
mnmnmnm

mnmnmnm

mnmnmnm

mnmnmnm

mnmnmnm

mnmnmnm

mnmnmnm

mnmnmnm

mnmnmnm

Why
Reactivity
Matters

 May | June 2016Volume 14 | Issue 3

Cluster-Level
Logging

of Containers
with Containers

The Hidden Dividends of

Microservices
:::::

Idle-Time
Garbage-Collection
Scheduling

Complete table of contents on the following two pages

acmqueue | may-june 2016 2

mnmnmnmn

mnmnmnmn
MAY-JUNE

2016

Volume 14 Issue 3

contents
2

The Hidden
Dividends of
Microservices 25
Though the effort
is considerable, the
benefits of adopting a
microservices-based
approach to building
distributed systems may
be well worth it. In addition
to autonomy, agility,
resilience, and developer
productivity, there are
some other unexpected
dividends to be gained.
BY TOM KILLALEA

Dynamics
of Change:
Why Reactivity
Matters 68
As software grows more
complex, managing
change in the code base
becomes more of a
challenge. Structuring
the code into a system
of modules and arrows
helps make changes
easier to maintain.
BY ANDRE MEDEIROS

Idle-Time
Garbage-Collection
Scheduling 35
Google’s Chrome serves as
an example of how to use
the V8 JavaScript engine
to reduce user-visible jank
on real-world web pages
by scheduling garbage-
collection pauses during
downtime.
BY ULAN DEGENBAEV
JOCHEN EISINGER
MANFRED ERNST
ROSS MCILROY
HANNES PAYER

Features

Distributed Consensus and
Implications of NVM on Database
Management Systems 53
This second installment of Research for Practice looks
at research in two critical areas in storage and large-
scale services. First, Camille Fournier has selected
papers that address distributed consensus systems,
including two on implementing Paxos and one on the
easier-to-understand Raft. Then Joy Arulraj and
Andrew Pavlo share three papers detailing the future
impact of nonvolatile memory on DBMS architectures.
BY PETER BAILIS, CAMILLE FOURNIER AND ANDREW PAVLO

RFP

acmqueue | may-june 2016 3

mnmnmn

n

MARCH-APRIL

 2016

ESCAPING THE SINGULARITY
The Singular Success
of SQL 5
SQL may be aging, but it
still has a brilliant future
as a major figure in the
growing pantheon of data
representations.
BY PAT HELLAND

The Soft Side of Software
Bad Software Architecture
is a People Problem 13
Poor communication
leads to bugs.

BY KATE MATSUDAIRA

Kode Vicious
What Are You Trying
 to Pull? 19
Optimizing away a few
instructions isn’t worth
it if it leads to a lack of
code clarity.
BY GEORGE NEVILLE-NEIL

I I

I

Volume 14 Issue 3

Features

columns / departments

Cluster-Level
Logging of
Containers with
Containers 83
Implementing cluster-
level log aggregation
and inspection on the
Kubernetes framework
can overcome the
challenges imposed by
collecting the logs of
containers running in an
orchestrated cluster.
BY SATNAM SINGH

contents

EXECUTIVE DIRECTOR / CEO
Bobby Schnabel
DEPUTY EXECUTIVE DIRECTOR / COO
Patricia Ryan

ACM Executive committee
PRESIDENT

Alexander L. Wolf
VICE-PRESIDENT

Vicki L. Hanson
SECRETARY/TREASURER

Erik Altman
PAST PRESIDENT

Vinton G. Cerf

Practitioner Board
BOARD CHAIR
George Neville-Neil
BOARD MEMBERS
Samy Al Bahra
Eve Andersson
Steve Bourne
Karin Breitman
Alain Chesnais
Terry Coatta
Ben Fried
Stephen Ibaraki
Erik Meijer
Theo Schlossnagle
Jim Waldo

Queue editorial Board
BOARD CHAIR / EDITOR-IN-CHIEF

Stephen Bourne
BOARD MEMBERS
Eric Allman
Peter Bailis
Terry Coatta
Stuart Feldman
Camille Fournier
Benjamin Fried
Pat Hanrahan
Tom Killalea
Tom Limoncelli
Kate Matsudaira
Marshall Kirk McKusick
Erik Meijer
George Neville-Neil
Theo Schlossnagle
Jim Waldo
Meredith Whittaker

SUBSCRIPTIONS
A one-year subscription
(six bi-monthly issues) to the
digital magazine is $19.99 (free
to ACM Professional Members)
and available through your
favorite merchant store
(Mac App Store/Google play).
A browser-based version is
available through the acmqueue
website (queue.acm.org)

SINGLE COPIES
Single copies are available
through the same venues and
are $6.99 each (free to ACM
Professional Members).

ACM, the world’s largest educational and scientific
computing society, delivers resources that advance
computing as a science and profession. ACM provides
the computing field’s premier Digital Library and serves
its members and the computing profession with leading-
edge publications, conferences, and career resources.

Queue STAFF
EXECUTIVE EDITOR

James Maurer
MANAGING EDITOR

WEB EDITOR

Matt Slaybaugh
COPY EDITORS

Susie Holly
Vicki Rosenzweig

ART DIRECTION

Reuter & Associates

CONTACT POINTS
feedback@

queue.acm.org
editor@

queue.acm.org
acmhelp@acm.org

http://queue.acm.org

(ISSN 1542-7730) is
published bi-monthly by

ACM, 2 Penn Plaza,
 Suite 701, New York, NY

10121-0701. USA
T (212) 869-7440
F (212) 869-0481

acmqueue | may-june 2016 4

queue.acm.org
mailto:feedback@queue.acm.org
mailto:feedback@queue.acm.org
mailto:editor@queue.acm.org
mailto:editor@queue.acm.org
http://queue.acm.org

acmqueue | may-june 2016 5

S
QL has been singularly successful in its impact on
the database industry. Nothing has come remotely
close to its ubiquity. Its success comes from its
high-level use of relational algebra allowing
set-oriented operations on data shaped as rows,

columns, cells, and tables.
SQL’s impact can be seen in two broad areas. First, the

programmer can accomplish a lot very easily with set-
oriented operations. Second, the high-level expression
of the programmer’s intent has empowered huge
performance gains.

This column discusses how these features are
dependent on SQL creating a notion of stillness through
transactions and a notion of a tight group of tables with
schema fixed at the moment of the transaction. These
characteristics are what make SQL different from the
increasingly pervasive distributed systems.

SQL has a brilliant past and a brilliant future. That
future is not as the singular and ubiquitous holder of
data but rather as a major figure in the pantheon of data
representations. What the heck happens when data is not
kept in SQL?

SQL: THE MIRACLE OF THE AGE, OF THE AGES,
AND OF THE AGED
I launched my career in database implementation when

The Singular
Success of SQL SQL has a

brilliant future
as a major
figure in the
pantheon of data
representations

PAT HELLAND

1 of 8 TEXT
ONLY

* It’s Not Your Grandmother’s
Database Anymore

*
ESCAPING THE
singularity

acmqueue | may-june 2016 6

Jimmy Carter was president. At the time, there were a
couple of well-accepted representations for data storage:
the network model was expressed in the CODASYL
(Conference/Committee on Data Systems Languages)
standard with data organized in sets having one set
owner (parent) and multiple members (children); the
hierarchical model ensured that all data was captured
in a tree structure with records having a parent-child-
grandchild relationship. Both of these models required the
programmer to navigate from record to record.

Then along came these new-fangled relational things.
INGRES (and its language QUEL) came from UC Berkeley.
System-R (and its language SQL) came from IBM Research.
Both leveraged relational algebra to support set-oriented
abstractions allowing powerful access to data.

At first, they were really, really, really slow. I remember
lively debates with database administrators who fervently
believed they must be able to know the cylinder on disk
holding their records! They most certainly did not want
to change from their hierarchical and network databases.
As time went on, SQL became inexorably faster and more
powerful. Soon, SQL meant database and database meant
SQL.

 A funny thing happened by the early 2000s, though.
People started putting data in places other than “the
database.” The old-time database people (including yours
truly) predicted their demise. Boy, were we wrong!

Of course, for most of us who had worked so hard to
build transactional, relational, and strongly consistent
systems, these new representations of data in HTML, XML,
JSON, and other formats didn’t fit into our worldview. The

2 of 8

IESCAPING THE
singularity

acmqueue | may-june 2016 7

radicals of the ’70s and ’80s became the fuddy-duddies of
the ’00s. A new schism had emerged.

SQL, VALUES, AND RELATIONAL ALGEBRA
Relational databases have tables with rows and columns.
Each column in a row provides a cell that is of a well-known
type. DDL (Data Definition Language) specifies the tables,
rows, and columns and can be dynamically changed at any
time, transforming the shape of the data.

The fundamental principle in the relational model is that
all interrelating is achieved by means of comparisons of
values, whether these values identify objects in the real
world or indicate properties of those objects. A pair of
values may be meaningfully compared, however, if and only
if these values are drawn from a common domain.

The stuff being compared in a query must have matching
DDL or it doesn’t make sense. SQL depends on its DDL
being rigid for the duration of the query.

There’s not really a notion of some portion of the SQL
data having extensible metadata that arrives with the data.
All of the metadata is defined before the query is issued.
Extensible data is, by definition, not defined (at least at the
receiver’s system).

SQL’s strength depends on a well-defined schema. Its
set-oriented nature uses the well-defined schema for
the duration of the operations. The data and metadata
(schema) must remain still while SQL does its thing.

THE STILLNESS AND ISOLATION OF TRANSACTIONS
SQL is set oriented. Bad stuff happens when the set of data

3 of 8

I

T
he data and
metadata
(schema)
must re-
main still

while SQL does
its thing.

ESCAPING THE
singularity

acmqueue | may-june 2016 8

slides around during the computation. SQL is supposed to
produce consistent results. Those consistent results are
dependent on input data that appears to be unchanging.

Transactions and, specifically, transactional isolation
provide the sense that nothing else is happening in the
world.

The Holy Grail of transaction isolation is serializability.
The idea is to make transactions appear as if they
happened in a serial order. They don’t actually have to
occur in a serial order; it just has to seem like they do.

In figure 1, the red transaction Ti depends upon changes
made by the green transactions (Ta, Tb, Tc, Td, and Tf). The
blue transactions (Tk, Tl, Tm, Tn, and To) depend on the
changes made by Ti. Ti definitely is ordered after the green
transactions and before the blue ones. It doesn’t matter
if any of the yellow transactions (Te, Tg, Tj, and Th) occur

4 of 8

I

Tb Td Th

Ta Ti

Tk

Te Tg Tj

Tm To

Tc Tf Tl Tn

Ti doesn’t know about
these transactions and
they don’t know about Ti

these transactions follow Tithese transactions
precede Ti

FIGURE 1: Transaction serializability

ESCAPING THE
singularity

1

acmqueue | may-june 2016 9

before or after Ti. There are many correct serial orders.
What matters is that the concurrency implemented in the
system provides a view that is serializable.

Suddenly, the world is still and set orientation can smile
on it.

A SENSE OF PLACE
SQL and its relational data are almost always kept inside a
single system or a few systems close to each other. Each
SQL database is almost always contained within a trust
boundary and protected by surrounding application code.

