVERYTHING
sysadmin

acmqueue | july-august 2016 28

If your developers and operations teams are still siloed
away from each other, then your business model hasn’t
changed since software was sold on floppy disk. This is
ironic since your company probably didn’t exist when floppy
disks were in use. What’s wrong with this picture?

Get out of your silo and talk to people. Take a walk down
the hallway and introduce yourself to the developers
in your company. Have lunch with them. Indulge in your
favorite after-work beverage together. If you are a
manager who requires operations and developers to
communicate only through “proper channels” involving
committees and product management chains, get out of
their way.

Once operations has forged a relationship with
developers, it is easier to ask important questions, such as
How is the data used? What is it needed for and why?

This kind of social collaboration is required to develop
the end-to-end thinking that makes it possible to optimize
code, processes, and organizations. Every system has a
bottleneck. If you optimize upstream of the bottleneck, you
are simply increasing the size of the backlog waiting at the
bottleneck. If you optimize downstream of the bottleneck,
you are adding capacity to part of a system that is starved
for work. If you stay within your silo, you’ll never know
enough to identify the actual bottleneck.

Getting out of your silo opens the door to optimizations
such as our last four examples.

7. USE A “GOOD ENOUGH” VALUE INSTEAD
Is the maximum value specifically needed, or is an estimate
good enough?

9 of 14

IEVERYTHING
sysadmin

acmqueue | july-august 2016 29

Perhaps the calculation can be avoided entirely.
Often an estimate is sufficient, and there are many

creative ways to calculate one. Perhaps the max value
from the previous dataset is good enough.

Perhaps the max value is being used to preallocate
memory or other resources. Does this process really
need to be fine-tuned every time the program runs?
Might it be sufficient to adjust the allocations only
occasionally—perhaps in response to resource monitoring
or performance statistics?

If you are dealing with a small amount of data (using
the earlier definition of small), perhaps preallocating
resources is overkill. If you are dealing with large amounts
of data, perhaps preallocating resources is unsustainable
and needs to be reengineered before it becomes
dangerous.

8. SEEK INSPIRATION FROM THE UPSTREAM PROCESSES
Sometimes we can get a different perspective by
examining the inputs.

Where is the data coming from?
I once observed a situation where a developer was

complaining that an operation was very slow. His solution
was to demand a faster machine. The sysadmin who
investigated the issue found that the code was downloading
millions of data points from a database on another
continent. The network between the two hosts was very
slow. A faster computer would not improve performance.

The solution, however, was not to build a faster network,
either. Instead, we moved the calculation to be closer
to the data. Rather than download the data and do the

I
10 of 14EVERYTHING

sysadmin

acmqueue | july-august 2016 30

calculation, the sysadmin recommended changing the SQL
query to perform the calculation at the database server.
Instead of downloading millions of data points, now we
were downloading the single answer.

This solution seems obvious but eluded the otherwise
smart developer. How did that happen? Originally, the
data was downloaded because it was processed and
manipulated many different ways for many different
purposes. Over time, however, these other purposes were
eliminated until only one purpose remained. In this case
the issue was not calculating the max value, but simply
counting the number of data points, which SQL is very good
at doing for you.

9. SEEK INSPIRATION FROM THE DOWNSTREAM
PROCESSES
Another solution is to look at what is done with the data
later in the process. Does some other processing step sort
the data? If so, the max value doesn’t need to be calculated.
You can simply sort the data earlier in the process and take
the last value.

You wouldn’t know this was possible unless you took the
time to talk with people and understand the end-to-end
flow of the system.

Once I was on a project where data flowed through five
different stages, controlled by five different teams. Each
stage took the original data and sorted it. The data didn’t
change between stages, but each team made a private
copy of the entire dataset so they could sort it. Because
they hadn’t looked outside their silos, they didn’t realize
how much wasted effort this entailed.

I
11 of 14EVERYTHING

sysadmin

acmqueue | july-august 2016 31

By sorting the data earlier in the flow, the entire
process became much faster. One sort is faster than five.

10. QUESTION THE QUESTION
When preparing this column I walked around the New York
office of stackoverflow.com and asked my coworkers if
they had ever been in a situation where calculating the max
value was a bottleneck worth optimizing.

The answer I got was a resounding no.
One developer pointed out that calculating the max

is usually something done infrequently, often once per
program run. Optimization effort should be spent on tasks
done many times.

A developer with a statistics background stated that the
max is useless. For most datasets it is an outlier and should
be ignored. What are useful to him are the top N items,
which presents an entirely different algorithmic challenge.

Another developer pointed out that anyone dealing with
large amounts of data usually stores it in a database, and
databases can find the max value very efficiently. In fact,
he asserted, maintaining such data in a homegrown system
is a waste of effort at best and negligent at worst. Thinking
you can maintain a large dataset safely with homegrown
databases is hubris.

Most database systems can determine the max value
very quickly because of the indexes they maintain. If
the system cannot, it isn’t the system administrator’s
responsibility to rewrite the database software, but
to understand the situation well enough to facilitate a
discussion among the developers, vendors, and whoever
else is required to find a better solution.

I
12 of 14EVERYTHING

sysadmin

acmqueue | july-august 2016 32

CONCLUSION: FIND ANOTHER QUESTION
This brings me to my final point. Maybe the interview
question posed at the beginning of this column should be
retired. It might be a good logic problem for a beginning
programmer, but it is not a good question to use when
interviewing system administrators because it is not a
realistic situation.

A better question would be to ask job candidates to
describe a situation where they optimized an algorithm.
You can then listen to their story for signs of operational
brilliance.

I would like to know that the candidates determined
ahead of time what would be considered good enough.
Did they talk with stakeholders to determine whether the
improvement was needed, how much improvement was
needed, and how they would know if the optimization was
achieved? Did they determine how much time and money
were worth expending on the optimization? Optimizations
that require an infinite budget are not nearly as useful as
one would think.

I would look to see if they benchmarked the system
before and after, not just one or the other or not at all. I
would like to see that they identified a specific problem,
rather than just randomly tuning parts until they got
better results. I would like to see that they determined
the theoretical optimum as a yardstick against which all
results were measured.

I would pay careful attention to the size of the
improvement. Was the improvement measured, or
did it simply “feel faster”? Did the candidates enhance
performance greatly or just squeeze a few additional

I

A
better
question
would be
to ask job
candidates

to describe a
situation where
they optimized
an algorithm.

13 of 14EVERYTHING
sysadmin

acmqueue | july-august 2016 33

percentage points out of the existing system? I would be
impressed if they researched academic papers to find
better algorithms.

I would be most impressed, however, if they looked
at the bigger picture and found a way to avoid doing
the calculation entirely. In operations, often the best
improvements come not from adding complexity, but by
eliminating processes altogether.

Related articles
You’re Doing It Wrong
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1814327

You Don’t Know Jack about Network Performance
Kevin Fall and Steve McCanne
http://queue.acm.org/detail.cfm?id=1066069

Why Writing Your Own Search Engine is Hard
Anna Patterson
http://queue.acm.org/detail.cfm?id=988407

Thomas A. Limoncelli is a site reliability engineer at Stack
Overflow Inc. in New York City. His books include The Practice
of Cloud Administration (http://the-cloud-book.com), The
Practice of System and Network Administration (http://
the-sysadmin-book.com), and Time Management for System
Administrators. He blogs at EverythingSysadmin.com and
tweets at @YesThatTom. He holds a B.A. in computer science
from Drew University.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

I
14 of 14EVERYTHING

sysadmin

CONTENTS2

http://the-cloud-book.com/
http://the-sysadmin-book.com/
http://the-sysadmin-book.com/
http://everythingsysadmin.com/
https://twitter.com/yesthattom

acmqueue | july-august 2016 34

Dear KV,
Why do so many programmers insist on numbering APIs
when they version them? Is there really no better way to
upgrade an API than adding a number on the end? And why
are so many systems named “NG” when they’re clearly just
upgraded versions?

API2NG

Dear API2NG,
While software versioning has come a long way since
the days when source code control was implemented by
taping file names to hacky sacks in a bowl in the manager’s
office, and file locking was carried out by digging through
said bowl looking for the file to edit, programmers’
inventiveness with API names has not advanced very
much. There are languages such as C++ that can handle
multiple functions—wait, methods with the same names
but different arguments—but these present their own
problems, because now instead of a descriptive name,
programmers have to look at the function arguments to
know which API they’re calling.

Perhaps the largest sources of numbered APIs are
the base systems to which everyone programs, such as
operating systems and their libraries. These are written
in C, a lovely, fancy assembler that has no truck with such
fancy notions as variant function signatures. Because of

Cloud Calipers
Naming the next
generation and
remembering that
the cloud is just
other people’s
computers

1 of 5 TEXT
ONLY

who is
KV?

I

click for video

kode vicious

acmqueue | july-august 2016 35

this limitation of the language that actually does most of
the work on all of our collective behalves, C programmers
add whole new APIs when they only want to create a
library function or system call with different arguments.

Take, for example, the creation of a pipe, a very common
operation. Once upon a time, pipes were simple and
returned a new pipe to the program, but then someone
wanted new features in pipes, such as making them
nonblocking and making the pipe close when a new sub-
program is executed. Since pipe() is a system call defined
both by the operating system and in the Posix standard, the
meaning of pipe() was already set in stone. In order to add
a flags argument, a new pipe-like API was required, and so
we got pipe2(). I would say something like “Ta-da!” but it’s
more like the sad trombone sound. Given that the system
call interface is written in C, there was nothing to do but
add a new call so that we could have some flags. The utter
lack of naming creativity is shocking. So now there are two
system calls, pipe() and pipe2(), but it could have been
worse: we could have had pipeng().

Perhaps the worst thing that Paramount ever did was
name its Star Trek reboot The Next Generation, as this
seems to have encouraged a generation of developers to
name their shiny new thing, no matter what that thing is,
ThingNG. Somehow, no one thinks about what the next,
next version might be. Will the third version of something
be ThingNGNG? If your software lasts a decade, will it
eventually be a string of NGs preceded by a name? The
use of “next generation” is probably the only thing more

2 of 5

Ikode vicious

acmqueue | july-august 2016 36

aggravating than numeric indicators of versioned APIs.
The right answer to these versioning dilemmas is to

create a descriptive name for the newer interface. After
all, you created the new version for a good reason, didn’t
you? Instead of pipe2(), perhaps it might have made
sense to name it pipef() for “pipe with a flags argument.”
Programmers are a notoriously lazy lot and making them
type an extra character annoys them, which is another
reason that versioned APIs often end in a single digit to
save typing time.

For the time being, we are likely to continue to have
programmers who version their functions as a result of
the limitations of their languages, but let’s hope we can
stop them naming their next generations after the next
generation.

KV

Dear KV,
My team has been given the responsibility of moving some
of our systems into a cloud service as a way of reducing
costs. While the cloud looks cheaper, it has also turned out
to be more difficult to manage and measure because many
of our former performance-measuring systems depended
on having more knowledge about how the hardware was
performing as well as the operating system and other
components. Now that all of our devices are virtual, we
find that we’re not quite sure we’re getting what we paid
for.

Cloudy with a Chance

3 of 5

I

P
rogram-
mers are a
notoriously
lazy lot and
making

them type an
extra character
annoys them,
which is another
reason that
versioned APIs
often end in a
single digit to
save typing time.

kode vicious

acmqueue | july-august 2016 37

Dear Cloudy,
Remember the cloud is just other people’s computers.
Virtualized systems have existed for quite a while now and
are deployed for an assortment of reasons, most of which
have to do with lower costs and ease of management.
Of course, the question is whose management is easier.
For services that are not performance-critical, it often
makes good sense to move them off dedicated hardware
to virtualized systems, since such systems can be easily
paused and restarted without the applications knowing
that they have been moved within or between data centers.

The problems with virtualized architectures appear
when the applications have high demands in terms
of storage or network. A virtualized disk might try to
report the number of IOS (I/O operations per second), but
since the underlying hardware is shared, it is difficult to
determine if that number is real, consistent, and will be
the same from day to day. Sizing a system for a virtualized
environment runs the risk of the underlying system
changing performance from day to day. While it’s possible
to select a virtual system of a particular size and power,
there is always the risk that the underlying system will
change its performance characteristics if other virtualized
systems are added or if nascent services suddenly spin up
in other containers. The best one can do in many of these
situations is to measure operations in a more abstract
way that can hopefully be measured with wall-clock time.
Timestamping operations in log files ought to give some
reasonable set of measures, but even here, virtualized
systems can trip you up because virtual systems are pretty
poor at tracking the time of day.

4 of 5

Ikode vicious

acmqueue | july-august 2016 38

Working backward toward the beginning, if you want
to know about performance in a virtualized system, you’ll
have to establish a reliable time base, probably using NTP
(Network Time Protocol) or the like, and on top of that,
you’ll have to establish the performance of your system via
logging the time that your operations require. Other tools
may be available on various virtualized environments,
but would you trust them? How much do you trust other
people’s computers?

KV

Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating system code for
fun and profit. He also teaches courses on various subjects
related to programming. His areas of interest are code
spelunking, operating systems, and rewriting your bad code
(OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. Neville-Neil is the co-author with
Marshall Kirk McKusick and Robert N. M. Watson of The
Design and Implementation of the FreeBSD Operating
System (second edition). He is an avid bicyclist and traveler
who currently lives in New York City.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

5 of 5

Ikode vicious

CONTENTS2

acmqueue | july-august 2016 39

distributed computing

M
odern server software is demanding to
develop and operate: it must be available at all
times and in all locations; it must reply within
milliseconds to user requests; it must respond
quickly to capacity demands; it must process

a lot of data and even more traffic; it must adapt quickly
to changing product needs; and in many cases it must
accommodate a large engineering organization, its many
engineers the proverbial cooks in a big, messy kitchen.

What’s more, the best computers for these
applications—whether you call them clouds, data centers,
or warehouse computers—are really bad. They are
complex and unreliable, and prone to partial failures.
They have asynchronous interconnects and deep memory
hierarchies, and leave a lot of room for operator error.1

Cloud computing thus forces us to confront the full
complexity of distributed computing, where seemingly
simple problems require complicated solutions. While
much of this complexity is inherent—the very nature of the
problem precludes simpler solutions—much of it is also
incidental, a simple consequence of using tools unfit for
the purpose.

Applying
functional
programming
principles to
distributed
computing
projects

MARIUS ERIKSEN, TWITTER

1 of 17 TEXT
ONLY

Functional
at Scale

acmqueue | july-august 2016 40

distributed computing

At Twitter, we use ideas from functional programming
to tackle many of the complexities of modern server
software, primarily through the use of higher-order
functions and effects. Higher-order functions, or those that
return other functions, let us combine simpler functions
to define more complex ones, building up application
functionality in a piecemeal fashion. Effects are values that
represent some side-effecting operation; they are used in
conjunction with higher-order functions to build complex
effects from simpler ones.7

Higher-order functions and effects help build scalable
software in two ways: first, building complex software
from simple parts makes it easy to understand, test, reuse,
and replace individual components; second, effects make
side-effecting operations tractable, promoting modularity
and good separation of concerns.

This article explores three specific abstractions that
follow this style of functional programming: futures are
effects that represent asynchronous operations; services
are functions that represent service boundaries; and filters
are functions that encapsulate application-independent
behavior. In turn, higher-order functions provide the glue
used to combine these to create complex systems from
simple parts.

Futures, services, and filters are thus combined to
build server software in a piecemeal fashion. They let
programmers build up complex software while preserving
their ability to reason about the correctness of its
constituent parts.

By consistently applying these principles, programmers

2 of 17

acmqueue | july-august 2016 41

distributed computing

can construct systems that are at once simpler, more
flexible, and performant.

CONCURRENT PROGRAMMING WITH FUTURES

C
oncurrency is a central topic in server-software
development.12 Two sources of concurrency
prevail in this type of software. First, scale implies
concurrency. For example, a search engine may
split its index into many small pieces (shards) so

that the entire corpus can fit in main memory. To satisfy
queries efficiently, all shards must be queried concurrently.
Second, communication between servers is asynchronous
and must be handled concurrently for efficiency and safety.

Concurrent programming is traditionally approached
by employing threads and locks.3 Threads furnish the
programmer with concurrent threads of execution, while
locks coordinate the sharing of (mutable) data across
multiple threads.

In practice, threads and locks are notoriously difficult
to get right.9 They are hard to reason about, and they are
a stubborn cause of nasty bugs. What’s more, they are
difficult to compose: you cannot safely and arbitrarily
combine a set of threads and locks to construct new
functionality. Their semantics of computation are wrapped
up in the mechanics of managing concurrency.

At Twitter, we instead structure concurrent programs
around futures. A future is an effect that represents
the result of an asynchronous operation. It’s a type
of reference cell that can be in one of three states:
incomplete, when the future has not yet taken on a value;
completed with a value, when the future holds the result of

3 of 17

“Concurrent
programs

 wait faster.”
—Tony Hoare

acmqueue | july-august 2016 42

distributed computing

a successful operation; and completed with a failure, when
the operation has failed. Futures can undergo at most one
state transition: from the incomplete state to either the
success or failure state

In the following example, using Scala, the future count
represents the result of an integer-valued operation. We
respond to the future’s completion directly: the block of
code after respond is a callback that is invoked when
the future has completed. (As you’ll see shortly, we rarely
respond directly to future completions in this way.)

val count: Future[Int] = getCount()
count.respond {

 case Return(value) =>
 println(s”The count was $value”)

 case Throw(exc) =>
 println(s”getCount failed with $exc”)

}

Futures represent just about every asynchronous
operation in Twitter systems: RPC (remote procedure call),
timeout, reading a file from disk, receiving the next event
from an event stream.

With the help of a set of higher-order functions (called
combinators), futures can be combined freely to express
more complex operations. These combinations usually
fall into one of two composition categories: sequential or
concurrent.

Sequential composition permits defining a future as
a function of another, such that the two are executed
sequentially. This is useful where data dependency exists

4 of 17

acmqueue | july-august 2016 43

distributed computing

between two operations: the result of the first future
is needed to compute the second future. For example,
when a user sends a Tweet, we first need to see if that
user is within the hourly rate limits before writing the
Tweet to a database. In the following example, the future
done represents this composite operation. (For historical
reasons, the sequencing combinator is called flatMap.)

This also shows how failures are expressed in futures:
Future.exception returns a future that has already
completed in a failure state. In the case of rate limiting,
done becomes a failed future (with the exception
RateLimitingError). Failure short-circuits any further
composition: if, in the previous example, the future
returned by isRateLimited(user) fails, then done is
immediately failed; the closure passed to flatMap is not
run.

Another set of combinators defines concurrent
composition, allowing multiple futures to be combined

5 of 17

def isRateLimited(user: Long): Future[Boolean] = ...
def writeTweet(user: Long, tweet: String): Future[Unit] = ...

val user = 12L
val tweet: String = “just setting up my twitter”

val done: Future[Unit] =
 isRateLimited(user).flatMap {

 case true => Future.exception(new RateLimitingError)
 case false => writeTweet(user, tweet)
 }

acmqueue | july-august 2016 44

distributed computing

when no data dependencies exist among them. Concurrent
combinators turn a list of futures into a future of a list
of values. For example, you may have a list of futures
representing RPCs to all the shards of a search index. The
concurrent combinator collect turns this list of futures
into a future of the list of results.

val results: List[Future[String]] = …
val all: Future[List[String]] =
 Future.collect(results)

Independent futures are executed concurrently
by default; execution is sequenced only where data
dependencies exist.

Future combinators never modify the underlying
future; instead, they return a new future that represents
the composite operation. This is an important tool for
reasoning: composite operations do not change the
behavior of their constituent parts. Indeed, a single future
can be used and reused in many different compositions.

Let’s modify the earlier getCount example to see how
composition allows building complex behavior piecemeal.
In distributed systems, it is often preferable to degrade
gracefully (e.g., where a default value or guess may exist)
than to fail an entire operation.8 This can be implemented
by using a timeout for the getCount operation, and, upon
failure, returning a default value of 0. This behavior can
be expressed as a compound operation among different
futures. Specifically, you want the future that represents
the winner of a timeout-with-default and the getCount
operation.

6 of 17

acmqueue | july-august 2016 45

distributed computing

The future finalCount now represents the composite
operation as described. This example has a number of
notable features. First, we have created a composite
operation using simple, underlying parts—futures and
functions. Second, the constituent futures preserve
their semantics under composition—their behavior does
not change, and they may be used in multiple different
compositions. Third, nothing has been said about
the mechanics of execution; instead, the composite
computation is expressed as the combination of a number
of underlying parts. No threads were explicitly created,

7 of 17

val count: Future[Int] = getCount()
// Future.sleep(x) returns a future which completes

// after the given amount of time.

val timeout: Future[Unit] = Future.sleep(5.seconds)

// The map method on Future constructs a new Future

// which, after successful completion, applies the given

// function to the result. It returns a new Future

// representing this composite operation. In this case,

// we simply return a default value of 0 after the timeout.

val default: Future[Int] = timeout.map(unit => 0)

// Select composes two Futures, returning a new

// Future which represents the first future to complete.

val finalCount: Future[Int] = Future.select(count, default)

acmqueue | july-august 2016 46

distributed computing

nor was there any explicit communication between them—
it is all implied by data dependencies.

This neatly illustrates how futures liberate the
application’s semantics (what is computed) from its
mechanics (how it is computed). The programmer
composes concurrent operations but needn’t specify how
they are scheduled or how values are communicated. This
is a good separation of concerns: application logic is not
entangled with the minutiae of runtime concerns.

Futures can sometimes free programmers from having
to use locks. Where data dependencies are witnessed by
composition of futures, the implementation is responsible
for concurrency control. Put another way, futures can be
composed into a dependency graph that is executed in
the manner of data-flow programming.11 While we need to
resort to explicit concurrency control from time to time, a
large set of common use cases are handled directly by the
use of futures.

At Twitter, we implement the machinery required to
make concurrent execution with futures work in our open-
source Finagle4,5 and Util6 libraries. These take care of
mapping execution onto OS threads through a pluggable
scheduler mechanism. Some teams at Twitter have used
this capacity to construct scheduling strategies that
better match their problem domain and its attendant
tradeoffs. We have also used this capability to add features
such as maintaining runtime statistics and Dapper-style
RPC tracing to our systems, without changing any existing
APIs or modifying existing user code.

8 of 17

acmqueue | july-august 2016 47

distributed computing

PROGRAMMING WITH SERVICES AND FILTERS

M
odern server software abounds with essential
complexity—that which is inherent to the
problem and cannot be avoided—as well as
complexity of the more self-inflicted variety
(did we really need that product feature)?

Anyhow, since we can’t seem to keep our applications
simple, we must instead cope with their complexities.

Thus, the modern software engineering practice is
centered on how to contain and manage complexity—to
package it up in ways that allow us to reason about our
application’s behavior. In this endeavor the goal is to balance
simplicity and clarity with reusability and modularity.

What’s more, server software must account for the
realities of distributed systems. For example, a search
engine might simply omit results from a failing index shard
so that it can return a partial result rather than failing the
query in its entirety (as seen in the getCount example).
In this case, the user would not usually be able to tell
the difference—the search engine is still useful without
a complete set of results. Applying application-level
knowledge in this way is often essential to creating a truly
resilient application.

Distributed applications are therefore organized
around services and filters. Services represent RPC
service endpoints. They are a function of type A =>
Future[R] (i.e., a function that takes a single argument
of type A and returns an R-typed future). These functions
are asynchronous: they return immediately; deferred
actions are captured by the returned future. Services are
symmetric: RPC clients call services to dispatch RPC calls;

9 of 17

“We should have
some ways of

coupling programs
like garden hose—

screw in another
segment when it

becomes necessary
to massage data in

another way. This is
the way of I/O also.”

—Doug McIlroy

acmqueue | july-august 2016 48

distributed computing

servers implement services to handle them.
The following example defines a simple dictionary

service that looks up a key in a map, which is stored in
memory. The service takes a String argument and returns
a String value, or else null if the key is not found.

// This is the dictionary data, encoded in a

// string-to-string map.

val map: Map[String, String] = Map(...)

val dictionary: Service[String, String] =
 // Construct a new service from an

 // an anonymous function, invoked

 // for every request issued.

 Service(key: String => {
 // Return the lookup results. (Map.get

 // returns an optional string.) Future.value

 // creates a Future that is already

 // satisfied with the given value.

 if (map.contains(key))

 Future.value(map(key))

 else

 Future.value(null)

 })

Note that the service, dictionary, is again a value
like any other. Once defined, it can be made available
for dispatch over the network through a favorite RPC
protocol. On the server, services are exported as

Rpc.serve(dictionary, “:8080”)

10 of 17

acmqueue | july-august 2016 49

distributed computing

while clients can bind and call remote instances of the
service:

val service: Service[String, String] =
 Rpc.bind(“server:8080”)

val result: Future[String] =
 service(“key”)

Observe the symmetry between client and server: both
are conversing in terms of services, which are location-
transparent; it is an implementation detail that one is
implemented locally while the other is bound remotely.

Services are easily composed using ordinary functional
composition. For example, the following service performs
a scatter-gather lookup across multiple dictionary
services. The dictionary can therefore be distributed over
multiple shards.

def multipleLookup(services: Seq[Service[String, String]])

 : Service[String, String] =
 Service(key => {
 val results: Seq[Future[String]] =
 services.map(_.apply(key))

 val all: Future[Seq[String]] =
 Future.collect(results)

 all.map { results: Seq[String] =>
 results.indexWhere(_ != null) match {
 case -1 => null
 case i => results(i)
 }

 }

 })

11 of 17

acmqueue | july-august 2016 50

distributed computing

This example has a lot going on. First, each underlying
service is called with the desired key, obtaining a
sequence of results—all futures. Future.collect
composes futures concurrently, turning a sequence of
futures into a single one containing a sequence of the
values of the (successful) completion of the constituent
futures. The code then looks for the first non-null result
and returns it.