I don’t know of any systems that allow untrusted third
parties to access their back-end databases. My bank’s ATM,
for example, has never let me directly access its back-end
database with JDBC (Java Database Connectivity). So far,
the bank has constrained me to a handful of operations
such as deposit, withdrawal, or transfer. It’s really
annoying! In fact, I can’t think of any enterprise databases
that allow untrusted third parties to “party” on their
databases. All of them insist on using application code to
mitigate the foreigners’ access to the system.

Interactions occur across these systems, but they are
implemented with some messages or other data exchange
that is loosely coupled to the underlying databases on each
side. The messages hit the application code and not the
database.

Each of these databases appears to be an island unto
itself. Now, that island may have a ferry or even a four-
lane bridge connecting it to other islands. Still, you always
know the island upon which you stand when you access a
database.

5 of 8

IESCAPING THE
singularity

acmqueue | may-june 2016 10

DIFFERENT PLACES MEANS DIFFERENT TIMES
Multiple databases sharing a transactional scope is
extremely rare. When a transaction executes on a
database, there is no clear and crisp notion of its time
when compared with the time on another system’s
database. Distributed transactions across different SQL
databases are rare and challenging.

If you assume two databases do not share a transactional
scope, then the simple act of spreading work across space
(the databases) implies spreading the work across time
(multiple transactions). This transition from one database to
more than one database is a seminal semantic shift. Space
and time are intrinsically tied to each other.

When you pop from one to many, SQL and its relational
algebra cannot function without some form of restriction.
The most common form is to cast some of the data into
immutable views that can be meaningfully queried over
time. The system projecting these views won’t change them.
When they don’t change, you can use them across space.

Freezing data in time allows its use across spatial
boundaries. Typically, you also project the data to strip out
the private stuff as you project across trust boundaries. To
span spatial boundaries, time must freeze, at least for the
data being shared. When you freeze data, it’s immutable.

IMMUTABILITY: THE ONE CONSTANT OF
DISTRIBUTED SYSTEMS
Immutable data can be immortal and omnipresent. Think
of it as the Gideon Bible, which seems to be in every hotel
room; I suspect there will be Bibles there for a long time.
If you want to do a query leveraging the Gideon Bible as an

6 of 8

I

D
istributed
transac-
tions across
different
SQL data-

bases are rare
and challenging.

ESCAPING THE
singularity

acmqueue | may-june 2016 11

input, you will not struggle with challenges of concurrency
or isolation. It’s relatively straightforward to cache a copy
close to where you need it, too.

SQL’s relational operations can be applied to immutable
data at a massive scale because the metadata is
immutable and the data is immutable. This empowers
MapReduce, Hadoop, and the other big-data computation.
By being immutable, the contents are still and the set-
oriented computations make sense.

Immutable data can be everywhere at any time. That
allows it to be both inside the singularity and outside of it.
No big deal. Immutability truly is one of the unifying forces
of distributed systems.

Classic centralized databases force their data to appear
immutable using transactions. When distribution impedes
the use of transactions, you snapshot a subset of your data
so it can be cast across the boundaries with predictable
behavior.

ESCAPING THE SINGULARITY
SQL databases are phenomenally powerful and have
enjoyed singular success in providing access to and control
over data. They allow the combination and analysis of
data by leveraging relational algebra. Relational algebra
relates values contained in the rows and the columns of its
tables. This has provided incredible power in programming
and huge performance gains in accessing relational data.

To do this, relational algebra requires a static set
of tables unmolested by concurrent changes. Both
the data and the schema for the data must be static
while operations are performed. This is achieved with

7 of 8

IESCAPING THE
singularity

acmqueue | may-june 2016 12

transactional serializability or other slightly weaker
isolation policies. Serializability provides the illusion that
each user of the database is alone at a single point in time.

In a relational database, it is hard to provide full
functionality when distributed except, perhaps, across
a handful of machines in close proximity. Even more
profoundly, SQL works well within a single trust boundary
such as a department or a company. SQL databases
provide the illusion that they exist at a single point in space.

Providing a single point in space and time yields both
stillness and isolated location. This empowers the value-
based comparisons of relational algebra. It looks just like a
singularity.

The industry has leapt headlong toward data
representations that are neither bound to a single point
in time nor to a single point in space with distributed,
heterogeneous, and loosely coupled systems. Nowadays,
far more data is being generated outside the SQL
environment than within it. This trend is accelerating.

This column explores various consequences of escaping
the singularity and relaxing the constraints of both
space and time. No, it ain’t your grandmother’s database
anymore.

Pat Helland has been implementing transaction systems,
databases, application platforms, distributed systems,
fault-tolerant systems, and messaging systems since 1978.
For recreation, he occasionally writes technical papers. He
currently works at Salesforce.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

8 of 8

I

CONTENTS2

ESCAPING THE
singularity

acmqueue | may-june 2016 13

I
t all started with a bug.

Customers were complaining that their information
was out of date on the website. They would make an
update and for some reason their changes weren’t
being reflected. Caching seemed like the obvious

problem, but once we started diving into the details, we
realized it was a much bigger issue.

What we discovered was the back-end team managing
the APIs and data didn’t see eye-to-eye with the front-end
team consuming the data. The back-end team designed the
APIs the way they thought the data should be queried—one
that was optimized for the way they had designed the
schema. The challenge was that when the front-end team
wrote the interface, the API seemed clunky to them—
there were too many parameters, and they had to make
too many calls. This
negatively impacted
the mobile experience,
where browsers
can’t handle as many
concurrent requests,
so the front-end team
made the decision to
cache part of the data
locally.

The crux of the issue

Bad Software Architecture
is a People Problem When people

don’t work
well together
they make bad
decisions

KATE MATSUDAIRA

1 of 6 TEXT
ONLY THE SOFT SIDE OF

software

acmqueue | may-june 2016 14

was that the teams had not communicated well with each
other. Neither team had taken the time to understand the
needs of the other team. The result was a weird caching
bug that affected the end user.

You might be thinking this could never happen on your
team, but the reality is that when many different people
are working on a problem, each could have a different
idea about the best solution. And when you don’t have a
team that works well together, it can hurt your software
design, along with its maintainability, scalability, and
performance.

Most software systems consist of parts and pieces
that come together to perform a larger function. Those
parts and pieces can be thought out and planned, and work
together in a beautiful orchestra. Or they can be designed
by individuals, each one as unique as the person who
created it. The challenge is that if you want your software
to last, uniformity and predictability are good things—
unique snowflakes are not.

One of the challenges of managing a software team is
balancing the knowledge levels across your staff. In an
ideal world, every employee would know enough to do his
or her job well, but the truth is, in larger software teams
there is always someone getting up to speed on something:
a new technology, a way of building software, or even
the way your systems work. When someone doesn’t
know something well enough to do a great job, there is a
knowledge gap, and this is pretty common.

When building software and moving fast, people don’t
always have enough time to learn everything they need to

2 of 6

I

T
he
challenge
is that
if you
want your

software to last,
uniformity and
predictability
are good things—
unique
snowflakes
are not.

THE SOFT SIDE OF
software

acmqueue | may-june 2016 15

bridge their gaps. So each person will make assumptions
or concessions that can impact the effectiveness of any
software that individual works on.

For example, an employee may choose a new
technology that hasn’t been road tested enough in the wild,
and that later falls apart under heavy production load.
Another example is someone writing code for a particular
function, without knowing that code already exists in
a shared library written by another team—reinventing
the wheel and making maintenance and updates more
challenging in the future.

On larger teams, one of the common places these
knowledge gaps exist is between teams or across
disciplines: for example, when someone in operations
creates a Band-Aid in one area of the system (like
repetitively restarting a service to fix a memory leak),
because the underlying issue is just too complex to
diagnose and fix (the person doesn’t have enough
understanding of the running code to fix the leaky
resources).

Every day, people are making decisions with imperfect
knowledge. The real question is, how can you improve the
knowledge gaps and enable your team to make better
decisions?

Here are a few strategies that can help your team work
better, and in turn help you create better software. While
none of these strategies is a new idea, they are all great
reminders of ways to make your teams and processes that
much better.

3 of 6

ITHE SOFT SIDE OF
software

acmqueue | may-june 2016 16

Define how you will work together
Whether you are creating an API or consuming someone
else’s data, having a clearly defined contract is the first
step toward a good working relationship. When you work
with another service it is important to understand the
guardrails and best practices for consuming that service.
For example, you should establish the payload maximums
and discuss the frequency and usage guidelines. If for some
reason the existing API doesn’t meet your needs, instead
of just working around it, talk about why it isn’t working
and collaboratively figure out the best way to solve the
problem (whether that is updating the API or leveraging a
caching strategy). The key here is communication.

Decide how you will test the whole system
One of the most important strategies is to think about how
you will truly test the end-to-end functionality of a system.
Having tests that investigate only your parts of the
system (like the back-end APIs) but not the end-customer
experience can result in uncaught errors or issues (such
as my opening example of caching). The challenge then
becomes, who will own these tests? And who will run these
tests and be responsible for handling failures? You may
not want tests for every scenario, but certainly the most
important ones are worth having.

When bugs happen, work together to solve them
When problems arise, try to avoid solutions that only mask
the underlying issue. Instead, work together to figure out
what the real cause of the problem is, and then make a
decision as a team on the best way of addressing it going
forward. This way the entire team can learn more about

4 of 6

I

O
ne of
the most
important
strategies
is to think

about how you
will truly test
the end-to-end
functionality
of a system.

THE SOFT SIDE OF
software

acmqueue | may-june 2016 17

I

how the systems work, and everyone involved will be
informed of any potential Band-Aids.

Use versioning
When another team consumes something you created (an
API, a library, a package), versioning is the smartest way of
making updates and keeping everyone on the same page
with those changes. There is nothing worse than relying
on something and having it change underneath you. The
author may think the changes are minor or innocuous,
but sometimes those changes can have unintended
consequences downstream. By starting with versions, it
is easy to keep everyone in check and predictably manage
their dependencies.

Create coding standards
Following standards can be really helpful when it comes
to code maintenance. When you depend on someone else
and have access to that source code, being able to look at
it—and know what you are looking at—can give you an edge
in understanding, debugging, and integration. Similarly,
in situations where styles are inherited and reused
throughout the code, having tools like a style guide can
help ensure that the user interfaces look consistent—even
when different teams throughout the company develop
them.

Do code reviews
One of the best ways of bridging knowledge gaps on a
team is to encourage sharing among team members.
When other people review and give feedback, they learn

5 of 6THE SOFT SIDE OF
software

acmqueue | may-june 2016 18

the code, too. This is a great way of spreading knowledge
across the team.

Of course, the real key to great software architecture
for a system developed by lots of different people is to
have great communication. You want everyone to talk
openly to everyone else, ask questions, and share ideas.
This means creating a culture where people are open and
have a sense of ownership—even for parts of the system
they didn’t write.

Kate Matsudaira is an experienced technology leader. She
worked in big companies such as Microsoft and Amazon and
three successful startups (Decide acquired by eBay, Moz,
and Delve Networks acquired by Limelight) before starting
her own company, Popforms (https://popforms.com/), which
was acquired by Safari Books. Having spent her early career
as a software engineer, she is deeply technical and has done
leading work on distributed systems, cloud computing, and
mobile. She has experience managing entire product teams
and research scientists, and has built her own profitable
business. She is a published author, keynote speaker, and has
been honored with awards such as Seattle’s Top 40 under 40.
She sits on the board of acmqueue and maintains a personal
blog at katemats.com.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

6 of 6

I

CONTENTS2

THE SOFT SIDE OF
software

acmqueue | may-june 2016 19

Dear KV,
I was recently hired as a midlevel web developer working
on version 2 of a highly successful but outdated web
application. It will be implemented with ASP.Net WebAPI.
Our architect designed a layered architecture, roughly
like Web Service > Data Service > Data Access. He noted
that data service should be agnostic to Entity Framework
ORM (object-relational mapping), and it should use unit-of-
work and repository patterns. I guess my problem sort of
started there.

Our lead developer has created a solution to implement
the architecture, but the implementation does not apply
the unit-of-work and repository patterns correctly.
Worse, the code is really hard to understand and it does
not actually fit the architecture. So I see a lot of red flags
coming up with this implementation. It took me almost an
entire weekend to work through the code, and there are
still gaps in my understanding.

This week our first sprint starts, and I feel a
responsibility to speak up and try to address this issue.
I know that I will face a lot of resistance, just based on
the fact that the lead developer wrote that code and
understands it more than the alternatives. He may not
see the issue that I will try to convey. I need to convince
him and the rest of the team that the code needs to be
refactored or reworked. I feel apprehensive, because I am

Chilling the
Messenger Keeping ego

out of
software-design
review

1 of 6 TEXT
ONLY

who is
KV?

I

click for video

kode vicious

acmqueue | may-june 2016 20

like the new kid on the block trying to change the game.
I also don’t want to be perceived as Mr. Know-It-All, even
though I might be a little more opinionated than I should be
sometimes.

My question is, how can I convince the team that there is
a real problem with the implementation without offending
anyone?

~Opinionated

Dear ~Opinionated,
Let me work backwards through your letter from the
end. You are asking me, Kode Vicious, how to point out
problems without offending anyone? Have you read any
of my previous columns? Let’s just start out with the KV
ground rules: it’s only the law and other deleterious side
effects that keep me on the “right” side of violence in some
meetings. I’d like to think a jury of my peers would acquit
me should I eventually cross to the wrong side, but I don’t
want to stake my freedom on that. I will try my best to
give you solutions that do not land you in jail, but I will not
guarantee them not to offend.

Trying to correct someone who has just done a lot of
work, even if, ultimately, that work is not the right work, is
a daunting task. The person in question no doubt believes
that he has worked very hard to produce something of
value to the rest of the team, and walking in and spitting
on it, literally or metaphorically, probably crosses your
“offense” line—at least I think it does. I’m a bit surprised
that since this is the first sprint and there is already so

2 of 6 `

Ikode vicious

acmqueue | may-june 2016 21

much code written, shouldn’t the software have shown up
after the sprints established what was needed, who the
stakeholders were, etc.? Or was this a piece of previously
existing code that was being brought in to solve a new
problem? It probably doesn’t matter, because the crux
of your letter is the fact that you and your team do not
sufficiently understand the software in question to be
comfortable with fielding it.

In order to become more comfortable with the system,
there are two things to call for: a design review and a code
review. These are not actually the same things, and KV
has already covered how to conduct a code review [“Kode
Reviews 101.” Communications of the ACM 52(10): 28-29.
(October 2009)]. Let’s talk now about a design review.

A software design review is intended to answer a basic
set of questions:
1. How does the design take inputs and turn them into

outputs?
2. What are the major components that make up the

system?
3. How do the components work together to achieve the

goals set out by the design?
That all sounds simple, but the devil is in the level of the

details. Many software developers and systems architects
would prefer that everyone but themselves see the
systems they have built as black boxes, where data goes in
and other data comes out, no questions asked. You clearly
do not have the necessary level of trust with the software
you’re working with to allow the lead developer to get
away with that, so you should call for a design review

3 of 6

I

I
n order to
become
more
comfortable
with the

system, there
are two things
to call for:
a design review
and a code review.

kode vicious

acmqueue | may-june 2016 22

where you take the lid off the box and poke around at the
parts inside. In fact, questions 2 and 3 are going to be your
main tools for figuring out what the software does and
whether or not it is suitable for the task.

When I have to interview people for jobs, I always ask
them questions about systems they have worked on while
we draw out the block diagram on a whiteboard: What
are the major components? How does component A talk
to component B? What happens if C fails? I’m trying to
transfer their mental images of their software into my own
mind, of course without either going mad or having a nasty
flashback. Some pieces of software are best left outside
your mind, but hopefully that’s not going to be the case
with the system you’re working with.

Remember that every box that this person draws can
be opened if you think you’re not getting sufficient detail.
Much like the ancient game show, “Let’s Make a Deal,” it
is always OK for you to ask, “What’s behind door number
1, Monty?” Of course, you might find that it’s a goat, but
hopefully you find that it’s a working set of components
that are understandable to you and the team.

The one thing not to do in a design review is turn it into a
code review. You are definitely not interested in the internals
of any of the algorithms, at least not yet. The only code you
might want to look at are the APIs that glue the components
together, but even these are best left abstract, so that the
amount of detail does not overwhelm you. Remember that
the goal is always to get the big picture rather than the fine
details, at least in a design review.

Coming back to the question of offense, I have found only
one legal way to avoid giving offense, and that is always

4 of 6

Ikode vicious

acmqueue | may-june 2016 23

to phrase things as questions. Often called the Socratic
method, this can be a good way to get people to explain
to you, and often to themselves, what they think they are
doing. The Socratic method can be applied in an annoyingly
pedantic way, but since you’re trying not to give offense,
I suggest that you play by a few useful rules. First, do not
hammer the person with a relentless list of questions right
off. Remember that you are trying to explore the design
space in a collaborative way; this is not an interrogation.
Second, leave spaces for the people you’re working with to
think. A pause doesn’t mean they don’t know; in fact, it might
be that they’re trying to adjust their mental model of the
system in a way that will be beneficial to everyone when the
review is done. Lastly, try to vary the questions you ask and
the words you use. No one wants to be subjected to a lot of,
“And then what happens?”

Finally, I find that when I’m in a design review and about
to do something that might give offense, such as throwing
a chair or a whiteboard marker, I try to do something less
obvious. My personal style is to take off my glasses, put
them on the table and speak in a very calm voice. That
usually doesn’t offend, but it does get people’s attention,
which leads them to concentrate harder on working to
understand the problem we’re all trying to solve.

KV

Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating system code for
fun and profit. He also teaches courses on various subjects
related to programming. His areas of interest are code
spelunking, operating systems, and rewriting your bad code

5 of 6

I

T
he Socratic
method can
be applied
in an
annoyingly

pedantic way,
but since you’re
trying not to give
offense, I suggest
that you play by a
few useful rules.

kode vicious

acmqueue | may-june 2016 24

(OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University
in Boston, Massachusetts, and is a member of ACM, the
Usenix Association, and IEEE. Neville-Neil is the co-author
with Marshall Kirk McKusick and Robert N. M. Watson of
The Design and Implementation of the FreeBSD Operating
System (second edition). He is an avid bicyclist and traveler
who currently lives in New York City.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

6 of 6

I

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE.
STAY CONNECTED.
KEEP INVENTING.

CONTENTS2

kode vicious

acmqueue | may-june 2016 25

web services

M
icroservices are an approach to building
distributed systems in which services are
exposed only through hardened APIs; the
services themselves have a high degree of
internal cohesion around a specific and well-

bounded context or area of responsibility, and the coupling
between them is loose. Such services are typically simple,
yet they can be composed into very rich and elaborate
applications. The effort required to adopt a microservices-
based approach is considerable, particularly in cases that
involve migration from more monolithic architectures.
The explicit benefits of microservices are well known
and numerous, however, and can include increased
agility, resilience, scalability, and developer productivity.
This article identifies some of the hidden dividends of
microservices that implementers should make a conscious
effort to reap.

The most fundamental of the benefits driving the
momentum behind microservices is the clear separation
of concerns, focusing the attention of each service upon

Microservices
aren’t for
every company,
and the journey
isn’t easyTOM KILLALEA

1 of 10 TEXT
ONLY

The Hidden Dividends of
Microservices

acmqueue | may-june 2016 26

web services

some well-defined aspect of the overall application.
These services can be composed in novel ways with loose
coupling between the services, and they can be deployed
independently. Many implementers are drawn by the allure
of being able to make changes more frequently and with
less risk of negative impact. Robert C. Martin described
the single responsibility principle: “Gather together those
things that change for the same reason. Separate those
things that change for different reasons.”5 Clear separation
of concerns, minimal coupling across domains of concern,
and the potential for a higher rate of change lead to
increased business agility and engineering velocity.

Martin Fowler argues that the adoption of continuous
delivery and the treatment of infrastructure as code
are more important than moving to microservices, and
some implementers adopt these practices on the way
to implementing microservices, with positive effects
on resilience, agility, and productivity. An additional key
benefit of microservices is that they can enable owners
of different parts of an overall architecture to make very
different decisions with respect to the hard problems
of building large-scale distributed systems in the areas
of persistence mechanism choices, consistency, and
concurrency. This gives service owners greater autonomy,
can lead to faster adoption of new technologies, and can
allow them to pursue custom approaches that might be
optimal for only a few or even for just one service.

THE DIVIDENDS
While difficult to implement, a microservices-based
approach can pay dividends to the organization that takes

2 of 10

acmqueue | may-june 2016 27

web services

the trouble, though some of the benefits are not always
obvious. What follows is a description of a few of the less
obvious ones that may make the adoption of microservices
worth the effort.

Dividend #1: Permissionless Innovation
Permissionless innovation is about “the ability of others
to create new things on top of the communications
constructs that we create,”1 as put forth by Jari Arkko,
chair of IETF (Internet Engineering Task Force). When
enabled, it can lead to innovations by consumers on a
set of interfaces that the designers of those interfaces
might find surprising and even bewildering. It contrasts
with approaches where gatekeepers (a euphemism for
blockers) have to be consulted before an integration can be
considered.

To determine whether permissionless innovation has
been unleashed to the degree possible, a simple test is
to look at the prevalence of meetings between teams (as
distinct from within teams). Cross-team meetings suggest
coordination, coupling, and problems with the granularity
or functionality of service interfaces. Engineers don’t
seek out meetings if they can avoid them; such meetings
could mean that a service’s APIs aren’t all that is
needed to integrate. An organization that has embraced
permissionless innovation should have a high rate of
experimentation and a low rate of cross-team meetings.