Filters are also asynchronous functions that are
combined with services to modify their behavior. Their type
is (A, Service[A, R]) => Future[R] (i.e., a function with
two arguments: a value of type A and a service Service[A,
R]); the filter then returns a future of that service’s return
type, R. The filter’s type indicates that it is responsible for
satisfying a request, given a service. It can thus modify
both how the request is dispatched to the service (e.g., it
can modify it) and how it is returned (e.g., add a timeout to
the returned future).

Filters are used to implement functionality such as
timeouts and retries, failure-handling strategies, and
authentication. Filters may be combined to form compound
filters—for example, a filter that implements retry logic
can be combined with a filter implementing timeouts.
Finally, filters are combined with a service to create a new
service with modified behavior.

Building on the previous example, the following is a
filter that downgrades failures from lookup services to
null. This kind of behavior is often useful when constructing

12 of 17

acmqueue | july-august 2016 51

distributed computing

resilient services—it’s sometimes better to return partial
results than to fail altogether.

val downgradeToNull: Filter[String, String] =
 Filter((key, service) => {
 service.apply(key).transform {

 case Return(value) => value
 case Throw(exception) => null
 }

 })

Another filter short-circuits requests for useless
keys (these are known as stopwords in search engines),
so that they don’t inflict needless load on the underlying
service:

val stopwords: Set[String] …

val stopwordFilter: Filter[String, String] =
 Filter((key, service) => {
 if (stopwords.contains(key))

 Future.value(null)

 else

 service.apply(key)

 })

Finally, the two filters are combined and then applied to
all of the services.

13 of 17

acmqueue | july-august 2016 52

distributed computing

The dictionary lookup service resilientService
implements scatter-gather lookup in a resilient fashion.
The functionality was built from individual well-defined
components that are composed together to create a
service that behaves in a desirable way.

As with futures, combining filters and services does not
change the underlying, constituent components. It creates
a new service with new behavior but does not change the
meaning of either underlying filter or service. This again
enhances reasoning since the constituent components
stand on their own; we need not reason about their
interactions after they are combined.

Futures, services, and filters form the foundation
upon which server software is built at Twitter. Together

val resiliencyFilter: Filter[String, String] =
 stopwordFilter.andThen(downgradeToNull)

def resilientMultipleLookup(services: Service[String, String]) = {
 val resilientServices =
 services.map { service => resiliencyFilter.andThen(service) }
 multipleLookup(resilientServices)

}

val resilientService: Service[String, String] =
 resilientMultipleLookup(

 Rpc.bind(“server1:8080”),

 Rpc.bind(“server2:8080”),

 …

)

14 of 17

acmqueue | july-august 2016 53

distributed computing

they support both modularity and reuse: we define
applications and behaviors independently, composing
them together as required. While their application is
pervasive, two examples nicely illustrate their power. First,
we implemented an RPC tracing system à la Dapper10 as
a set of filters, requiring no changes to application code.
Second, we implemented backup requests2 as a small, self-
contained filter.

CONCLUSION

F
unctional programming promotes thinking about
building complex behavior out of simple parts,
using higher-order functions and effects to glue
them together. At Twitter we have applied this line
of thinking to distributed computing, structuring

systems around a set of core abstractions that express
asynchrony through effects and that are composable.
This allows building complex systems from components
with simple semantics that, preserved under composition,
makes it easier to reason about the system as a whole.

This approach leads to simpler and more modular
systems. These systems promote a good separation of
concerns and enhance flexibility, while at the same time
permitting efficient implementations.

Functional programming has thus furnished essential
tools for managing the complexity that is inherent in
modern software—untying the hands of the implementer.

Acknowledgments
Jake Donham, Erik Meijer, Mark Compton, Terry Coatta,
Steve Jenson, Kevin Oliver, Ruben Oanta, and Oliver Gould

“Don’t tie the hands
of the implementer.”

—Martin Rinard

15 of 17

acmqueue | july-august 2016 54

distributed computing

provided excellent feedback and guidance on earlier drafts
of this article. Early versions of the abstractions discussed
here were designed together with Nick Kallen; numerous
people at Twitter and in the open-source community have
since worked to improve, expand, and solidify them.

References
1. Barroso, L. A., Clidaras, J., Hölzle, U. 2013. The

datacenter as a computer: an introduction to the design
of warehouse-scale machines. Synthesis Lectures on
Computer Architecture 8(3): 1-154.

2. Dean, J., Barroso, L. A. 2013. The tail at scale.
Communications of the ACM 56(2): 74-80.

3. Dijkstra, E. W. 1965. Solution of a problem in concurrent
programming control. Communications of the ACM 8(9):
569.

4. Eriksen, M. 2013. Your server as a function. In
Proceedings of the Seventh Workshop on Programming
Languages and Operating Systems, ACM (November): 5.

5. Eriksen, M., Kallen, N. 2010. Finagle; http://twitter.github.
com/finagle.

6. Eriksen, M., Kallen, N. 2010. Util; http://twitter.github.
com/util/.

7. Hughes, J. 1989. Why functional programming matters.
The Computer Journal 32(2): 98-107.

8. Netflix. Hystrix; https://github.com/Netflix/Hystrix.
9. Ousterhout, J. 1996. Why threads are a bad idea (for

most purposes). In presentation given at the Usenix
Annual Technical Conference, vol. 5.

10. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson,
P., Plakal, M., Beaver, D., Jaspan, S., Shanbhag, C., 2010.

16 of 17

http://twitter.github.com/finagle
http://twitter.github.com/finagle
http://twitter.github.com/util/
http://twitter.github.com/util/

acmqueue | july-august 2016 55

distributed computing

Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google: 36.

11. Smolka, G. 1995. The Oz programming model. In
Computer Science Today, ed. Jan van Leeuwen, Lecture
Notes in Computer Science, Volume 1000: 324-343.
Berlin: Springer-Verlag.

12. Sutter, H. 2005. The free lunch is over: a fundamental
turn toward concurrency in software. Dr. Dobb’s Journal
30(3): 202-210.

Marius Eriksen is a principal engineer in Twitter’s systems
infrastructure group. He works on all aspects of distributed
systems and server software and is currently working on data
management and integration systems; he also chairs Twitter’s
architecture group. You can reach him at marius@twitter.com
or @marius on Twitter.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

17 of 17

CONTENTS2

acmqueue | july-august 2016 56

concurrency

D
esigning software for modern multicore
processors poses a dilemma. Traditional software
designs, in which threads manipulate shared data,
have limited scalability because synchronization
of updates to shared data serializes threads

and limits parallelism. Alternative distributed software
designs, in which threads do not share mutable data,
eliminate synchronization and offer better scalability.
But distributed designs make it challenging to implement
features that shared data structures naturally provide,
such as dynamic load balancing and strong consistency
guarantees, and are simply not a good fit for every
program.

Often, however, the performance of shared mutable
data structures is limited by the synchronization methods
in use today, whether lock-based or lock-free. To help
readers make informed design decisions, this article
describes advanced (and practical) synchronization

Advanced
synchronization
methods can
boost the
performance
of multicore
software.

ADAM MORRISON, TEL AVIV UNIVERSITY

1 of 24 TEXT
ONLY

Scaling
Synchronization

Multicore
Programs

in

acmqueue | july-august 2016 57

concurrency

methods that can push the performance of designs using
shared mutable data to levels that are acceptable to many
applications.

PROS AND CONS OF SHARED MUTABLE DATA
To get a taste of the dilemmas involved in designing
multicore software, let us consider a concrete problem:
implementing a work queue, which allows threads to
enqueue and dequeue work items—events to handle,
packets to process, and so on. Issues similar to those
discussed here apply in general to multicore software
design.14

Centralized shared queue
One natural work queue design (depicted in figure 1a) is to
implement a centralized shared (thread-safe) version of
the familiar FIFO (first in, first out) queue data structure—
say, based on a linked list. This data structure supports
enqueuing and dequeuing with a constant number of
memory operations. It also easily facilitates dynamic load
balancing: because all pending work is stored in the data
structure, idle threads can easily acquire work to perform.
To make the data structure thread-safe, however, updates
to the head and tail of the queue must be synchronized, and
this inevitably limits scalability.

Using locks to protect the queue serializes its
operations: only one core at a time can update the
queue, and the others must wait for their turns.
This ends up creating a sequential bottleneck and
destroying performance very quickly. One possibility to
increase scalability is by replacing locks with lock-free

2 of 24

acmqueue | july-august 2016 58

concurrency

synchronization, which directly manipulates the queue
using atomic instructions,1,11 thereby reducing the amount
of serialization. (Serialization is still a problem because
the hardware cache coherence mechanism1 serializes
atomic instructions updating the same memory location.)
In practice, however, lock-free synchronization often does
not outperform lock-based synchronization, for reasons to
be discussed later.

Partially distributed queue
Alternative work-queue designs seek scalability by
distributing the data structure, which allows for more

3 of 24

(a) all cores access a centralized shared queue

(c) each core shares an SPSC queue with every other core

centralized FIFO queue

SP
SC

SP
SC

SP
SC

SP
SC

SP
SC

SP
SC

SP
SC

SP
SC

SP
SC

P0 P1 P2

(b) each core has an SPMC queue
SP

M
C

SP
M

C

SP
M

C

P0 P1 P2

P0 P1 P2

FIGURE 1: Possible Designs for a Work Queue

1

acmqueue | july-august 2016 59

concurrency

parallelism but gives up some of the properties of the
centralized shared queue. For example, figure 1b shows
a design that uses one SPMC (single-producer/multiple-
consumer) queue per core. Each core enqueues work into
its queue. Dequeues can be implemented in various ways—
say, by iterating over all the queues (with the starting point
selected at random) until finding one containing work.

This design should scale much better than the
centralized shared queue: enqueues by different cores run
in parallel, as they update different queues, and (assuming
all queues contain work) dequeues by different cores are
expected to pick different queues to dequeue from, so they
will also run in parallel.

What this design trades off, though, is the data
structure’s consistency guarantee. In particular, unlike the
centralized shared queue, the distributed design does not
maintain the cause and effect relation in the program. Even
if core P1 enqueues x1 to its queue after core P0 enqueues
x0 to its queue, x1 may be dequeued before x0. The design
weakens the consistency guarantees provided by the data
structure.

The fundamental reason for this weakening is that in a
distributed design, it is hard (and slow) to combine the per-
core data into a consistent view of the data structure—one
that would have been produced by the simple centralized
implementation. Instead, as in this case, distributed
designs usually weaken the data structure’s consistency
guarantees.5,8,14 Whether the weaker guarantees are
acceptable or not depends on the application, but figuring
this out—reasoning about the acceptable behaviors—
complicates the task of using the data structure.

4 of 24

acmqueue | july-august 2016 60

concurrency

Despite its more distributed nature, this per-core SPMC
queue design can still create a bottleneck when load is not
balanced. If only one core generates work, for example,
then dequeuing cores all swoop on its queue and their
operations become serialized.

Distributed queue
To eliminate many-thread synchronization altogether, you
can turn to a design such as the one depicted in figure 1c,
with each core maintaining one SPSC (single-producer/
single-consumer) queue for each other core in the system,
into which it enqueues items that it wishes its peer to
dequeue. As before, this design weakens the consistency
guarantee of the queue. It also makes dynamic load
balancing more difficult because it chooses which core will
dequeue an item in advance.

Motivation for improving synchronization
The crux of this discussion is that obtaining scalability by
distributing the queue data structure trades off some
useful properties that a centralized shared queue provides.
Usually, however, these tradeoffs are clouded by the
unacceptable performance of centralized data structures,
which obviates any benefit they might offer. This article
makes the point that much of this poor performance
is a result of inefficient synchronization methods. It
surveys advanced synchronization methods that boost
the performance of centralized designs and make them
acceptable to more applications. With these methods at
hand, designers can make more informed choices when
architecting their systems.

5 of 24

acmqueue | july-august 2016 61

concurrency

SCALING LOCKING WITH DELEGATION
Locking inherently serializes executions of the critical
sections it protects. Locks therefore limit scaling: the
more cores there are, the longer each core has to wait
for its turn to execute the critical section, and so beyond
some number of cores, these waiting times dominate the
computation. This scalability limit, however, can be pushed
quite high—in some cases, beyond the scales of current
systems—by serializing more efficiently. Locks that serialize
more efficiently support more operations per second and
therefore can handle workloads with more cores.

More precisely, the goal is to minimize the computation’s
critical path: the length of the longest series of operations
that have to be performed sequentially because of data
dependencies. When using locks, the critical path contains
successful lock acquisitions, execution of the critical
sections, and lock releases.