Dividend #2: Enable Failure
It should come as no surprise to hear that in computer
science, we still don’t know how to build complex systems

3 of 10

A
n orga-
nization
that has
embraced
permis-

sionless innova-
tion should have
a high rate of
experimentation
and a low rate
of cross-team
meetings

acmqueue | may-june 2016 28

web services

that work reliably,6 and the unreliability of systems
increases with size and complexity. While opinions
differ as to whether microservices allow a reduction
in overall complexity, it’s worth embracing the notion
that microservices will typically increase the number of
failures. Further, failures across service boundaries will be
more difficult to troubleshoot since external call stacks
are inherently more fragile than internal ones, and the
debugging task is limited by poorer tooling and by more
challenging ad hoc analysis characteristics. This tweet
by @Honest_Update can sometimes feel uncomfortably
accurate: “We replaced our monolith with micro services
so that every outage could be more like a murder
mystery.”4

Designing for the inevitability and indeed the
routineness of failure can lead to healthy conversations
about state persistence, resilience, dependency
management, shared fate, and graceful degradation. Such
conversations should lead to a reduction of the blast
radius of any given failure by leveraging techniques such
as caching, metering, traffic engineering, throttling, load
shedding, and back-off. In a mature microservices-based
architecture, failure of individual services should be
expected, whereas the cascading failure of all services
should be impossible.

Dividend #3: Disrupt Trust
In small companies or in small code bases, some engineers
may have a strong sense of trust in what’s being deployed
because they look over every shoulder and review every
commit. As team size and aggregate velocity increase,

4 of 10

acmqueue | may-june 2016 29

web services

“Dunbar’s number” takes effect, leading to such trust
becoming strained. As defined by British anthropologist
Robin Dunbar, this is the maximum number of individuals
with whom one can maintain social relationships by
personal contact.

A move to microservices can force this expectation
of trust to surface and be confronted. The boundary
between one service and another becomes a set of APIs.
The consumer gives up influence over the design of what
lies behind those APIs, how that design evolves, and how
its data persists, in return for a set of SLAs (service-level
agreements) governing the stability of the APIs and their
runtime characteristics. Trust can be replaced with a
combination of autonomy and accountability.

As stated by Melvin Conway, who defined what is now
known as Conway’s law: “Any organization that designs a
system will inevitably produce a design whose structure is
a copy of the organization’s communication structure.”2

Microservices can provide an effective model for
evolving organizations that scale far beyond the limits of
personal contact.

Dividend #4: You Build It, You Own It
Microservices encourage the “you build it, you own it”
model. Amazon CTO Werner Vogels described this model
in a 2006 conversation with Jim Gray that appeared in
ACM Queue: “Each service has a team associated with it,
and that team is completely responsible for the service—
from scoping out the functionality, to architecting it, to
building it, and operating it. You build it, you run it. This
brings developers into contact with the day-to-day

5 of 10

“A
ny orga-
nization
that
designs
a system

will inevitably
produce a design
whose structure
is a copy of the
organization’s
communication
structure.”
 —Melvin Conway

acmqueue | may-june 2016 30

web services

operation of their software. It also brings them into day-
to-day contact with the customer. The customer feedback
loop is essential for improving the quality of the service.”3

In the decade since that conversation, as more
software engineers have followed this model and taken on
responsibility for the operation as well as the development
of microservices, they’ve driven broad adoption of a
number of practices that enable greater automation
and that lower operational overhead. Among these are
continuous deployment, virtualized or containerized
capacity, automated elasticity, and a variety of self-healing
techniques.

Dividend #5: Accelerate Deprecations
In a monolith, it’s difficult to deprecate anything safely.
With microservices, it’s easy to get a clear view of a
service’s call volume, to stand up different and potentially
competing versions of a service, or to build a new service
that shares nothing with the old service other than
backwards compatibility with those interfaces that
consumers care about the most.

In a world of permissionless innovation, services can
and should routinely come and go. It’s worth investing
some effort to make it easier to deprecate services that
haven’t meaningfully caught on. One approach to doing
this is to have a sufficiently high degree of competition
for resources so that any resource-constrained team
that is responsible for a languishing service is drawn to
spending most of their time on other services that matter
more to customers. As this occurs, responsibility for
the unsuccessful service should be transferred to the

6 of 10

acmqueue | may-june 2016 31

web services

consumer who cares about it the most. This team may
rightfully consider themselves to have been left “holding
the can,” although the deprecation decision also passes
into their hands. Other teams that wish not to be left
holding the can have an added incentive to migrate or
terminate their dependencies. This may sound brutal, but
it’s an important part of “failing fast.”

Dividend #6: End Centralized Metadata
In Amazon’s early years, a small number of relational
databases were used for all of the company’s critical
transactional data. In the interest of data integrity
and performance, any proposed schema change
had to be reviewed and approved by the DB Cabal, a
gatekeeping group of well-meaning enterprise modelers,
database administrators, and software engineers. With
microservices, consumers shouldn’t know or care about
how data persists behind a set of APIs on which they
depend, and indeed it should be possible to swap out one
persistence mechanism for another without consumers
noticing or needing to be notified.

Dividend #7: Concentrate the Pain
A move to microservices should enable an organization
to take on very different approaches to the governance
expectations that it has of different services. This will
start with a consistent companywide model for data
classification and with the classification of the criticality
of the integrity of different business processes. This
will typically lead to threat modeling for the services
that handle the most important data and processes,

7 of 10

acmqueue | may-june 2016 32

web services

and the implementation of the controls necessary to
serve the company’s security and compliance needs. As
microservices proliferate, it can be possible to ensure that
the most severe burden of compliance is concentrated in
a very small number of services, releasing the remaining
services to have a higher rate of innovation, comparatively
unburdened by such concerns.

Dividend #8: Test Differently
Engineering teams often view the move to microservices
as an opportunity to think differently about testing.
Frequently, they’ll start thinking about how to test earlier
in the design phase, before they start to build their service.
A clearer definition of ownership and scope can provide an
incentive to achieve greater coverage. As stated by Yelp
in setting forth its service principles, “Your interface is the
most vital component to test. Your interface tests will tell
you what your client actually sees, while your remaining
tests will inform you on how to ensure your clients see
those results.”7

The adoption of practices such as continuous
deployment, smoke tests, and phased deployment can lead
to tests with higher fidelity and lower time-to-repair when
a problem is discovered in production. The effectiveness
of a set of tests can be measured less by their rate of
problem detection and more by the rate of change that
they enable.

WARNING SIGNS
The following indicators are helpful in determining that the

8 of 10

acmqueue | may-june 2016 33

web services

journey to microservices is incomplete. You’re probably not
doing microservices if:
3 Different services do coordinated deployments.
3 You ship client libraries.
3 A change in one service has unexpected consequences or

requires a change in other services.
3 Services share a persistence store.
3 You cannot change your service’s persistence tier

without anyone caring.
3 Engineers need intimate knowledge of the designs and

schemas of other teams’ services.
3 You have compliance controls that apply uniformly to all

services.
3 Your infrastructure isn’t programmable.
3 You can’t do one-click deployments and rollbacks.

CONCLUSION
Microservices aren’t for every company, and the journey
isn’t easy. At times the discussion about their adoption has
been effusive, focusing on autonomy, agility, resilience,
and developer productivity. The benefits don’t end
there, however, and to make the journey worthwhile, it’s
important to reap the additional dividends.

References
1. Arkko, J. 2013. Permissionless innovation. IETF; https://

www.ietf.org/blog/2013/05/permissionless-innovation/.
2. Conway, M. E. 1968. How do committees invent?

Datamation Magazine; http://www.melconway.com/
Home/Committees_Paper.html.

9 of 10

http://www.melconway.com/Home/Committees_Paper.html
http://www.melconway.com/Home/Committees_Paper.html

acmqueue | may-june 2016 34

web services

3. Gray. J. 2006. A conversation with Werner Vogels. ACM
Queue 4(4); http://queue.acm.org/detail.cfm?id=1142065.

4. Honest Status Page. 2015. @honest_
update; https://twitter.com/honest_update/
status/651897353889259520.

5. Martin, R. C. 2014. The single responsibility principle;
https://blog.8thlight.com/uncle-bob/2014/05/08/
SingleResponsibilityPrinciple.html.

6. Perera, D. 2015. The crypto warrior. Politico; http://www.
politico.com/agenda/story/2015/12/crypto-war-cyber-
security-encryption-000334.

7. Yelp service principles; https://github.com/Yelp/service-
principles.

Tom Killalea was with Amazon for 16 years and now consults
and sits on several company boards, including those of
Capital One, ORRECO, and MongoDB.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

10 of 10

CONTENTS2

https://twitter.com/honest_update/status/651897353889259520
https://twitter.com/honest_update/status/651897353889259520
https://blog.8thlight.com/uncle-bob/2014/05/08/SingleResponsibilityPrinciple.html
https://blog.8thlight.com/uncle-bob/2014/05/08/SingleResponsibilityPrinciple.html
http://www.politico.com/agenda/story/2015/12/crypto-war-cyber-security-encryption-000334
http://www.politico.com/agenda/story/2015/12/crypto-war-cyber-security-encryption-000334
http://www.politico.com/agenda/story/2015/12/crypto-war-cyber-security-encryption-000334
https://github.com/Yelp/service-principles
https://github.com/Yelp/service-principles

acmqueue | may-june 2016 35

performance

G
oogle’s Chrome web browser strives to deliver a
smooth user experience. An animation will update
the screen at 60 FPS (frames per second), giving
Chrome around 16.6 milliseconds to perform the
update. Within these 16.6 ms, all input events have

to be processed, all animations have to be performed, and
finally the frame has to be rendered. A missed deadline will
result in dropped frames. Such are visible to the user and
degrade the user experience. These sporadic animation
artifacts are referred to here as jank .3

JavaScript, the lingua franca of the web, is typically
used to animate web pages. It is a garbage-collected
programming language where the application developer
does not have to worry about memory management.
The garbage collector interrupts the application to pass
over the memory allocated by the application, determine
live memory, free dead memory, and compact memory
by moving objects closer together. While some of these
garbage-collection phases can be performed in parallel

Taking advantage of
idleness to reduce
dropped frames and
memory consumption

ULAN DEGENBAEV

JOCHEN EISINGER

MANFRED ERNST

ROSS MCILROY

HANNES PAYER

1 of 18 TEXT
ONLY

Idle-Time
Garbage-Collection

Scheduling

acmqueue | may-june 2016 36

performance

or concurrently to the application, others cannot, and as a
result they may cause application pauses at unpredictable
times. Such pauses may result in user-visible jank or
dropped frames; therefore, we go to great lengths to avoid
such pauses when animating web pages in Chrome.

This article describes an approach implemented in
the JavaScript engine V8, used by Chrome, to schedule
garbage-collection pauses during times when Chrome is
idle.1 This approach can reduce user-visible jank on real-
world web pages and results in fewer dropped frames.

GARBAGE COLLECTION IN V8
Garbage-collector implementations typically optimize
for the weak generational hypothesis ,6 which states that
most of the allocated objects in applications die young. If
the hypothesis holds, garbage collection is efficient and
pause times are low. If it does not hold, pause times may
lengthen.

V8 uses a generational garbage collector, with the
JavaScript heap split into a small young generation for
newly allocated objects and a large old generation for
long-living objects. Since most objects typically die young,
this generational strategy enables the garbage collector
to perform regular, short garbage collections in the small
young generation, without having to trace objects in the
large old generation.

The young generation uses a semi-space allocation
strategy, where new objects are initially allocated in the
young generation’s active semi-space. Once a semi-space
becomes full, a scavenge operation will trace through the
live objects and move them to the other semi-space.

2 of 18

acmqueue | may-june 2016 37

performance

Such a semi-space scavenge is a minor garbage
collection. Objects that have already been moved in the
young generation are promoted to the old generation.
After the live objects have been moved, the new semi-space
becomes active and any remaining dead objects in the old
semi-space are discarded without iterating over them.

The duration of a minor garbage collection therefore
depends on the size of the live objects in the young
generation. A minor garbage collection is typically fast,
taking no longer than one millisecond when most of the
objects become unreachable in the young generation. If
most objects survive, however, the duration of a minor
garbage collection may be significantly longer.

A major garbage collection of the whole heap is
performed when the size of live objects in the old generation
grows beyond a heuristically derived memory limit of
allocated objects. The old generation uses a mark-and-
sweep collector with compaction. Marking work depends
on the number of live objects that have to be marked, with
marking of the whole heap potentially taking more than 100
ms for large web pages with many live objects.

To avoid such long pauses, V8 marks live objects
incrementally in many small steps, pausing only the main
thread during these marking steps. When incremental
marking is completed the main thread is paused to finalize
this major collection. First, free memory is made available
for the application again by sweeping the whole old-
generation memory, which is performed concurrently
by dedicated sweeper threads. Afterwards, the young
generation is evacuated, since we mark through the young
generation and have liveness information. Then memory

3 of 18

A
fter the
live objects
have been
moved,
the new

semi-space
becomes
active and
any remaining
dead objects
in the old
semi-space are
discarded
without iterating
over them.

acmqueue | may-june 2016 38

performance

compaction is performed to reduce memory fragmentation
in old-generation pages. Young-generation evacuation
and old-generation compaction are performed by parallel
compaction threads. After that, the object pointers to
moved objects in the remembered sets are updated in
parallel. All these finalization tasks occur in a single atomic
pause that can easily take several milliseconds.

THE TWO DEADLY SINS OF GARBAGE COLLECTION

T
he garbage-collection phases outlined here
can occur at unpredictable times, potentially
leading to application pauses that impact the
user experience. Hence, developers often
become creative in attempting to sidestep these

interruptions if the performance of their application
suffers. This section looks at two controversial approaches
that are often proposed and outlines their potential
problems. These are the two deadly sins of garbage
collection.

Sin one: turning off the garbage collector. Developers
often ask for an API to turn off the garbage collector
during a time-critical application phase where a garbage-
collection pause could result in missed frames. Using such
an API, however, complicates application logic and leads to
it becoming more difficult to maintain. Forgetting to turn
on the garbage collector on a single branch in the program
may result in out-of-memory errors. Furthermore, this
also complicates the garbage-collector implementation,
since it has to support a never-fail allocation mode and
must tailor its heuristics to take into account these non-
garbage-collecting time periods.

4 of 18

acmqueue | may-june 2016 39

performance

Sin two: explicit garbage-collection invocation. JavaScript
does not have a Java-style System.gc() API, but some
developers would like to have that. Their motivation is
proactively to invoke garbage collection during a non-
time-critical phase in order to avoid it later when timing
is critical. The application, however, has no idea how long
such a garbage collection will take and therefore may
by itself introduce jank. Moreover, garbage-collection
heuristics may get confused if developers invoke the
garbage collector at arbitrary points in time.

Given the potential for developers to trigger
unexpected side effects with these approaches, they
should not interfere with garbage collection. Instead, the
runtime system should endeavor to avoid the need for
such tricks by providing high-performance application
throughput and low-latency pauses during mainline
application execution, while scheduling longer-running
work during periods of idleness such that it does not
impact application performance.

IDLE-TASK SCHEDULING
To schedule long-running garbage collection tasks while
Chrome is idle, V8 uses Chrome’s task scheduler. This
scheduler dynamically reprioritizes tasks based on signals
it receives from a variety of other components of Chrome
and various heuristics aimed at estimating user intent. For
example, if the user touches the screen, the scheduler will
prioritize screen rendering and input tasks for a period
of 100 ms to ensure that the user interface remains
responsive while the user interacts with the web page.

The scheduler’s combined knowledge of task queue

5 of 18

acmqueue | may-june 2016 40

performance

occupancy, as well as signals it receives from other
components of Chrome, enables it to estimate when
Chrome is idle and how long it is likely to remain so.
This knowledge is used to schedule low-priority tasks,
hereafter called idle tasks, which are run only when there
is nothing more important to do.

To ensure that these idle tasks don’t cause jank, they
are eligible to run only in the time periods between the
current frame having been drawn to screen and the time
when the next frame is expected to start being drawn. For
example, during active animations or scrolling (see figure
1), the scheduler uses signals from Chrome’s compositor
subsystem to estimate when work has been completed
for the current frame and what the estimated start time
for the next frame is, based on the expected interframe
interval (e.g., if rendering at 60 FPS, the interframe
interval is 16.6 ms). If no active updates are being made to
the screen, the scheduler will initiate a longer idle period,
which lasts until the time of the next pending delayed

6 of 18

time

vsync vsync vsync

input draw idle
GC

other
idle

input draw idle
GC

idle
period

idle
period

FIGURE 1: Idle period example1

acmqueue | may-june 2016 41

performance

task, with a cap of 50 ms to ensure that Chrome remains
responsive to unexpected user input.

To ensure that idle tasks do not overrun an idle period,
the scheduler passes a deadline to the idle task when it
starts, specifying the end of the current idle period. Idle
tasks are expected to finish before this deadline, either
by adapting the amount of work they do to fit within this
deadline or, if they cannot complete any useful work within
the deadline, by reposting themselves to be executed
during a future idle period. As long as idle tasks finish
before the deadline, they do not cause jank in web-page
rendering.

IDLE-TIME GARBAGE-COLLECTION SCHEDULING IN V8
Chrome’s task scheduler allows V8 to reduce both jank
and memory usage by scheduling garbage-collection work
as idle tasks. To do so, however, the garbage collector
needs to estimate both when to trigger idle-time garbage-
collection tasks and how long those tasks are expected
to take. This allows the garbage collector to make the
best use of the available idle time without going past an
idle-tasks deadline. This section describes implementation
details of idle-time scheduling for minor and major
garbage collections.

Minor garbage-collection idle-time scheduling
Minor garbage collection cannot be divided into smaller
work chunks and must be performed either completely or
not at all. Performing minor garbage collections during
idle time can reduce jank; however, being too proactive
in scheduling a minor garbage collection can result

7 of 18

acmqueue | may-june 2016 42

performance

in promotion of objects that could otherwise die in a
subsequent non-idle minor garbage collection. This could
increase the old-generation size and the latency of future
major garbage collections. Thus, the heuristic for scheduling
minor garbage collections during idle time should balance
between starting a garbage collection early enough that
the young-generation size is small enough to be collectable
during regular idle time, and deferring it long enough to
avoid false promotion of objects.

Whenever Chrome’s task scheduler schedules a minor
garbage-collection task during idle time, V8 estimates
if the time to perform the minor garbage collection will
fit within the idle-task deadline. The time estimate is
computed using the average garbage-collection speed and
the current size of the young generation. It also estimates
the young-generation growth rate and performs an idle-
time minor garbage collection only if the estimate is that
at the next idle period the size of the young generation is
expected to exceed the size that could be collected within
an average idle period.

Major garbage-collection idle-time scheduling
A major garbage collection consists of three parts:
initiation of incremental marking, several incremental
marking steps, and finalization. Incremental marking
starts when the size of the heap reaches a certain limit,
configured by a heap-growing strategy. This limit is set at
the end of the previous major garbage collection, based on
the heap-growing factor f and the total size of live objects
in the old generation: limit = f · size.

As soon as an incremental major garbage collection is

8 of 18

acmqueue | may-june 2016 43

performance

started, V8 posts an idle task to Chrome’s task scheduler,
which will perform incremental marking steps. These steps
can be linearly scaled by the number of bytes that should
be marked. Based on the average measured marking speed,
the idle task tries to fit as much marking work as possible
into the given idle time. The idle task keeps reposting
itself until all live objects are marked. V8 then posts an
idle task for finalizing the major garbage collection. Since
finalization is an atomic operation, it is performed only if it
is estimated to fit within the allotted idle time of the task;
otherwise, V8 reposts that task to be run at a future idle
time with a longer deadline.

Memory Reducer
Scheduling a major garbage collection based on the
allocation limit works well when the web page shows a
steady allocation rate. If the web page becomes inactive
and stops allocating just before hitting the allocation limit,
however, there will be no major garbage collection for
the whole period while the page is inactive. Interestingly,
this is an execution pattern that can be observed in the
wild. Many web pages exhibit a high allocation rate during
page load as they initialize their internal data structures.
Shortly after loading (a few seconds or minutes), the web
page often becomes inactive, resulting in a decreased
allocation rate and decreased execution of JavaScript
code. Thus, the web page will retain more memory than it
actually needs while it is inactive.

A controller, called a memory reducer, tries to detect
when the web page becomes inactive and proactively
schedules a major garbage collection even if the allocation

9 of 18

acmqueue | may-june 2016 44

performance

limit is not reached. Figure 2 shows an example of major
garbage-collection scheduling.

The first garbage collection happens at time t1 because
the allocation limit is reached. V8 sets the next allocation
limit based on the heap size. The subsequent garbage
collections at times t2 and t3 are triggered by the memory
reducer before the limit is reached. The dotted line shows
what the heap size would be without the memory reducer.

Since this can increase latency, we developed heuristics
that rely not only on the idle time provided by Chrome’s task
scheduler, but also on whether the web page is now inactive.
The memory reducer uses the JavaScript invocation and
allocation rate as a signal for whether the web page is active
or not. When the rate drops below a predefined threshold,

time

he
ap

size

limit

limit’

baseline
memory reducer

t1 t2 t3

FIGURE 2: Effect of memory reducer on heap size

10 of 18

2

acmqueue | may-june 2016 45

performance

the web page is considered to be inactive and major garbage
collection is performed in idle time.

SILKY SMOOTH PERFORMANCE
Our aim with this work was to improve the quality of user
experience for animation-based applications by reducing
jank caused by garbage collection. The quality of the user
experience for animation-based applications depends not
only on the average frame rate, but also on its regularity. A
variety of metrics have been proposed in the past to quantify
the phenomenon of jank—for example, measuring how often
the frame rate has changed, calculating the variance of the
frame durations, or simply using the largest frame duration.
Although these metrics provide useful information, they
all fail to measure certain types of irregularities. Metrics
that are based on the distribution of frame durations, such
as variance or largest frame duration, cannot take the
temporal order of frames into account. For example, they
cannot distinguish between the case where two dropped
frames are close together and the case where they are
further apart. The former case is arguably worse.