As an example of inefficient serialization that
limits scalability, consider the lock contention that
infamously occurs in simple spin locks. When many cores
simultaneously try to acquire a spin lock, they cause its
cache line to bounce among them, which slows down lock
acquisitions/releases. This increases the length of the
critical path and leads to a performance “meltdown” as
core counts increase.2

Lock contention has a known solution in the form of
scalable queue-based locks.2,10 Instead of having all waiting
threads compete to be the next one to acquire the lock,
queue-based locks line up the waiting threads, enabling a
lock release to hand the lock to the next waiting thread.
These hand-offs, which require only a constant number

6 of 24

acmqueue | july-august 2016 62

concurrency

of cache misses per acquisition/release, speed up lock
acquisition/release and decrease the length of the critical
path, as depicted in figure 2a: the critical path of a queue-
based lock contains only a single transfer of the lock’s
cache line (dotted arrow).

Can lock-based serialization be made even more
efficient? The delegation synchronization method
described in this section does so: it eliminates most lock
acquisitions and releases from the critical path, and it
speeds up execution of the critical sections themselves.

Delegation. In a delegation lock, the core holding the

7 of 24

(a) queue-based lock
lock

acquire
critical
section

lock
release

(spinning)

time

P0

P1

P2

[[[]]]

[[[]]]

[[[]]]

(b) delegation
lock

acquire critical sections
lock
release

publish op

publish op

time

P0

P1

P2

[[[]]]

[[]

[]

FIGURE 2: Critical Path of Lock-based code

2

acmqueue | july-august 2016 63

concurrency

lock acts as a server and executes the operations that
the cores waiting to acquire the lock wish to perform.
Delegation improves scalability in several ways (figure
2b). First, it eliminates the lock acquisitions and releases
that would otherwise have been performed by waiting
threads. Second, it speeds up the execution of operations
(critical sections), because the data structure is hot in the
server’s cache and does not have to be transferred from
a remote cache or from memory. Delegation also enables
new optimizations that exploit the semantics of the data
structure to speed up critical-section execution even
further, as will be described shortly.

Implementing delegation. The idea of serializing faster
by having a single thread execute the operations of the
waiting threads dates to the 1999 work of Oyama et al.,13
but the overheads of their implementation overshadow its
benefits. Hendler et al.,6 in their flat combining work, were
first to implement this idea efficiently and to observe that
it facilitates optimizations based on the semantics of the
executed operations.

In the flat combining algorithm, every thread about to
acquire the lock posts the operation it intends to perform
(e.g., dequeue or enqueue(x)) in a shared publication list.
The thread that acquires the lock becomes the server; the
remaining threads spin, waiting for their operations to
be applied. The server scans the publication list, applies
pending operations, and releases the lock when done. To
amortize the synchronization cost of adding records to
the publication list, a thread leaves its publication record
in the list and reuses it in future operations. Later work
explored piggybacking the publication list on top of a queue

8 of 24

acmqueue | july-august 2016 64

concurrency

lock’s queue,4 and boosting cache locality of the operations
by dedicating a core for the server role instead of having
threads opportunistically become servers.9

Semantics-based optimizations. The server thread has
a global view of concurrently pending operations, which it
can leverage to optimize their execution in two ways:
3 Combining. The server can combine multiple operations
into one and thereby save repeated accesses to the data
structure. For example, multiple counter-increment
operations can be converted into one addition.
3 Elimination. Mutually canceling operations, such as a
counter increment and decrement, or an insertion and
removal of the same item from a set, can be executed
without modifying the data structure at all.

Deferring delegation. For operations that only update
the data structure but do not return a value, such as
enqueue(), delegation facilitates an optimization that can
sometimes eliminate serialization altogether. Since these
operations do not return a response to the invoking core,
the core does not have to wait for the server to execute
them; it can just log the requested operation in the
publication list and keep running. If the core later invokes
an operation whose return value depends on the state
of the data structure, such as a dequeue(), it must then
wait for the server to apply all its prior operations. But
until such a time—which in update-heavy workloads can be
rare—all of its operations execute asynchronously.

The original implementation of this optimization still
required cores to synchronize when executing these
deferred operations, since it logged the operations in
a centralized (lock-free) queue.7 Boyd-Wickizer et al.,3

9 of 24

acmqueue | july-august 2016 65

concurrency

however, implemented deferred delegation without any
synchronization on updates by leveraging systemwide
synchronized clocks. Their OpLog library logs invocations
of responseless update operations in a per-core log, along
with their invocation times. Operations that read the data
structure become servers: they acquire the locks of all
per-core logs, apply the operations in timestamp order,
and then read the updated data-structure state. OpLog
thus creates scalable implementations of data structures
that are updated heavily but read rarely, such as LRU (least
recently used) caches.

Performance
To demonstrate the benefits of delegation, let’s compare
a lock-based work queue to a queue implemented using
delegation. The lock-based algorithm is Michael and
Scott’s two-lock queue.11 This algorithm protects updates
to the queue’s head and tail with different locks, serializing
operations of the same type but allowing enqueues and
dequeues to run in parallel. Queue-based CLH (Craig,
Landin, and Hagerstein) locks are used in the evaluated
implementation of the lock-based algorithm. The
delegation-based queue is Fatourou and Kallimanis’ CC-
Queue,4 which adds delegation to each of the two locks in
the lock-based algorithm. (It thus has two servers running:
one for dequeues and one for enqueues.)

Figure 3 shows enqueue/dequeue throughput
comparison (higher is better) of the lock-based queue
and its delegation-based version. The benchmark models
a generic application. Each core repeatedly accesses
the data structure, performing pairs of enqueue and

10 of 24

acmqueue | july-august 2016 66

concurrency

dequeue operations, reporting the throughput of queue
operations (i.e., the total number of queue operations
completed per second). To model the work done in a real
application, a period of “think time” is inserted after each
queue operation. Think times are chosen uniformly at
random from 1 to 100 nanoseconds to model challenging
workloads in which queues are heavily exercised. The
C implementations of the algorithms from Fatourou
and Kallimanis’s benchmark framework (https://github.
com/nkallima/sim-universal-construction) are used,
along with a scalable memory allocation library to avoid
malloc bottlenecks. No semantics-based optimization is
implemented.

This benchmark (and all other experiments reported in

threads

M
 o

ps
/s

ec
on

d

20

25

10

15

5

30

delegation

lock-based

1 2 4 8 10 12 14 16 18 20

FIGURE 3: Enqueue/dequeue throughput comparison

11 of 24

3

https://github.com/nkallima/sim-universal-construction
https://github.com/nkallima/sim-universal-construction

acmqueue | july-august 2016 67

concurrency

this article) was run on an Intel Xeon E7-4870 (Westmere
EX) processor. The processor has ten 2.40 GHz cores, each
of which multiplexes two hardware threads, for a total of
twenty hardware threads.

Figure 3 shows the benchmark throughput results,
averaged over ten runs. The lock-based algorithm scales
to two threads, because it uses two locks, but fails to
scale beyond that amount of concurrency because of
serialization. In contrast, the delegation-based algorithm
scales and ultimately performs almost 30 million
operations per second, which is more than 3.5 times that of
the lock-based algorithm’s throughput.

AVOIDING CAS FAILURES IN LOCK-FREE
SYNCHRONIZATION
Lock-free synchronization (also referred to as nonblocking
synchronization) directly manipulates shared data using
atomic instructions instead of locks. Most lock-free
algorithms use the CAS (compare-and-swap) instruction (or
equivalent) available on all multicore processors. A CAS
takes three operands: a memory address addr, an old value,
and a new value. It atomically updates the value stored in
addr from old to new; if the value stored in addr is not
old, the CAS fails without updating memory.

CAS-based lock-free algorithms synchronize with a CAS
loop pattern: a core reads the shared state, computes a
new value, and uses CAS to update a shared variable to
the new value. If the CAS succeeds, this read-compute-
update sequence appears to be atomic; otherwise, the core
must retry. Figure 4 shows an example of such a CAS loop
for linking a node to the head of a linked list, taken from

12 of 24

acmqueue | july-august 2016 68

concurrency

Treiber’s classic LIFO (last in, first out) stack algorithm.15
Similar ideas underlie the lock-free implementations of
many basic data structures such as queues, stacks, and
priority queues, all of which essentially perform an entire
data-structure update with a single atomic instruction.

The use of (sometimes multiple) atomic instructions can
make lock-free synchronization slower than a lock-based
solution when there is no (or only light) contention. Under
high contention, however, lock-free synchronization has
the potential to be much more efficient than lock-based
synchronization, as it eliminates lock acquire and release

FIGURE 4: Lock-free linking of a node to the head of a linked list

struct Node {

 struct Node* next;

 void* value;

}

// Pointer to head of the list

Node* head = NULL;

void enqueue (void* v) {

 Node * old, * new = malloc();
 new—>value = v;
 while (true) {

 old = head;
 new—>next = old;
 if (CAS(&head, old, new))

 return;

} }

13 of 24

4

acmqueue | july-august 2016 69

concurrency

operations from the critical path, leaving only the data
structure operations on it (figure 5a).

In addition, lock-free algorithms guarantee that some
operation can always complete and thus behave gracefully
under high load, whereas a lock-based algorithm can grind
to a halt if the operating system preempts a thread that
holds a lock.

In practice, however, lock-free algorithms may not
live up to these performance expectations. Consider, for
example, Michael and Scott’s lock-free queue algorithm.11
This algorithm implements a queue using a linked list, with

(a) ideal case
read
head

CAS

CAS

CAS
time

P0

P1

P2

[]

[]

[]

(b) effect of CAS failures
read
head

failure
CAS

CAS

CAS
time

P0

P1

P2

[]

[]

[]

FIGURE 5: Critical path of lock-free updating head of linked list

14 of 24

5

acmqueue | july-august 2016 70

concurrency

items enqueued to the tail and removed from the head
using CAS loops. (The exact details are not as important
as the basic idea, which is similar in spirit to the example
in figure 4.) Despite this, as figure 6a shows, the lock-free
algorithm fails to scale beyond four threads and eventually
performs worse than the two-lock queue algorithm.

The reason for this poor performance is CAS failure: as
the amount of concurrency increases, so does the chance
that a conflicting CAS gets interleaved in the middle of a
core’s read-compute-update CAS region, causing its CAS
to fail. CAS operations that fail in this way pile useless work
on the critical path. Although these failing CASes do not
modify memory, executing them still requires obtaining
exclusive access to the variable’s cache line. This delays
the time at which later operations obtain the cache line
and complete successfully (see figure 5b, in which only
two operations complete in the same time that three
operations completed in figure 5a).

To estimate the amount of performance wasted because
of CAS failures, figure 6b compares the throughput of
successful CASes executed in a CAS loop (as in figure 4) to
the total CAS throughput (including failed CASes). Observe
that the system executes contending atomic instructions
at almost three times the rate ultimately observed in the
data structure. If there were a way to make every atomic
instruction useful toward completing an operation, you
would significantly improve performance. But how can this
be achieved, given that CAS failures are inherent?

The key observation to make is that the x86 architecture
supports several atomic instructions that always succeed.
One such instruction is FAA (fetch-and-add), which

15 of 24

acmqueue | july-august 2016 71

concurrency

threads

(a) lock-free vs. lock-based queue throughput

M
 o

ps
/s

ec
on

d 9

10

7

6

8

5

11

lock-free

lock-based

1 2 4 8 10 12 14 16 18 20

threads

(b) effect of CAS failures

M
 o

ps
/s

ec
on

d

CA
S/

op

20

25

10

15

5

30 5

4

3

2

1

CAS

CAS loop

CAS per op

1 2 4 8 10 12 14 16 18 20

FIGURE 6: Lock-free synchronization CAS failure problem

16 of 24

6

acmqueue | july-august 2016 72

concurrency

atomically adds an integer to a variable and returns the
previous value stored in that variable. The following
section describes the design of a lock-free queue based
on FAA instead of CAS. The algorithm, named LCRQ (for
linked concurrent ring queue),12 uses FAA instructions to

FIGURE 7: Infinite Array queue

// The following defines a node

struct Cell {

 void* value;

}

// Queue is infinite array of nodes,

// with head and tail pointers.

Cell Q [] = { ┴, ┴, ...};
int head = 0;
int tail = 0;

void enqueue(void* x) {

 while (true) {

 t = FAA(&tail, 1)
 if (CAS(&Q[t], ┴, x)) return

} }

void * dequeue() {

 while (true) {

 h = FAA(&head, 1)
 if (!CAS(&Q[h], ┴,

┬)) return Q[h]

 if (tail ≤ h+1) return NULL

} }

17 of 24

7

acmqueue | july-august 2016 73

concurrency

spread threads among items in the queue, allowing them
to enqueue and dequeue quickly and in parallel. LCRQ
operations typically perform one FAA to obtain their
position in the queue, providing exactly the desired behavior.

The LCRQ algorithm
This section presents an overview of the LCRQ algorithm;
for a detailed description and evaluation, see the paper.12
Conceptually, LCRQ can be viewed as a practical realization
of the following simple but unrealistic queue algorithm
(figure 7). The unrealistic algorithm implements the queue
using an infinite array, Q, with (unbounded) head and
tail indices that identify the part of Q that may contain
items. Initially, each cell Q[i] is empty and contains a
reserved value ⊥ that may not be enqueued. The head and
tail indices are manipulated using FAA and are used to
spread threads around the cells of the array, where they
synchronize using (uncontended) CAS.

An enqueue(x) operation obtains a cell index t via a FAA
on tail. The enqueue then atomically places x in Q[t] using
a CAS to update Q[t] from ⊥ to x. If the CAS succeeds, the
enqueue operation completes; otherwise, it repeats this
process.

A dequeue, D, obtains a cell index h using FAA on head.
It tries to atomically CAS the contents of Q[h] from ⊥ to
another reserved value ⊤. This CAS fails if Q[h] contained
some x ≠ ⊥, in which case D returns x. Otherwise, the fact
that D stored ⊤ in the cell guarantees that an enqueue
operation that later tries to store an item in Q[h] will not
succeed. D then returns NULL (indicating the queue is

18 of 24

acmqueue | july-august 2016 74

concurrency

empty) if tail ≤ h + 1 (the value of head following
D’s FAA is h + 1). If D cannot return NULL, it repeats this
process.

This algorithm can be shown to implement a FIFO
queue correctly, but it has two major flaws that prevent it
from being relevant in practice: using an infinite array and
susceptibility to livelock (when a dequeuer continuously
writes ⊤ into the cell an enqueuer is about to access). The
practical LCRQ algorithm addresses these flaws.

The infinite array is first collapsed to a concurrent ring
(cyclic array) queue—CRQ for short—of R cells. The head
and tail indices still strictly increase, but now the value of
an index modulo R specifies the ring cell to which it points.
Because now more than one enqueuer and dequeuer can
concurrently access a cell, the CRQ uses a more involved
CAS-based protocol for synchronizing within each cell.
This protocol enables an operation to avoid waiting for
the completion of operations whose FAA returns smaller
indices that also point to the same ring cell.

The CRQ’s crucial performance property is that in the
common fast path, an operation executes only one FAA
instruction. The LCRQ algorithm then builds on the CRQ
to prevent the livelock problem and handle the case of
the CRQ filling up. The LCRQ is essentially a Michael and
Scott linked list queue11 in which each node is a CRQ. A CRQ
that fills up or experiences livelock becomes closed to
further enqueues, which instead append a new CRQ to the
list and begin working in it. Most of the activity in the LCRQ
therefore occurs in the individual CRQs, making contention
(and CAS failures) on the list’s head and tail a nonissue.

19 of 24

acmqueue | july-august 2016 75

concurrency

FIGURE 8: Enqueue/dequeue throughput comparison of all queues

(a)

(b)

threads

M
 o

ps
/s

ec
on

d

20

25

30

35

40

10

5

15

0

45

LCRQ (FAA)

LCRQ (CAS)

delegation

lock-free (CAS)

1 2 4 8 10 12 14 16 18 20

threads

M
 o

ps
/s

ec
on

d

20

25

30

35

40

10

5

15

0

45

LCRQ (FAA)

LCRQ (CAS)

delegation

lock-free (CAS)

20 30 40 80 120 160

20 of 24

8

acmqueue | july-august 2016 76

concurrency

Performance
This section compares the LCRQ to Michael and Scott’s
classic lock-free queue,11 as well as to the delegation-based
variant presented in the previous section. The impact of
CAS failures is explored by testing LCRQ-CAS, a version of
LCRQ in which FAA is implemented with a CAS loop.

Figure 8a shows the results. LCRQ outperforms
all other queues beyond two threads, achieving peak
throughput of ≈ 40 million operations per second, or about
1,000 cycles per queue operation. From eight threads
onward, LCRQ outperforms the delegation-based queue
by 1.4 to 1.5 times and the MS (Michael and Scott) queue
by more than three times. LCRQ-CAS matches LCRQ’s
performance up to four threads, but at that point its
performance levels off. Subsequently, LCRQ-CAS exhibits
the throughput “meltdown” associated with CAS failures.
Similarly, the MS queue’s performance peaks at two
threads and degrades as concurrency increases.

Oversubscribed workloads can demonstrate the
graceful behavior of lock-free algorithms under high
load. In these workloads the number of software threads
exceeds the hardware-supported level, forcing the
operating system to context-switch between threads. If a
thread holding a lock is preempted, a lock-based algorithm
cannot make progress until it runs again. Indeed, as figure
8b shows, when the number of threads exceeds 20,
the throughput of the lock-based delegation algorithm
plummets by 15 times, whereas both LCRQ and the MS
queue maintain their peak throughput.

21 of 24

acmqueue | july-august 2016 77

concurrency

CONCLUSION
Advanced synchronization methods can boost the
performance of shared mutable data structures.
Synchronization still has its price, and when performance
demands are extreme (or if the properties of centralized
data structures are not needed), then distributed data
structures are probably the right choice. For the many
remaining cases, however, the methods described in
this article can help build high-performance software.
Awareness of these methods can assist those designing
software for multicore machines.

References
1. Al Bahra, S. 2013. Nonblocking algorithms and scalable

multicore programming. Communications of the ACM
56(7): 50–61.

2. Boyd-Wickizer, S., Frans Kaashoek, M., Morris, R.,
Zeldovich, N. 2012. Non-scalable locks are dangerous. In
Proceedings of the Ottawa Linux Symposium: 121–132.

3. Boyd-Wickizer, S., Frans Kaashoek, M., Morris, R.,
Zeldovich, N. 2014. OpLog: a library for scaling update-
heavy data structures. Technical Report MIT-CSAIL-
TR2014-019.

4. Fatourou, P., Kallimanis, N. D. 2012. Revisiting the
combining synchronization technique. In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming: 257– 266.

5. Haas, A., Lippautz, M., Henzinger, T. A., Payer, H.,
Sokolova, A., Kirsch, C. M., Sezgin, A. 2013. Distributed
queues in shared memory: multicore performance
and scalability through quantitative relaxation. In

22 of 24

acmqueue | july-august 2016 78

concurrency

Proceedings of the ACM International Conference on
Computing Frontiers: 17:1–17:9.

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M. 2010. Flat
combining and the synchronization-parallelism
tradeoff. In Proceedings of the 22nd ACM Symposium on
Parallelism in Algorithms and Architectures: 355–364.

7. Klaftenegger, D., Sagonas, K., Winblad, K. 2014.
Delegation locking libraries for improved performance
of multithreaded programs. In Proceedings of the 20th
International European Conference on Parallel and
Distributed Computing: 572–583.

8. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan,
G., Bala, K., Chew, L. P. 2007. Optimistic parallelism
requires abstractions. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design
and Implementation: 211–222.

9. Lozi, J.-P., David, F., Thomas, G., Lawall, J., Muller, G.
2012. Remote core locking: migrating critical section
execution to improve the performance of multithreaded
applications. In Proceedings of the 2012 USENIX Annual
Technical Conference: 65–76.

10. Mellor-Crummey, J. M., Scott, M. L. 1991. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems 9(1): 21–65 .

11. Michael, M. M., Scott, M. L. 1996. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing:
267–275.

12. Morrison, A., Afek, Y. 2013. Fast concurrent queues

23 of 24

acmqueue | july-august 2016 79

concurrency

for x86 processors. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming: 103–112.

13. Oyama, Y., Taura, K., Yonezawa, A. 1999. Executing
parallel programs with synchronization bottlenecks
efficiently. In Proceedings of International Workshop on
Parallel and Distributed Computing for Symbolic and
Irregular Applications: 182–204.

14. Shavit, N. Data structures in the multicore age. 2011.
Communications of the ACM 54(3): 76–84.

15. Treiber, R. K. 2006. Systems programming: coping with
parallelism. Technical Report RJ5118, IBM Almaden
Research Center.

Adam Morrison works on making parallel and distributed
systems simpler to use without compromising their
performance; his research interests span computer
architecture, systems software and theory of distributed
computing. He is an assistant professor at the Blavatnik
School of Computer Science, Tel Aviv University, Israel. He
received a PhD in computer science from Tel Aviv University
and then spent three years as a postdoctoral fellow at
the Technion—Israel Institute of Technology. He has been
awarded an IBM PhD Fellowship as well as Intel and Deutsch
prizes.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

24 of 24

CONTENTS2

acmqueue | july-august 80

research for practiceRFP

O
ur third installment of Research for Practice
brings readings spanning programming languages,
compilers, privacy, and the mobile web.

First, Jean Yang provides an overview of how
to use information flow techniques to build

programs that are secure by construction. As Yang writes,
information flow is a conceptually simple “clean idea”: the
flow of sensitive information across program variables
and control statements can be tracked to determine
whether information may in fact leak. Making information
flow practical is a major challenge, however. Instead of
relying on programmers to track information flow, how
can compilers and language runtimes be made to do the
heavy lifting? How can application writers easily express
their privacy policies and understand the implications of a
given policy for the set of values that an application user
may see? Yang’s set of papers directly addresses these
questions via a clever mix of techniques from compilers,
systems, and language design. This focus on theory made
practical is an excellent topic for RfP.

Second, Vijay Janapa Reddi and Yuhao Zhu provide an
overview of the challenges for the future of the mobile
web. Mobile represents a major frontier in personal
computing, with extreme growth in adoption and

Expert-curated
Guides to
the Best of
CS Research

1 of 16 TEXT
ONLY

Web Security and
Mobile Web Computing

RFP

Research for Practice
combines the resources

of the ACM Digital
Library, the largest

collection of computer
science research in
the world, with the

expertise of the ACM
membership. In every

RfP column, experts
share a short curated

selection of papers on a
concentrated, practically

oriented topic.

acmqueue | july-august 81

research for practiceRFP

data volume. Accordingly, Reddi and Zhu outline three
major ongoing challenges in mobile web computing:
responsiveness of resource loading, energy efficiency of
computing devices, and making efficient use of data. In
their citations, Reddi and Zhu draw on a set of techniques
spanning browsers, programming languages, and data
proxying to illustrate the opportunity for “cross-layer
optimization” in addressing these challenges. Specifically,
by redesigning core components of the web stack, such as
caches and resource-fetching logic, systems operators can
improve users’ mobile web experience. This opportunity for
co-design is not simply theoretical: Reddi and Zhu’s third
citation describes a mobile-optimized compression proxy
that is already running in production at Google.

As always, our goal in RfP is to allow readers to
become experts in the latest, practically oriented topics
in computer science research in a weekend afternoon’s
worth of reading time. I am grateful to this installment’s
experts for generously contributing such a strong set of
contributions, and, as always, we welcome your feedback!
—Peter Bailis

PRACTICAL INFORMATION FLOW FOR WEB SECURITY

BY JEAN YANG

I
nformation leaks have become so common that many
have given up hope when it comes to information
security.3 Data breaches are inevitable anyway, some
say.1 I don’t even go on the Internet anymore, other
(computers) say.6

2 of 16

acmqueue | july-august 82

research for practiceRFP

This despair has led yet others to the Last Resort:
reasoning about what our programs actually do. For years,
bugs didn’t matter as long as your robot could sing. If your
program can go twice the speed it did yesterday, who cares
what outputs it gives you? But we are starting to learn the
hard way that no amount of razzle-dazzle can make up for
Facebook leaking your phone number to the people you
didn’t invite to the party.4

This realization is leading us to a new age, one in
which reasoning techniques that previously seemed
unnecessarily baroque are coming into fashion. Growing
pressure from regulators is finally making it increasingly
popular to use precise program analysis to ensure
software security.5 Growing demand for producing web
applications quickly makes it relevant to develop new
paradigms—well-specified ones, at that—for creating
secure-by-construction software.

The construction of secure software means solving the
important problem of information flow. Most of us have
heard of trapdoor ways to access information we should
not see. For example, one researcher showed that it is
possible to discover the phone numbers of thousands of
Facebook users simply by searching for random phone
numbers.2 Many such leaks occur not because a system
shows sensitive values directly, but because it shows the
results of computations—such as search—on sensitive
values. Preventing these leaks requires implementing
policies not only on sensitive values themselves, but also
whenever computations may be affected by sensitive
values.

Enforcing policies correctly with respect to information

3 of 16

acmqueue | july-august 83

research for practiceRFP

flow means reasoning about sensitive values and policies
as they flow through increasingly complex programs,
making sure to reveal only information consistent with
the privileges associated with each user. There is a body of
work dedicated to compile-time and runtime techniques
for tracking values through programs for ensuring correct
information flow.