We propose a new metric to overcome these limitations.
It is based on the discrepancy of the sequence of frame
durations. Discrepancy is traditionally used to measure
the quality of samples for Monte Carlo integration. It
quantifies how much a sequence of numbers deviates from
a uniformly distributed sequence. Intuitively, it measures
the duration of the worst jank. If only a single frame is
dropped, the discrepancy metric is equal to the size of
the gap between the drawn frames. If multiple frames are
dropped in a row—with some good frames in between—the

11 of 18

acmqueue | may-june 2016 46

performance

discrepancy will report the duration of the entire region of
bad performance, adjusted by the good frames.

Discrepancy is a great metric for quantifying the
worst-case performance of animated content. Given the
timestamps when frames were drawn, the discrepancy
can be computed in O(N) time using a variant of Kadane’s
algorithm for the maximum subarray problem.

The online WebGL (Web Graphics Library) benchmark
OortOnline (http://oortonline.gl/#run) demonstrates
jank improvements of idle-time garbage-collection
scheduling. Figure 3 shows these improvements: frame-time
discrepancy, frame time, number of frames missed because
of garbage collection, and total garbage-collection time
compared with the baseline on the oortonline.gl benchmark.

Frame-time discrepancy is reduced on average from
212 ms to 138 ms. The average frame-time improvement
is from 17.92 ms to 17.6 ms. We observed that 85 percent
of garbage-collection work was scheduled during idle
time, which significantly reduced the amount of garbage-
collection work performed during time-critical phases.
Idle-time garbage-collection scheduling increased the
total garbage-collection time by 13 percent to 780 ms.
This is because scheduling garbage collection proactively
and making faster incremental marking progress with idle
tasks resulted in more garbage collections.

Idle-time garbage collection also improves regular
web browsing. While scrolling popular web pages such as
Facebook and Twitter, we observed that about 70 percent
of the total garbage-collection work is performed during
idle time.

The memory reducer kicks in when web pages become

12 of 18

http://oortonline.gl/#run

acmqueue | may-june 2016 47

performance

inactive. Figure 4 shows an example run of Chrome with
and without the memory reducer on the Google Web
Search page. In the first few seconds both versions use
the same amount of memory as the web page loads and
allocation rate is high. After a while the web page becomes
inactive since the page has loaded and there is no user
interaction. Once the memory reducer detects that the
page is inactive, it starts a major garbage collection. At
that point the graphs for the baseline and the memory
reducer diverge. After the web page becomes inactive,
the memory usage of Chrome with the memory reducer
decreases to 34 percent of the baseline.

A detailed description of how to run the experiments
presented here to reproduce these results can be found

co
m

pa
ris

on
 to

 b
as

el
in

e
(lo

w
er

 is
 b

et
te

r)

1

0

0.2

0.4

0.6

0.8

1.2

1.4

frame time
discrepancy

frame
time

missed
frames due

to GC

total
GC time

FIGURE 3: Improvements to the oortonline.gl benchmark

13 of 18

3

acmqueue | may-june 2016 48

performance

in the 2016 PLDI (Programming Language Design and
Implementation) artifact evaluation document.2

OTHER IDLE-TIME GARBAGE-COLLECTED SYSTEMS
A comprehensive overview of garbage collectors taking
advantage of idle times is available in a previous article.4
The authors classify different approaches in three
categories: slack-based systems where the garbage
collector is run when no other task in the system is active;
periodic systems where the garbage collector is run at
predefined time intervals for a given duration; and hybrid
systems taking advantage of both ideas. The authors
found that, on average, hybrid systems provide the best
performance, but some applications favor a slack-based or
periodic system.

time (seconds)

m
em

or
y

us
ag

e
(M

B)
 (l

ow
er

 is
 b

et
te

r)
100

120

80

60

40

20

0

baseline
memory reducer

0 20 40 60 80 100

FIGURE 4: Memory usage Comparison

14 of 18

4

acmqueue | may-june 2016 49

performance

Our approach of idle-time garbage-collection
scheduling is different. Its main contribution is that
it profiles the application and garbage-collection
components to predict how long garbage-collection
operations will take and when the next minor or major
collection will occur as a result of application allocation
throughput. That information allows efficient scheduling of
garbage-collection operations during idle times to reduce
jank while providing high throughput.

CONCURRENT, PARALLEL, INCREMENTAL
GARBAGE COLLECTION
An orthogonal approach to avoid garbage-collection
pauses while executing an application is achieved by
making garbage-collection operations concurrent,
parallel, or incremental. Making the marking phase or the
compaction phase concurrent or incremental typically
requires read or write barriers to ensure a consistent
heap state. Application throughput may degrade because
of expensive barrier overhead and code complexity of the
virtual machine.

Idle-time garbage-collection scheduling can be
combined with concurrent, parallel, and incremental
garbage-collection implementations. For example,
V8 implements incremental marking and concurrent
sweeping, which may also be performed during idle time to
ensure fast progress. Most importantly, costly memory-
compaction phases such as young-generation evacuation
or old-generation compaction can be efficiently hidden
during idle times without introducing costly read or write
barrier overheads.

15 of 18

acmqueue | may-june 2016 50

performance

For a best-effort system, where hard realtime deadlines
do not have to be met, idle-time garbage-collection
scheduling may be a simple approach to provide both high
throughput and low jank.

BEYOND GARBAGE COLLECTION AND CONCLUSIONS

I
dle-time garbage-collection scheduling focuses on the
user’s expectation that a system that renders at 60
frames per second appears silky smooth. As such, our
definition of idleness is tightly coupled to on-screen
rendering signals. Other applications can also benefit

from idle-time garbage-collection scheduling when an
appropriate definition of idle time is applied. For example, a
node.js-based server that is built on V8 could forward idle-
time periods to the V8 garbage collector while it waits for
a network connection.

The use of idle time is not limited to garbage collection.
It has been exposed to the web platform in the form of
the requestIdleCallback API,5 enabling web pages to
schedule their own callbacks to be run during idle time. As
future work, other management tasks of the JavaScript
engine could be executed during idle time (e.g., compiling
code with the optimizing just-in-time compiler that would
otherwise be performed during JavaScript execution).

References
1. Degenbaev, U., Eisinger, J., Ernst, M., McIlroy, R., Payer,

H. 2016. Idle time garbage collection scheduling. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation.

2. Degenbaev, U., Eisinger, J., Ernst, M., McIlroy, R., Payer, H.

16 of 18

acmqueue | may-june 2016 51

performance

2016. Idle time garbage collection scheduling; PLDI’16,
June 13–17, 2016, Santa Barbara, CA, USA ACM. 978-1-
4503-4261-2/16/06, pages 570-583

3. Google Inc. The RAIL performance model; http://
developers.google.com/web/tools/chrome-devtools/
profile/evaluate-performance/rail.

4. Kalibera, T., Pizlo, F., Hosking, A. L., Vitek, J. 2011.
Scheduling real-time garbage collection on
uniprocessors. ACM Transactions on Computer Systems
29(3): 8:1–8:29.

5. McIlroy. R. 2016. Cooperative scheduling of background
tasks. W3C editor’s draft; https://w3c.github.io/
requestidlecallback/.

6. Ungar, D. 1984. Generation scavenging: a nondisruptive
high-performance storage reclamation algorithm.
In Proceedings of the 1st ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments (SDE 1).

Ulan Degenbaev is a software engineer at Google, working
on the garbage collector of the V8 JavaScript engine. He
received his master’s degree and a Ph.D in computer science
from Saarland University, where he worked on formal
specifications and software verification.

Jochen Eisinger is a software engineer at Google, working on
the V8 JavaScript engine and Chrome security. Prior to that,
he worked on various other parts of Chrome. Before joining
Google, he was a postdoc fellow at the University of British
Columbia Vancouver. He received his Diplom degree and a Ph.D
in computer science from the University of Freiburg, Germany.

17 of 18

http://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
http://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
http://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
https://w3c.github.io/requestidlecallback/
https://w3c.github.io/requestidlecallback/

acmqueue | may-june 2016 52

performance

Manfred Ernst is a software engineer at Google, where he
works on virtual reality. Prior to that, he integrated a GPU
rasterization engine into the Chrome web browser. Before
joining Google, Ernst was a research scientist at Intel Labs,
where he led the development of the Embree ray tracing
kernels. He was also a cofounder and the CEO of Bytes+Lights,
a start-up company that developed visualization tools for
the automotive industry. He received his Diplom degree and
a Ph.D in computer science from the University of Erlangen-
Nuremberg.

Ross McIlroy is a software engineer at Google and tech lead
of V8’s interpreter effort. He previously worked on Chrome’s
scheduling subsystem and mobile optimization efforts. Before
joining Google, McIlroy worked on various operating-system
and virtual-machine research projects, including Singularity,
Helios, Barrelfish, and HeraJVM. He received his Ph.D in
computing science from the University of Glasgow, where he
worked on heterogeneous multicore virtual machines.

Hannes Payer is a software engineer at Google, tech lead of
the V8 JavaScript garbage collection effort, and a virtual-
machine enthusiast. Prior to V8, Hannes worked on Google’s
Dart virtual machine and various Java virtual machines. He
received a Ph.D from the University of Salzburg, where he
worked on multicore scalability of concurrent objects and was
the principal investigator of the Scal project.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

18 of 18

CONTENTS2

acmqueue | may-june 53

research for practiceRFP

I
am thrilled to introduce our second installment of
Research for Practice, which provides highlights from
two critical areas in storage and large-scale services:
distributed consensus and nonvolatile memory.

First, how do large-scale distributed systems
mediate access to shared resources, coordinate updates
to mutable state, and reliably make decisions in the
presence of failures? Camille Fournier, a seasoned and
experienced distributed-systems builder (and ZooKeeper
PMC), has curated a fantastic selection on distributed
consensus in practice. The history of consensus echoes
many of the goals of RfP: for decades the study and use of
consensus protocols were considered notoriously difficult
to understand and remained primarily academic concerns.
As a result, these protocols were largely ignored by
industry. The rise of Internet-scale services and demands
for automated solutions to cluster management, failover,
and sharding in the 2000s finally led to the widespread
practical adoption of these techniques. Adoption proved
difficult, however, and the process in turn led to new
(and ongoing) research on the subject. The papers in this
selection highlight the challenges and the rewards of

Expert-curated
Guides to
the Best of
CS Research

1 of 15
TEXT
ONLY

Distributed Consensus and
Implications of NVM on
Database Management Systems

RFP

Research for Practice
combines the resources

of the ACM Digital
Library, the largest

collection of computer
science research in
the world, with the

expertise of the ACM
membership. In every

RfP column two experts
share a short curated

selection of papers on a
concentrated, practically

oriented topic.

acmqueue | may-june 54

research for practiceRFP

making the theory of consensus practical—both in theory
and in practice.

Second, while consensus concerns distributed
shared state, our second selection concerns the impact
of hardware trends on single-node shared state. Joy
Arulaj and Andy Pavlo provide a whirlwind tour of the
implications of NVM (nonvolatile memory) technologies
on modern storage systems. NVM promises to overhaul
the traditional paradigm that stable storage (i.e., storage
that persists despite failures) be block-addressable (i.e.,
requires reading and writing in large chunks). In addition,
NVM’s performance characteristics lead to entirely
different design trade-offs than conventional storage
media such as spinning disks.