While information flow is a clean idea, getting it to
work on real programs and systems requires solving many
hard problems. The three papers presented here focus on
solving the problem of secure information flow for web
applications. The first one describes an approach for taking
trust out of web applications and shifting it instead to
the framework and compiler. The second describes a fully
dynamic enforcement technique implemented in a web
framework that requires programmers to specify each
policy only once. The third describes a web framework that
customizes program behavior based on the policies and
viewing context.

Shifting trust to the framework and compiler
through language-based enforcement
Chong, S., Vikram, K., Myers, A. C. 2007. SIF: enforcing
confidentiality and integrity in web applications. In
Proceedings of the 16th Usenix Security Symposium; https://
www.usenix.org/conference/16th-usenix-security-symposium/
sif-enforcing-confidentiality-and-integrity-web.

In securing web applications, a major source of the burden
on programmers involves reasoning about how information
may be leaked through computations across different

4 of 16

https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-web
https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-web
https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-web

acmqueue | july-august 84

research for practiceRFP

parts of an application and across requests. Without
additional checks and balances, the programmer must be
fully trusted to do this correctly.

This first selection presents a framework that shifts
trust from the application to the framework and compiler.
The SIF (Servlet Information Flow) framework follows a
line of work in language-based information flow focused
on checking programs against specifications of security
policies. Built using the Java servlet framework, SIF
prevents many common sources of information flow—for
example, those across multiple requests. SIF applications
are written in Jif, a language that extends Java with
programmer-provided labels specifying policies for
information flow. SIF uses a combination of compile-time
and runtime enforcement to ensure that security policies
are enforced from the time a request is submitted to
when it is returned, with modest enforcement overhead.
The major contribution of the SIF work is in showing how
to provide assurance (much of it at compile time) about
information flow guarantees in complex, dynamic web
applications.

Mitigating annotation burden through
principled containment
Giffin, D. B., et al. 2012. Hails: protecting data privacy in
untrusted web applications. 10th Usenix Symposium on
Operating Systems Design and Implementation; https://www.
usenix.org/node/170829.

While compile-time checking approaches are great for
providing assurance about program security, they often

5 of 16

https://www.usenix.org/node/170829
https://www.usenix.org/node/170829

acmqueue | july-august 85

research for practiceRFP

require nontrivial programmer effort. The programmer
must not only correctly construct programs with respect
to information flow, but also annotate the program with
the desired policies.

An alternative approach is confinement: running
untrusted code in a restricted way to prevent the code
from exhibiting undesired behavior. For information flow,
confinement takes the form of tagging sensitive values,
tracking them through computations, and checking tags at
application endpoints. Such dynamic approaches are often
more popular because they require little input from the
programmer.

This paper presents Hails, a web framework for
principled containment. Hails extends the standard MVC
(model-view-controller) paradigm to include policies,
implementing the MPVC (model-policy-view-controller)
paradigm where the programmer may specify label-
based policies separately from the rest of the program.
Built in Haskell, Hails uses the LIO (labeled IO) library to
enforce security policies at the thread/context level and
MAC (mandatory access control) to mediate access to
resources such as the database. It has good performance
for an information flow control framework, handling
approximately 47.8 K requests per second.

Hails has been used to build several web applications,
and the startup Intrinsic is using a commercial version of
Hails. The Hails work shows that it is possible to enforce
information flow in web applications with negligible
overhead, without requiring programmers to change how
they have been programming.

6 of 16

acmqueue | july-august 86

research for practiceRFP

Shifting implementation burden to the framework
Yang, J., et al. 2016. Precise, dynamic information flow for
database-backed applications. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design
and Implementation: 631-647; http://queue.acm.org/rfp/
vol14iss4.html.

In the previous two approaches, the programmer remains
burdened by constructing programs correctly with respect
to information flow. Without a change in the underlying
execution model, the most any framework can do is raise
exceptions or silently fail when policies are violated.

This paper looks at what the web programming model
might look like if information flow policies could be
factored out of programs the way memory-managed
languages factor out allocation and deallocation. The
paper presents Jacqueline, an MPVC framework that
allows programmers to specify: (1) how to compute an
alternative default for each data value; and (2) high-level
policies about when to show each value that may contain
database queries and/or depend on sensitive values.

A plausible default for a sensitive location value is the
corresponding city. A valid policy is allowing a viewer to see
the location only if the viewer is within some radius of the
location. This paper presents an implementation strategy
for Jacqueline that works with existing SQL databases.
While the paper focuses more on demonstrating feasibility
than on the nuts and bolts of web security, it de-risks the
approach for practitioners who may want to adopt it.
Final Thoughts

7 of 16

http://queue.acm.org/rfp/vol14iss4.html
http://queue.acm.org/rfp/vol14iss4.html

acmqueue | july-august 87

research for practiceRFP

The past few years have seen a gradual movement
toward the adoption of practical information flow:
first with containment, then with microcontainers and
microsegmentation. These techniques control which
devices and services can interact with policies for
software-defined infrastructures such as iptables and
software-defined networking. Illumio, vArmour, and
GuardiCore are three among the many startups in the
microsegmentation space. This evolution toward finer-
grained approaches shows that people are becoming more
open to the system re-architecting and runtime overheads
that come with information flow control approaches. As
security becomes even more important and information
flow techniques become more practical, the shift toward
more adoption will continue.

Acknowledgments
With thanks to Aliza Aufrichtig, Stephen Chong, Vincenzo
Iozzo, Leo Meyerovich, and Deian Stefan for comments.

References
1. Balluck, K. 2014. Corporate data breaches “inevitable,”

expert says. The Hill (November 30); http://thehill.com/
policy/cybersecurity/225550-cybersecurity-expert-data-
breaches-inevitable.

2. Cunningham, M. 2015. Facebook security flaw could leak
your personal info to criminals. Komando.com (August
10); http://www.komando.com/happening-now/320275/
facebook-security-flaw-could-leak-your-personal-info-
to-criminals/all.

3. Information is beautiful. 2016. World’s biggest data

8 of 16

http://thehill.com/policy/cybersecurity/225550-cybersecurity-expert-data-breaches-inevitable
http://thehill.com/policy/cybersecurity/225550-cybersecurity-expert-data-breaches-inevitable
http://thehill.com/policy/cybersecurity/225550-cybersecurity-expert-data-breaches-inevitable
http://www.komando.com/happening-now/320275/facebook-security-flaw-could-leak-your-personal-info-to-criminals/all
http://www.komando.com/happening-now/320275/facebook-security-flaw-could-leak-your-personal-info-to-criminals/all
http://www.komando.com/happening-now/320275/facebook-security-flaw-could-leak-your-personal-info-to-criminals/all

acmqueue | july-august 88

research for practiceRFP

breaches; http://www.informationisbeautiful.net/
visualizations/worlds-biggest-data-breaches-hacks/.

4. Gellman, B., Poitras, L. 2013. U.S., British intelligence
mining data from nine U.S. Internet companies in
broad, secret program. Washington Post (June 7);
http://wpo.st/rwJq1

5. OWASP (Open Web Application Security Project. 2016.
Static code analysis; https://www.owasp.org/index.php/
Static_Code_Analysis.

6. Zetter, K. 2014. Hacker lexicon: What is an air gap? Wired
(December 8); http://www.wired.com/2014/12/hacker-
lexicon-air-gap/.

THE RED FUTURE OF MOBILE WEB COMPUTING

BY VIJAY JANAPA REDDI AND YUHAO ZHU

T
he web is on the cusp of a new evolution, driven
by today’s most pervasive personal computing
platform—mobile devices. At present, there are
more than 3 billion web-connected mobile devices.
By 2020, there will be 50 billion such devices. In

many markets around the world mobile web traffic volume
exceeds desktop web traffic, and it continues to grow in
double digits.

Three significant challenges stand in the way of the
future mobile Web. The papers selected here focus on
carefully addressing these challenges. The first major
challenge is the responsiveness of Web applications. It
is estimated that a one-second delay in web page load

9 of 16

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://wpo.st/rwJq1
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.owasp.org/index.php/Static_Code_Analysis
http://www.wired.com/2014/12/hacker-lexicon-air-gap/
http://www.wired.com/2014/12/hacker-lexicon-air-gap/

acmqueue | july-august 89

research for practiceRFP

time costs Amazon $1.6 billion in annual sales lost, since
mobile users abandon a web service altogether if the
web page takes too long to load. Google loses 8 million
searches from a four-tenths-of-a-second slowdown in
search-results generation. A key bottleneck of mobile
web responsiveness is resource loading. The number of
objects in today’s web pages is already on the order of
hundreds, and it continues to grow steadily. Future mobile
web computing systems must improve resource-loading
performance, which is the focus of the first paper.

The second major challenge is energy efficiency. Mobile
devices are severely constrained by the battery. While
computing capability driven by Moore’s Law advances
approximately every two years, battery capacity doubles
every 10 years—creating a widening gap between
computational horsepower and the energy needed to
power the device. Therefore, future mobile web computing
must be energy efficient. The second paper in our selection
proposes web programming language support for energy
efficiency.

The third major challenge is data usage. A significant
amount of future mobile web usage will come from
emerging markets in developing countries where the cost
of mobile data is prohibitively large. To accelerate the
web’s growth in emerging markets, future mobile web
computing infrastructure must serve data consciously.
The final paper discusses how to design a practical and
efficient HTTP data compression proxy service that
operates at Google’s scale.

Developers and system architects must optimize for
RED (responsiveness, energy efficiency, and data usage),

10 of 16

acmqueue | july-august 90

research for practiceRFP

ideally together, to usher in a new generation of mobile
web computing.

Intelligent Resource Loading for Responsiveness
Netravali et al. 2016. Polaris: faster page loads using fine-
grained dependency tracking. 13th Usenix Symposium on
Networked Systems Design and Implementation; https://www.
usenix.org/conference/nsdi16/technical-sessions/presentation/
netravali.

A key bottleneck for mobile web responsiveness is
resource loading. The bottleneck stems from the
increasing number of objects (e.g., images and Cascading
Style Sheets files) on a web page. According to the HTTP
Archive, over the past three years alone, web pages have
doubled in size. Therefore, improving resource-loading
performance is crucial for improving the overall mobile
web experience.

Resource loading is largely determined by the critical
path of the resources that web browsers load to render
a page. This critical path, in the form of a resource-
dependency graph, is not revealed to web browsers
statically. Therefore, today’s browsers make conservative
decisions during resource loading. To avoid resource-
dependency violations, a web browser typically constrains
its resource-loading concurrency, which results in reduced
performance.

Polaris is a system for speeding up the loading of
web page resources, an important step in coping with
the surge in mobile web resources. Polaris constructs a
precise resource-dependency graph offline, and it uses

11 of 16

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali

acmqueue | july-august 91

research for practiceRFP

the graph at runtime to determine an optimal resource-
loading schedule. The resulting schedule maximizes
concurrency and, therefore, drastically improves mobile
web performance. Polaris also stands out because of
its transparent design. It runs on top of unmodified
web browsers without the intervention of either web
application or browser developers. Such a design minimizes
the deployment inconvenience and increases its chances of
adoption, two factors that are essential for deploying the
web effectively.

Web Language Support for Energy Efficiency
Zhu, Y., Reddi, J. 2016. GreenWeb: language extensions for
energy-efficient mobile web computing. Proceedings of the
37th ACM SIGPLAN Conference on Programming Language
Design and Implementation: 145-160; http://queue.acm.org/rfp/
vol14iss4.html.

Energy efficiency is the single most critical constraint on
mobile devices that lack an external power supply. Web
runtimes (typically the browser engine) must start to
budget web application energy usage wisely, informed by
user QoS (quality-of-service) constraints. End-user QoS
information, however, is largely unaccounted for in today’s
web programming languages.

The philosophy behind GreenWeb is that application
developers provide minimal yet vital QoS information
to guide the browser’s runtime energy optimizations.
Empowering a new generation of energy-conscious web
application developers necessitates new programming
abstractions at the language level. GreenWeb proposes

12 of 16

http://queue.acm.org/rfp/vol14iss4.html
http://queue.acm.org/rfp/vol14iss4.html

acmqueue | july-august 92

research for practiceRFP

two new language constructs, QoS type and QoS target,
to capture the critical aspects of user QoS experience.
With the developer-assisted QoS information, a GreenWeb
browser determines how to deliver the specified user
QoS expectation while minimizing the device’s energy
consumption.

GreenWeb does not enforce any particular runtime
implementation. As an example, the authors demonstrate
one implementation using ACMP (asymmetric chip-
multiprocessor) hardware. ACMP is an energy-efficient
heterogeneous architecture that mobile hardware vendors
such as ARM, Samsung, and Qualcomm have widely
adopted—you probably have one in your pocket. Leveraging
the language annotations as hints, the GreenWeb browser
dynamically schedules execution on the ACMP hardware to
achieve energy savings and prolong battery life.

Data Consciousness in Emerging Markets
Agababov, V., et al. 2015. Flywheel: Google’s data compression
proxy for the mobile web. Proceedings of the 12th Usenix
Symposium on Networked Systems Design and Implementation;
http://research.google.com/pubs/pub43447.html.

The mobile web is crucial in emerging markets. The first
order of impedance for the mobile web in emerging
markets is the high cost of data, more so than performance
or energy efficiency. It is not uncommon for spending on
mobile data to be more than half of an individual’s income
in developing countries. Therefore, reducing the amount of
data transmitted is essential.

Flywheel from Google is a compression proxy system to

13 of 16

http://research.google.com/pubs/pub43447.html

acmqueue | july-august 93

research for practiceRFP

make the mobile web conscious of data usage. Compression
proxies to reduce data usage (and to improve latency) are
not a new idea. Flywheel, however, demonstrates that
while the core of the proxy server is compression, there
are many design concerns to consider that demand a
significant amount of engineering effort, especially to make
such a system practical at Google scale. Examples of the
design concerns include fault tolerance and availability
upon request anomalies, safe browsing, robustness against
middlebox optimizations, etc. Moreover, drawing from large-
scale measurement results, the authors present interesting
performance results that might not have been observable
from small-scale experiments. For example, the impact of
data compression on latency reduction is highly dependent
on the user population, metric of interest, and web page
characteristics.

Conclusion
We advocate addressing the RED challenge holistically.
This will entail optimizations that span the different
system layers synergistically. The three papers in our
selection are a first step toward such cross-layer
optimization efforts. With additional synergy we will likely
uncover more room for optimization than if each of the
layers worked in isolation. It is time that we as a community
make the Web great again in the emerging era.

Jean Yang is an assistant professor in the computer science
department at Carnegie Mellon University. Her research
interests are in programming language design and software

14 of 16

acmqueue | july-august 94

research for practiceRFP

verification applied to security, privacy, and biological
modeling. She has interned at Google, Facebook, and
Microsoft Research. In 2015 she cofounded the Cybersecurity
Factory accelerator to bridge the gap between research and
practice in cybersecurity.

Vijay Janapa Reddi is an assistant professor in the
department of electrical and computer engineering at the
University of Texas at Austin. His research interests span the
definition of computer architecture, including software design
and optimization, to enhance the quality of mobile experience
and improve the energy efficiency of high-performance
computing systems. Reddi is a recipient of the National
Academy of Engineering Gilbreth Lectureship honor (2016),
IEEE Computer Society TCCA Young Computer Architect
Award (2016), Intel Early Career Award (2013), and multiple
Google Faculty Research Awards (2012, 2013, 2015). He is also
the recipient of the Best Paper at the 2005 International
Symposium on Microarchitecture, Best Paper at the 2009
International Symposium on High-Performance Computer
Architecture, and IEEE’s Top Picks in Computer Architecture
awards (2006, 2010, 2011).

Yuhao Zhu is a Ph.D. candidate at the University of Texas
at Austin. He likes building better software and hardware
to make next-generation client and cloud computing fast
and energy efficient, and deliver high quality of experience.
His dissertation focuses on improving the energy efficiency
of mobile web computing through a holistic approach

15 of 16

acmqueue | july-august 95

research for practiceRFP

spanning the processor architecture, web-browser runtime,
programming language, and application layers. He received
an M.S. from UT Austin in 2015 and a B.S. from Beihang
University, China, in 2010. He is a Google Ph.D. Fellow (2016).
His papers have been awarded Best of Computer Architecture
Letters (2014) and IEEE MICRO Top Picks in Computer
Architecture (Honorable Mention in 2016).
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

16 of 16

CONTENTS2

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE. STAY CONNECTED.
KEEP INVENTING.

acmqueue | july-august 2016 96

web development

O
ne of the long-standing ironies of user-friendly
JavaScript front ends is that building them typically
involved trudging through the DOM (Document
Object Model), hardly known for its friendliness
to developers. But now developers have a way to

avoid directly interacting with the DOM, thanks to Facebook’s
decision to open-source its React library for the construction
of user interface components.

React essentially manages to abstract away the DOM,
thus simplifying the programming model while also—in a
somewhat surprising turn—improving performance. The key
to both advances is that components built from standard
JavaScript objects serve as the fundamental building blocks
for React’s internal framework, thus allowing for greatly
simplified composability. Once developers manage to get
comfortable with building front ends in this way, they typically
find they can more readily see what’s going on while also
enjoying greater flexibility in terms of how they structure and
display data.

All of which caused us to wonder about what led to the
creation of React in the first place and what some of its
most important guiding principles were. Fortunately for us,
Pete Hunt, who at the time was an engineering manager at
Instagram as well as one of the more prominent members of

1 of 17 TEXT
ONLY

React: Facebook’s
 Functional Turn on
Writing JavaScript

A discussion
with
Pete Hunt,
Paul
O’Shannessy,
Dave Smith
and Terry
Coatta

case study

acmqueue | july-august 2016 97

web development

Facebook’s React core team, is willing to shed some light on
React’s beginnings. Hunt has since gone on to cofound Smyte,
a San Francisco startup focused on security for marketplaces
and social networks.

Also helping to tell the story is Paul O’Shannessy, one
of the first engineers at Facebook to be dedicated to React
full time. He came to that role from Mozilla, where he had
previously worked on the Firefox front end.

The job of asking the probing questions that drive the
discussion forward falls to Dave Smith and Terry Coatta.
Smith is an engineering director at HireVue, a Salt Lake City
company focused on team-building software, where he has
had an opportunity to make extensive use of both Angular and
React. Coatta is the CTO of Marine Learning Systems, where
he is building a learning management system targeted at
the maritime industry. He is also a member of the acmqueue
editorial board.

DAVE SMITH What is it exactly that led to the creation of
React?
PETE HUNT Of all the web apps at Facebook, one of the
most complex is what we use to create ads and manage
ad accounts. One of the biggest problems is keeping the
UI in sync with both the business logic and the state of
the application. Traditionally, we’ve done that by manually
manipulating the DOM using a centralized event bus,
whether by putting events into the queue or by having
listeners for the event and then letting them do their thing.

That proved to be really cumbersome, so a few years
ago we implemented what we then considered to be a

2 of 17

acmqueue | july-august 2016 98

web development

state-of-the-art DOM-monitoring system called Bolt.
It was kind of like Backbone with observables, where
you would register for computed properties that would
eventually get flushed to the DOM. But then we found that
also was pretty hard to manage since you could never be
sure when your properties were going to be updated—
meaning that if you changed a value, you couldn’t be sure
whether it was going to cause a single update, cascading
updates, or no updates at all. Figuring out when those
updates might actually occur also proved to be a really
hard problem.

The whole idea behind React initially was just to find
some way to wire up those change handlers such that
engineers could actually wrap their heads around them.
That hadn’t been the case with Bolt, and as a consequence
we ended up with lots of bugs nobody could solve. So the
engineers who started working on a way to remedy that
ended up going wild for a couple of months and came out
with this weird-looking thing nobody thought had any
chance whatsoever of working. If you’re even vaguely
familiar with React, you already know that whenever
there’s a change in your underlying data model, it
essentially re-renders the whole application and then does
a diff to see what actually changed in the rendered result.
Then it’s only those parts of the page that get updated.

Some people here had some performance concerns
about that, so an early version of React ended up being
run through a serious gauntlet of engineering tests where
it got benchmarked against pretty much everything that
could be thrown at it. As part of that, of course, we looked
at how this new programming model fared against both

3 of 17

acmqueue | july-august 2016 99

web development

the Bolt model and our old event model. React ended up
really surprising a lot of people—enough so, in fact, that it
was shipped almost immediately as part of our “liking and
commenting” interface on News Feed. That was the first
big test for React, and that came a few years ago.

Then we tried it out on Instagram.com, which is where
I entered the picture since I was the person at Instagram
responsible for building a few things using React. We were
really happy with it since it proved to be capable of running
our whole page instead of just one small widget here or
there. That gave us a pretty good indication it was actually
going to work. Since then, it has essentially become the de
facto way people write JavaScript at Facebook.
TERRY COATTA I’ve heard React takes a different approach
to data binding. What sets React apart there?
PH The way I think about data binding in a web context is
that you’ve got some sort of observable data structure
down to the DOM nodes. The challenge is that when you’re
implementing some sort of observable system, you’re
obliged to observe this data structure wherever your
application touches the data model.

For example, if you use something like Ember,
everything you do is going to use getters and setters,
meaning you’re going to need to remain aware of this
observable abstraction throughout the entire application.
So if you want to compute a value, you’re not going to use
a function only; you’re going to use a computed property
number, which is a domain-specific thing for Ember.

Angular, I think, does a much better job of this since it
uses dirty checking, which means you can actually take
advantage of regular JavaScript objects. The problem with

4 of 17

acmqueue | july-august 2016 100

web development

Angular, though, is that it makes it difficult to compose
your application. That’s because, instead of using regular
functions or objects to build up abstractions (as you would
do with JavaScript), you have to pass everything through a
scope in order to observe those changes. Then you end up
with this data binding that couples different parts of your
program in ways that aren’t necessarily all that clear or
obvious.

For example, let’s say we’re looking to sort a list of
your top friends—which is the kind of thing we do all of the
time here. In order for us to do that with an observable
system, we would have to set up an observer for every
one of the thousand friends you’ve listed, even if all we’re
really looking to do is to render the top ten. So, as you
can imagine, it’s going to take a good chunk of memory to
maintain that whole representation.

Obviously, there are ways to get around that, but people
typically just break out of the data binding abstraction
altogether at that point so they can proceed manually.
Now, I generally hate to say something isn’t going to scale,
but it’s fairly obvious this is going to present some scaling
issues. It’s clear that the bigger your application gets, the
more you’re going to run into this sort of edge case.
TC I agree completely about the Angular situation since I
also find composition there to be tricky for just the reason
you mentioned—that is, you end up having different parts
of your application essentially coupled silently via two-way
data binding. But I see that React also has data binding,
so I’m curious about how you’ve managed to provide for
better composability despite that coupling.
PH Let me zoom out a little here to observe that, at a very

5 of 17

acmqueue | july-august 2016 101

web development

high level, React essentially treats your user code as a
black box while also taking in whatever data you tell it to
accept. That basically allows for any structure. It could be
something like Backbone. It could be plain JSON. It could be
whatever you want. Then your code will just go ahead and
do whatever it’s supposed to do, backed by the full power
of JavaScript.

At the end of that, however, it will return a value, which
we call a virtual DOM data structure. That’s basically just
a fancy handle for JavaScript objects that tell you which
kinds of elements they are and what their attributes are.
So if you think of data binding as a way to keep your UI up to
date with your underlying model, you can accomplish that
with React just by signaling, “Hey, something in my data
model may have just changed.” That will prompt React to
call the black-box user code, which in turn will emit a new
virtual DOM representation. Then, having kept the previous
representation, React will look at the new version and the
old version and do a diff of the two. Based on that, it might
conclude, “Oh, we need to build a className attribute at
this node.”

The advantage of this approach is that it involves no
actual tracking of your underlying data model. You don’t
have to pay a data-binding cost up front. Most systems
that require you to track changes within the data model
and then keep your UI up to date with that are faced with a
data-binding cost driven by the size of the underlying data
model. React, on the other hand, pays that cost relative
only to what actually gets rendered.
TC If I understand you correctly, you’re saying React
is in some sense a highly functional environment that

6 of 17

T
he advan-
tage of this
approach
is that it
involves no

actual tracking
of your underly-
ing data model.

acmqueue | july-august 2016 102

web development

takes some arbitrary input, renders an output, and then
computes the difference between the two to determine
what it ought to be displaying on the screen.
PH Exactly. I like to describe this as “referentially
transparent UI.” Which is to say your user interface is
generally a pure function of some set of inputs, and it emits
the same kind of virtual DOM structure every single time
for some given data input.
TC So the data bindings that have caused us grief in
Angular run in the other direction here in the sense that
they reflect the value of DOM elements that are bound to
underlying model objects or scope variables. Any changes
there effectively become visible at multiple locations
throughout your code at much the same time, meaning
the composability issues surface since different locations
in your code are made aware almost simultaneously of
changes that propagate backwards from the UI.
PH Another problem is that you might have multiple
bindings to the same data source. So then which piece of
code is going to be treated as the authoritative source for
determining what the value ought to be?

This is why, with React, we emphasize one-way data
flow. As I said earlier, data in our model first goes into
this application black box, which in turn emits a virtual
DOM representation. Then we close the loop with
simple browser events. We’ll capture a KeyUp event and
command, “Update the data model in this place based on
that KeyUp event.” We’ve also architected the system in
such a way as to encourage you to keep the least possible
mutable state in your application. In fact, because React
is such a functional system, rather than computing a value

7 of 17

acmqueue | july-august 2016 103

web development

and then storing it somewhere, we just recompute the
value on demand with each new render.