As a result, there is an arms race to rethink software
storage-systems architectures to accommodate these
new characteristics. This selection highlights projected
implications for recovery subsystems, data-structure
design, and data layout. While the first NVM devices have
yet to make it to market, these pragmatically oriented
citations from the literature hint at the volatile effects of
nonvolatile media on future storage systems.

I believe these two excellent contributions fulfill RfP’s
goal of allowing you, the reader, to become an expert in
a weekend afternoon’s worth of reading. To facilitate this
process, as always, we have provided open access to the
ACM Digital Library for the relevant citations from these
selections so you can enjoy these research results in their
full glory. Keep on the lookout for our next installment, and
please enjoy! —Peter Bailis

2 of 15

acmqueue | may-june 55

research for practiceRFP

DISTRIBUTED CONSENSUS

BY CAMILLE FOURNIER

A
s Lamport predicted in this quote, the real
challenges of distributed computing—not just
communicating via a network, but communicating
to unknown nodes in a network—have greatly
intensified in the past 15 years. With the incredible

scaling of modern systems, “we have found ourselves in
a world where answering the question, what is running
where?” is increasingly difficult. Yet, we continue to have
requirements that certain data never be lost and that
certain actions behave in a consistent and predictable
fashion, even when some nodes of the system may fail. To
that end, there has been a rapid adoption of systems that
rely on consensus protocols to guarantee this consistency
in a widely distributed world.

The three papers included in this selection address the
real world of consensus systems: Why are they needed? Why
are they difficult to understand? What happens when you try
to implement them? Is there an easier way, something that
more developers can understand and therefore implement?

The first two papers discuss the reality of implementing
Paxos-based consensus systems at Google, focusing
first on the challenges of correctly implementing Paxos
itself, and second on the challenges of creating a system
based on a consensus algorithm that provides useful
functionality for developers. The final paper attempts to
answer the question, is there an easier way? by introducing
Raft, a consensus algorithm designed to be easier for
developers to understand.

3 of 15

“A distributed system
is one in which the

failure of a computer
you didn’t know existed

can render your own
computer unusable.”

—Leslie Lamport

acmqueue | may-june 56

research for practiceRFP

Theory Meets Reality
Chandra, T. D., Griesemer, R., Redstone, J. et al. 2007. Paxos
made live—an engineering perspective. Proceedings of the
26th Annual ACM Symposium on Principles of Distributed
Computing: 398-407.
http://queue.acm.org/rfp/vol14iss3.html

Paxos as originally stated is a page of pseudocode. The
complete implementation of Paxos inside of Google’s
Chubby lock service is several thousand lines of C++. What
happened? “Paxos Made Live” documents the evolution of
the Paxos algorithm from theory into practice.

The basic idea of Paxos is to use voting by replicas with
consistent storage to ensure that, even in the presence of
failures, there can be a unilateral consensus. This requires
a coordinator be chosen, proposals sent and voted upon,
and finally a commit recorded. Generally, systems record
a series of these consensus values to a sequence log.
This log-based variant is called multi-Paxos, which is less
formally specified.

In creating a real system, durable logs are written
to disks, which have finite capacity and are prone to
corruption that must be detected and taken into account.
The algorithm must be run on machines that can fail, and
to make it operable at scale you need to be able to change
group membership dynamically. While the system was
expected to be fault-tolerant, it also needed to perform
quickly enough to be useful; otherwise, developers would
work around it and create incorrect abstractions. The team
details their efforts to make sure the core algorithm is
expressed correctly and is testable, but even with these

4 of 15

http://queue.acm.org/rfp/vol14iss3.html

acmqueue | may-june 57

research for practiceRFP

conscious efforts, the need for performance optimizations,
concurrency, and multiple developers working on the
project still means that the final system is ultimately
an extended version of Paxos, which is difficult to prove
correct.

Hell is Other Programmers
Burrows, M. 2006. The Chubby lock service for loosely
coupled distributed systems. Proceedings of the
Seventh Symposium on Operating Systems Design and
Implementation: 335-350.
http://queue.acm.org/rfp/vol14iss3.html

While “Paxos Made Live” discusses the implementation
of the consensus algorithm in detail, this paper about
the Chubby lock service examines the overall system
built around this algorithm. As research papers go, this
one is a true delight for the practitioner. In particular, it
describes designing a system and then evolving that design
after it comes into contact with real-world usage. This
paper should be required reading for anyone interested
in designing and developing core infrastructure software
that is to be offered as a service.

Burrows begins with a discussion of the design
principles chosen as the basis for Chubby. Why make it a
centralized service instead of a library? Why is it a lock
service, and what kind of locking is it used for? Chubby not
only provides locks, but also serves small files to facilitate
sharing of metadata about distributed system state for
its clients. Given that it is serving files, how many clients

5 of 15

http://queue.acm.org/rfp/vol14iss3.html

acmqueue | may-june 58

research for practiceRFP

should Chubby expect to support, and what will that mean
for the caching and change notification needs?

After discussing the details of the design, system
structure, and API, Burrows gets into the nitty-gritty of
the implementation. Building a highly sensitive centralized
service for critical operations such as distributed locking
and name resolution turns out to be quite difficult. Scaling
the system to tens of thousands of clients meant being
smart about caching and deploying proxies to handle
some of the load. The developers misused and abused the
system by accident, using features in unpredictable ways,
attempting to use the system for large data storage or
messaging. The Chubby maintainers resorted to reviewing
other teams’ planned uses of Chubby and denying access
until review was satisfied. Through all of this we can see
that the challenge in building a consensus system goes
far beyond implementing a correct algorithm. We are still
building a system and must think as carefully about its
design and the users we will be supporting.

Can We Make This Easier?
Ongaro, D., Ousterhout, J. 2014. In search of an
understandable consensus algorithm. Proceedings of the
Usenix Annual Technical Conference: 305-320.
https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

Finally we come to the question, have we built ourselves
into unnecessary complexity by taking it on faith that
Paxos and its close cousins are the only way to implement

6 of 15

acmqueue | may-june 59

research for practiceRFP

consensus? What if there were an algorithm that we could
also show to be correct but was designed to be easier for
people to comprehend and implement correctly?

Raft is a consensus algorithm written for managing a
replicated log but designed with the goal of making the
algorithm itself more understandable than Paxos. This is
done both by decomposing the problem into pieces that
can be implemented and understood independently and by
reducing the number of states that are valid for the system
to hold.

Consensus is decomposed into issues of leader
election, log replication, and safety. Leader election uses
randomized election timeouts to reduce the likelihood of
two candidates for leader splitting the vote and requiring
a new round of elections. It allows candidates for leader
to be elected only if they have the most up-to-date logs.
This prevents the need for transferring data from follower
to leader upon election. If a follower’s log does not match
the expected state for a new entry, the leader will replay
entries from earlier in its log until it reaches a point at
which the logs match, thus correcting the follower. This
also means that a history of changes is stored in the
logs, providing a side value of letting clients read (some)
historical entries, should they desire.

The authors then show that after teaching a set of
students both Paxos and Raft, the students were quizzed
on their understanding of each and scored meaningfully
higher on the Raft quiz. Looking around the current state of
consensus systems in industry, we can see this play out in
another way: namely, several new consensus systems have

7 of 15

acmqueue | may-june 60

research for practiceRFP

been created since 2014 based on Raft, where previously
there were very few reliable and successful open-source
systems based on Paxos.

Bottlenecks, Single Points of Failure, and Consensus
Developers are often tempted to use a centralized
consensus system to serve as the system of record for
distributed coordination. Explicit coordination can make
certain problems much easier to reason about and correct
for; however, that puts the consensus system in the
position of the bottleneck or critical point of failure for the
other systems that rely on it to make progress. As we can
see from these papers, making a centralized consensus
system production-ready can come at the cost of adding
optimizations and recovery mechanisms that were not
dreamed of in the original Paxos literature.

What is the way forward? Arguably, writing systems
that do not rely on centralized consensus brokers to
operate safely would be the best option, but we are still
in the early days of coordination-avoidance research
and development. While we wait for more evolution
on that front, Raft provides an interesting alternative,
an algorithm designed for readability and general
understanding. The impact of having an easier algorithm to
implement is already being felt, as far more developers are
embedding Raft within distributed systems and building
specifically tailored Raft-based coordination brokers.
Consensus remains a tricky problem—but one that is finally
seeing a diversity of approaches to reaching a solution.

8 of 15

acmqueue | may-june 61

research for practiceRFP

IMPLICATIONS OF NVM ON
DATABASE MANAGEMENT SYSTEMS

BY JOY ARULRAJ AND ANDREW PAVLO

T
he advent of NVM (nonvolatile memory) will
fundamentally change the dichotomy between
memory and durable storage in a DBMS (database
management system). NVM is a broad class of
technologies—including phase-change memory,

memristors, and STT-MRAM (spin-transfer torque-
magnetoresistive random-access memory)—that provide
low-latency reads and writes on the same order of
magnitude as DRAM (dynamic random-access memory),
but with persistent writes and large storage capacity like
an SSD (solid-state drive). Unlike DRAM, writes to NVM are
expected to be more expensive than reads. These devices
also have limited write endurance, which necessitates
fewer writes and wear-leveling to increase their lifetimes.

The first NVM devices released will have the same form
factor and block-oriented access as today’s SSDs. Thus,
today’s DBMSes will use this type of NVM as a faster drop-
in replacement for their current storage hardware.

By the end of this decade, however, NVM devices will
support byte-addressable access akin to DRAM. This will
require additional CPU architecture and operating-system
support for persistent memory. This also means that
existing DBMSes are unable to take full advantage of NVM
because their internal architectures are predicated on
the assumption that memory is volatile. With NVM, many
of the components of legacy DBMSes are unnecessary

9 of 15

acmqueue | may-june 62

research for practiceRFP

and will degrade the performance of data-intensive
applications.

We have selected three papers that focus on how the
emergence of byte-addressable NVM technologies will
impact the design of DBMS architectures. The first two
present new abstractions for performing durable atomic
updates on an NVM-resident database and recovery
protocols for an NVM DBMS. The third paper addresses
the write-endurance limitations of NVM by introducing a
collection of write-limited query-processing algorithms.
Thus, this selection contains novel ideas that can help
leverage the unique set of attributes of NVM devices
for delivering the features required by modern data-
management applications. The common theme for these
papers is that you cannot just run an existing DBMS on
NVM and expect it to leverage its unique set of properties.
The only way to achieve that is to come up with novel
architectures, protocols, and algorithms that are tailor-
made for NVM.

ARIES Redesigned for NVM
Coburn, J., et al. 2013. From ARIES to MARS: transaction
support for next-generation, solid-state drives. Proceedings
of the 24th ACM Symposium on Operating Systems Principles:
197-212.
http://queue.acm.org/rfp/vol14iss3.html

ARIES is considered the standard for recovery protocols
in a transactional DBMS. It has two key goals: first,
it provides an interface for supporting scalable ACID

10 of 15

http://queue.acm.org/rfp/vol14iss3.html

acmqueue | may-june 63

research for practiceRFP

(atomicity, consistency, isolation, durability) transactions;
second, it maximizes performance on disk-based storage
systems. In this paper, the authors focus on how ARIES
should be adapted for NVM-based storage.