The problem is that people sometimes want to have
a big form that includes something like 20,000 fields
that then bind to some simple keys and data objects. The
good news is that it’s actually very easy for us to build an
abstraction on top of a simple event loop that basically
captures all the events that might possibly update the
value of this field, and then set up an automatic handler
to pass the value down from the data model into the form
field. The form and the data model essentially get updated
at the same time. This means you end up with a system that
looks a lot like data binding, but if you were to peel it back,
you would see that it’s actually only simple syntactic sugar
on top of an event loop.
TC One of the things I’ve observed about React is that it
seems to be what people would call fairly opinionated. That
is, there’s a certain way of doing things with React. This is
in contrast to Angular, which I’d say is not opinionated since
it generally lets you do things in several different ways. Do
you think that is an accurate portrayal?
PH It depends. There are certain places where React is
very opinionated and others where it’s quite unopinionated.
For example, React is unopinionated in terms of how you
express your view logic since it treats your UI as a black
box and looks only at the output. But it’s opinionated in
the sense that we really encourage idempotent functions,
a minimal set of mutable state, and very clear state
transitions.

I’ve built a lot of stuff with React, and I have a team
that’s run a lot of stuff with it. From all that experience, I

8 of 17

acmqueue | july-august 2016 104

web development

can tell you that whenever you run into a bug in a React
application, nine times out of ten you’re going to find it’s
because you have too much state in there. We try to push
as much mutable state as possible out of applications
to get to what I like to call a fully normalized application
state. In that respect, yes, we’re very opinionated, but
that’s just because a lot of React abstractions don’t work
as well if you have too much mutable state.

I think Angular is actually less opinionated in that
regard, but it certainly has opinions about how you need
to compose your application. It’s very much a model-view-
presenter type of architecture. If you want to create
reasonable widgets, you’re going to have to use directives,
which are very opinionated.
TC Another thing I noticed right away about React is that
it’s very component oriented. What was the reason for
going in that direction?
PH We actually think of a component as being quite similar
to a JavaScript function. In fact, the only difference between
a function and a component is that components need to be
aware of a couple of lifecycle hooks about themselves, since
it’s important they know when they get added to or removed
from the DOM as well as when they’re going to be able to
get their own DOM node. The component is a fundamental
building block on top of which we’ve built our own internal
framework. Now a lot of other people out in the open-
source world are also building on top of it.

We emphasize it because it’s composable, which is the
one thing that most separates React components from
Angular directives and web components like partials and
templates. This focus on composability—which I see as the

9 of 17

acmqueue | july-august 2016 105

web development

ability to build nested components on multiple layers—not
only makes it easier to see what’s actually going on, but
also gives you flexibility in terms of how to structure and
display data, while also letting you override behaviors and
pass data around in a more scalable and sensible way.
PAUL O’SHANNESSY This also has a lot to do with how
we build applications on the server, where we have a core
library of components that any product team can use as
the basis for building their own components. This idea of
using components is really just a natural extension of the
core way we build things in PHP and XHP, with the idea
simply being to compose larger and larger components out
of smaller components.
PH Those product teams tend to be made up of generalists
who work in all kinds of different languages, which is to
say they’re not necessarily experts in JavaScript or CSS
(Cascading Style Sheets). We strongly discourage the
average product engineer from writing much CSS. Instead,
we suggest that they take these components off the shelf,
drop them into whatever it is they’re doing, and then maybe
tweak the layout a little. That has worked really well for us.
PO That way we end up writing good code pretty much
across the board since there are fewer people going off
into crazy land writing CSS. Basically, this just gives us a
way at the top level to control all that.

F
or all the ways in which React simplifies the creation
of user interfaces, it also poses a learning curve for
developers new to the environment. In particular,
those who have worked primarily on monolithic
systems in the past may find it challenging to adopt

10 of 17

acmqueue | july-august 2016 106

web development

more of a component-oriented mindset. They will also soon
find that React is opinionated about how state should be
handled, which can lead to some hard lessons and harsh
reminders whenever people stray.

TC There’s a lot about React that’s appealing, but where
are the sharp edges that people ought to look out for
before diving in? What kinds of mistakes are likely to make
their lives more painful?
PH Most of the pain points are almost certain to be about
state. State is the hardest part of building applications
anyway, and React just makes that super-explicit. If you
don’t think about state in the right way, React is going to
highlight those bugs for you very early in the process.
TC Give me a concrete example of how people might think
about state in the wrong way.
PH OK, I’m looking at a site powered by React that was
launched earlier today. It looks like the page has four main
components: side navigation, a search-results list, a search
bar, and a content area containing both the search bar and
the search-results list.

When you type in the search bar, it filters the results to
be shown in the results grid. If I were to ask you where that
filter state should live, there’s a good chance you would
think, “Well, the search-results list is what’s doing the
filtering, so the state probably ought to live there.” That’s
what intuitively makes sense.

But actually the state should live in the common
ancestor between the search box and the search-results
list, sort of like a view controller. That’s because the search

M
ost of
the pain
points are
almost
certain

to be about state.
State is the
hardest part
of building
applications
anyway, and
React just
makes that
super-explicit.

11 of 17

acmqueue | july-august 2016 107

web development

box has the state of the search filter as well as the search
results. Still, the search-results list needs access to that
data as well. React will quickly let you know, “Hey, you
actually need to put that in a common ancestor.”
PO If you were building that same UI with Angular and used
a directive for the search box and then another directive
for the search results, you would be encouraged in that
case as well to put your state in a common ancestor. This
would mean having a controller hold the scope variable,
since that’s where you’ll find the search text to which both
of those directives would then bind. I think you’re actually
looking at a pretty similar paradigm there.
PH Good catch. But I think there’s still a distinction to
be made in that React components are building blocks
that can be used to construct a number of conceptually
different components or objects. You could use a React
component to implement a view controller or some pure
view-only thing—whereas with Angular, the controller is
distinct from a directive, which in turn is distinct from the
“service,” which is how Angular describes those things you
shove all the other logic into. Sometimes it makes sense
just to make all those things React components.
DS In this case, if you were building the UI with React, what
would be the common ancestor? A React component?
PH Yes. I would use React components for everything.
DS When I was starting out with React, I think one of
the hardest things for me to grasp was this idea that
everything is a component. Even when I walked through an
example on the React website that included a comment
box and a comment list, I was surprised to learn that

12 of 17

acmqueue | july-august 2016 108

web development

even those were treated as components. I also found
myself getting lost in the relationships between those
components. I wonder if you find that to be a common
problem for other new React developers.
PO For people who are used to building more monolithic
things, that often proves to be a problem. At Facebook,
where we’ve always coded in PHP, we’re accustomed to
building microcomponents and then composing them, so
that hasn’t proved to be such a huge problem here. Anyway,
what I think we’ve always encouraged is that, whenever
you’re thinking about reusing something, break it down
into its smallest elements. That’s why, in the example you
cited, you would want to separate the comment box from
the comment list, since you can reuse both of those things
in other parts of your application. We really do encourage
people to think that way.
PH We also encourage that you make stuff stateless.
Basically, I like to think people are going to feel really
bad about using state. I know there are times when it’s a
necessary evil, but you should still feel dirty whenever
you have to resort to doing that. That’s because then you’ll
start thinking, “OK, so I really want to put this search state
in only one place in my app.” Generally, that means you’ll
find the right spot for it since you’re not going to want to
deal with having to synchronize states throughout your
application. And you won’t have to if it lives in only one
canonical place.
DS What other major differentiators set React apart from
other JavaScript frameworks?
PH We haven’t yet talked about the idea that React,
as a general way of expressing user interface or view

13 of 17

acmqueue | july-august 2016 109

web development

hierarchies, treats the DOM as just one of many potential
rendering back ends. It also renders to Canvas and SVG
(Scalable Vector Graphics), for example. Among other
things, this means React can render on the server without
booting up like a full-browser DOM. It doesn’t work like
it’s just some other domain-specific language on top of
the DOM. Basically, React pretty much hates the DOM
and wants to live outside a browser as much as possible. I
definitely see that as a huge differentiator between React
and the other JavaScript frameworks.
PO We’ve basically seen the same thing happen with
WebGL or any other generic rendering platform. It just
goes back to the question of immediate vs. retained mode,
where you soon discover that as long as you can output
something, it really doesn’t matter. You just blow away
whatever was there before.
DS I’m also curious about the functional programming
aspects of React. In particular, I’m interested in knowing
more about which specific functional principles you’ve
adopted.
PH The truth is, we’re actually a bunch of functional
programming geeks. In part, that’s because if you truly
subscribe to the Church of Functional Programming,
you can get a lot of performance benefits for free. For
example, if your data model is serializable and you treat
your render method as a pure function of your properties,
you get server-side rendering and client-side rendering
for free since both of those end up being pure functions
of the same data on both sides of the wire. That way, you
can guarantee that when your application initializes, it will
get into the same state on both sides automatically. That

T
he truth
is, we’re
actually a
bunch of
functional

programming
geeks. In part,
that’s because
if you truly
subscribe to
the Church of
Functional
Programming,
you can get a lot
of performance
benefits for free.

14 of 17

acmqueue | july-august 2016 110

web development

can be really important if you have a very stateful kind of
object-oriented mutative system, since then it becomes
much, much harder to synchronize those two states
otherwise.

The other advantage has to do with optimizing your
apps. We have a hook called Chute Component Update,
where you can replace React’s diff algorithm with a faster
custom one. Also, many functional programmers really
like to use immutable data structures since they let them
quickly figure out whether something has changed—just
another example of how you can get free performance
benefits this way.
TC In the immutable data structures vein, one really
powerful library I’ve heard about is David Nolen’s Om.
PH That’s a very cool piece of technology. It’s for
ClojureScript, the version of Clojure that compiles to
JavaScript. What makes Clojure really cool is its persistent
data structures, which basically are really fast and easy-
to-use immutable data structures.

What that means for us is that if you have a post on
Facebook and somebody likes it, that gives you a new like
event that should be reflected on the like count appearing
on that post. Normally, you would just mutate that, but
then you would have no way of detecting whether the
change actually happened or not, which means you would
basically need to re-render the whole thing and then diff
it. From that diff, you would learn that only that particular
part of the UI actually changed. But if you were using
immutable persistent data structures, instead of mutating
the like count, you could just copy the story object and,
within that copy, update the like count.

15 of 17

acmqueue | july-august 2016 111

web development

Normally, that would be a very expensive way to go,
but in Clojure the copy isn’t expensive since it has a way
of doing it where it shares the pointers with all the other
parts of that data structure and then allocates new
objects only for whatever actually changed. That’s a good
example of an abstraction that’s quite complicated under
the hood and yet manages to present a very, very simple
user interface—something that’s extremely easy for
people to reason about.
TC I assume that could also help with undo/redo
capabilities.
PH Right. When everything is immutable, everything gets
simpler. Om undos and redos basically just keep around
pointers to the previous state and the next state. When
you want to undo, you just pass the old object into React,
and it will update the whole UI accordingly.
TC The whole thing?
PO When your state is serialized into one object at the top
level, all you do is pass that through and re-render it—and
you’re done. With some of the Om examples I’ve seen, it
just snapshots the state at every point and then gives you
a UI that indicates how many states you have. Then you can
just drag back and forth on that. Or you could start doing
some fancier things with the help of trees to produce a
really advanced undo system.
PO I should also point out that React clearly is not purely
functional. We also have some very imperative steps and
hooks that let you break out of the functional paradigm.
But in an ideal world, you don’t have any other sources of
data, so everything is at the top and just flows through—

16 of 17

acmqueue | july-august 2016 112

web development

meaning everything ends up being a very pure output of
these render functions.
DS A bit earlier, you used the term “referential
transparency” to describe the way React renders UI. Can
you explain what that means?
PH Basically, React components have props, parameters
that can be used to instantiate those components. You
might think of them as function parameters. In order to say,
“I want to create a type-ahead with these options,” you can
just pass in the options list as a prop.

The idea is that if you render a component using the
same props and states, you’ll always render the same
user interface. This can get a little bit tricky, though.
For example, you can’t read from the random-number
generator because that would change the output. Still,
if you handle this as a pure function of props and state
and make sure you don’t read from anything else, you can
probably see that this is going to make testing really fast
and easy. You basically say, “I just want to make sure my
component looks this certain way when it gets this data.”
Then, since you don’t have to take the Web-driver approach
of clicking on every single button to get the app into the
right state before double-checking to make sure you’ve got
everything right… well, it becomes pretty obvious how this
makes testing a whole lot easier—which, of course, makes
debugging easier as well.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

17 of 17

CONTENTS2

We’re more than computational theorists, database managers, UX mavens, coders
and developers. We’re on a mission to solve tomorrow. ACM gives us the resources,
the access and the tools to invent the future. Join ACM today and receive 25% off
your first year of membership.

Be creative. Stay connected. Keep inventing.

ACM.org/KeepInventing

Here’S to denniS and Ken.
for giving uS uniX.

Cr
ed

it
: R

ep
ri
nt

ed
 w

it
h

pe
rm

is
si

on
 o

f
Al

ca
te

l-
Lu

ce
nt

 U
SA

 In
c.