Since random writes to the disk whenever a transaction
updates the database obviously decrease performance,
ARIES requires that the DBMS first record a log entry in
the write-ahead log (a sequential write) before updating
the database itself (a random write). It adopts a no-force
policy wherein the updates are written to the database
lazily after the transaction commits. Such a policy
assumes that sequential writes to nonvolatile storage
are significantly faster than random writes. The authors,
however, demonstrate that this is no longer the case with
NVM.

The MARS protocol proposes a new hardware-assisted
logging primitive that combines multiple writes to
arbitrary storage locations into a single atomic operation.
By leveraging this primitive, MARS eliminates the need for
an ARIES-style undo log and relies on the NVM device to
apply the redo log at commit time. We are particularly fond
of this paper because it helps in better appreciating the
intricacies involved in designing the recovery protocol in a
DBMS for guarding against data loss.

Near-Instantaneous Recovery Protocols
Arulraj, J., Pavlo, A., Dulloor, S. R. 2015. Let’s talk about
storage and recovery methods for nonvolatile memory
database systems. Proceedings of the ACM SIGMOD
International Conference on Management of Data: 707-722.
http://queue.acm.org/rfp/vol14iss3.html

11 of 15

http://queue.acm.org/rfp/vol14iss3.html

acmqueue | may-june 64

research for practiceRFP

This paper takes a different approach to performing
durable atomic updates on an NVM-resident database than
the previous paper. In ARIES, during recovery the DBMS
first loads the most recent snapshot. It then replays the
redo log to ensure that all the updates made by committed
transactions are recovered. Finally, it uses the undo log to
ensure that the changes made by incomplete transactions
are not present in the database. This recovery process can
take a lot of time, depending on the load on the system and
the frequency with which snapshots are taken. Thus, this
paper explores whether it is possible to leverage NVM’s
properties to speed up recovery from system failures.

The authors present a software-based primitive
called a nonvolatile pointer. When a pointer points to
data residing on NVM, and is itself stored on NVM, then
it will remain valid even after the system recovers from
a power failure. Using this primitive, the authors design a
library of nonvolatile data structures that support durable
atomic updates. They propose a recovery protocol that, in
contrast to MARS, obviates the need for an ARIES-style
redo log. This enables the system to skip replaying the redo
log, and thereby allows the NVM DBMS to recover the
database almost instantaneously.

Both papers propose recovery protocols that target an
NVM-only storage hierarchy. The generalization of these
protocols to a multitier storage hierarchy with both DRAM
and NVM is a hot topic in research today.

12 of 15

acmqueue | may-june 65

research for practiceRFP

Trading Expensive Writes for Cheaper Reads
Viglas, S. D. 2014. Write-limited sorts and joins for persistent
memory. Proceedings of the VLDB Endowment 7(5): 413-424.
http://www.vldb.org/pvldb/vol7/p413-viglas.pdf

The third paper focuses on the higher write costs and
limited write-endurance problems of NVM. For several
decades algorithms have been designed for the random-
access machine model where reads and writes have the
same cost. The emergence of NVM devices, where writes
are more expensive than reads, opens up the design space
for new write-limiting algorithms. It will be fascinating
to see researchers derive new bounds on the number of
writes that different kinds of query-processing algorithms
must perform.

Viglas presents a collection of novel query-processing
algorithms that minimize I/O by trading off expensive
NVM writes for cheaper reads. One such algorithm is the
segment sort. The basic idea is to use a combination of two
sorting algorithms—external merge sort and selection
sort—that splits the input into two segments that are
then processed using a different algorithm. The selection-
sort algorithm uses extra reads, and writes out each
element in the input only once at its final location. By using
a combination of these two algorithms, the DBMS can
optimize both the performance and the number of NVM
writes.

Game Changer for DBMS Archtectures
NVM is a definite game changer for future DBMS
architectures. It will require system designers to rethink

13 of 15

acmqueue | may-june 66

research for practiceRFP

many of the core algorithms and techniques developed
over the past 40 years. Using these new storage devices
in the manner prescribed by these papers will allow
DBMSes to achieve better performance than what is
possible with today’s hardware for write-heavy database
applications. This is because these techniques are designed
to exploit the low-latency read/writes of NVM to enable
a DBMS to store less redundant data and incur fewer
writes. Furthermore, we contend that existing in-memory
DBMSes are better positioned to use NVM when it is
finally available. This is because these systems are already
designed for byte-addressable access methods, whereas
legacy disk-oriented DBMSes will require laborious
and costly overhauls in order to use NVM correctly, as
described in these papers.

Peter Bailis is an assistant professor of computer science at
Stanford University. His research in the Future Data Systems
group (http://futuredata.stanford.edu/) focuses on the design
and implementation of next-generation data-intensive
systems. He received a Ph.D. from UC Berkeley in 2015 and an
A.B. from Harvard in 2011, both in computer science.

Camille Fournier is a writer, speaker, and entrepreneur.
Formerly the CTO of Rent the Runway, she serves on
the technical oversight committee for the Cloud Native
Computing Foundation, as a Project Management Committee
member of the Apache ZooKeeper project, and a project
overseer of the Dropwizard web framework. She has an M.S.
from the University of Wisconsin-Madison and a B.S. from

14 of 15

acmqueue | may-june 67

research for practiceRFP

Carnegie Mellon University. You can find more of her writing
at elidedbranches.com.

Joy Arulraj is a Ph.D. candidate at Carnegie Mellon University.
He is interested in the design and implementation of next-
generation database management systems, particularly in
the areas of realtime data analytics, self-driving modules, and
adoption of nonvolatile memory technologies. He earned an
M.S. in computer sciences from the University of Wisconsin,
Madison, and received a B.E. in computer science and
engineering from the College of Engineering, Guindy. He is a
recipient of the 2016 Samsung Ph.D. Fellowship.

Andy Pavlo is an assistant professor of databaseology in the
computer science department at Carnegie Mellon University.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

15 of 15

CONTENTS2

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE. STAY CONNECTED.
KEEP INVENTING.

http://elidedbranches.com/

acmqueue | may-june 2016 68

development

P
rofessional programming is about dealing with
software at scale. Everything is trivial when the
problem is small and contained: it can be elegantly
solved with imperative programming or functional
programming or any other paradigm. Real-world

challenges arise when programmers have to deal with
large amounts of data, network requests, or intertwined
entities, as in UI (user interface) programming.

Of these different types of challenges, managing the
dynamics of change in a code base is a common one that
may be encountered in either UI programming or the back
end. How to structure the flow of control and concurrency
among multiple parties that need to update one another
with new information is referred to as managing change.
In both UI programs and servers, concurrency is typically
present and is responsible for most of the challenges and
complexity.

Tame the
dynamics of
change by
centralizing
each concern in
its own module

ANDRE MEDEIROS

1 of 15 TEXT
ONLY

Why Reactivity
Matters

Dynamics
 of Change:

acmqueue | may-june 2016 69

development

Some complexity is accidental and can be removed.
Managing concurrent complexity becomes difficult when
the amount of essential complexity is large. In those cases,
the interrelation between the entities is complex—and
cannot be made less so. For example, the requirements
themselves may already represent essential complexity.
In an online text editor, the requirements alone may
determine that a keyboard input needs to change the view,
update text formatting, perhaps also change the table of
contents, word count and paragraph count, request the
document to be saved, and take other actions.

Because essential complexity cannot be eliminated, the
alternative is to make it as understandable as possible,
which leads to making it maintainable. When it comes to
complexity of change around some entity Foo, you want to
understand what Foo changes, what can change Foo, and
which part is responsible for the change.

HOW CHANGE PROPAGATES FROM
ONE MODULE TO ANOTHER
Figure 1 is a data flow chart for a code base of e-commerce
software, where rectangles represent modules and
arrows represent communication. These modules are
interconnected as requirements, not as architectural
decisions. Each module may be an object, an object-
oriented class, an actor, or perhaps a thread, depending on
the programming language and framework used.

An arrow from the Cart module to the Invoice module
(figure 2a) means that the cart changes or affects the
state in the invoice in a meaningful way. A practical
example of this situation is a feature that recalculates the

2 of 15

acmqueue | may-june 2016 70

development

total invoicing amount whenever a new product is added to
the cart (figure 2b).

The arrow starts in the Cart and ends in the Invoice
because an operation internal to the Cart may cause the
state of the Invoice to change. The arrow represents the
dynamics of change between the Cart and the Invoice.

Assuming that all code lives in some module, the arrow

3 of 15

M
anaging
concurrent
complexity
becomes
difficult

when the amount
of essential
complexity is
large.

product

cart invoice

coupon user profile

vendor

payment

sale

FIGURE 1: Data flow for a codebase of an e-commerce software

cart

when a new
product is added...

(a)

...update the total
amount charged

invoice

cart

(b)

invoice

FIGURE 2: The Cart changes the Invoice

1

2

acmqueue | may-june 2016 71

development

cannot live in the space between; it must live in a module,
too. Is the arrow defined in the Cart or in the Invoice? It is
up to the programmer to decide that.

Passive Programming
It is common to place the arrow definition in the arrow
tail: the cart. Code in the Cart that handles the addition
of a new product is typically responsible for triggering
the Invoice to update its invoicing data, as demonstrated
in the chart and the Kotlin (https://kotlinlang.org/) code
snippet in figure 3.

The Cart assumes a proactive role, and the Invoice

4 of 15

cart invoice

fun addProduct(product: Product) {
 // ...
 Invoice.updateInvoicing(product)
}

package my.project

import my.project.Invoice

public object Cart {
 fun addProduct(product: Product) {
 // ...

 Invoice.updateInvoicing(product)
 }
}

FIGURE 3: Passive programming with code in tail

3

https://kotlinlang.org/

acmqueue | may-june 2016 72

development

takes a passive role. While the Cart is responsible for
the change and keeping the Invoice state up to date, the
Invoice has no code indicating that the update is coming
from the Cart. Instead, it must expose updateInvoicing
as a public method. On the other hand, the cart has no
access restrictions; it is free to choose whether the
ProductAdded event should be private or public.

Let’s call this programming style passive programming,
characterized by remote imperative changes and
delegated responsibility over state management.

Reactive Programming
The other way of defining the arrow’s ownership is

reactive programming, where the arrow is defined at
the arrow head: the Invoice, as shown in figure 4. In this
setting, the Invoice listens to a ProductAdded event
happening in the cart and determines that it should change
its own internal invoicing state.

The Cart now assumes a broadcasting role, and the
Invoice takes a reactive role. The Cart’s responsibility is
to carry out its management of purchased products, while
providing notification that a product has been added or
removed.

Therefore, the Cart has no code that explicitly indicates
that its events may affect the state in the Invoice. On
the other hand, the Invoice is responsible for keeping
its own invoicing state up to date and has the Cart as a
dependency.

The responsibilities are now inverted, and the Invoice
may choose to have its updateInvoicing method private
or public, but the Cart must make the ProductAdded

5 of 15

acmqueue | may-june 2016 73

development

event public. Figure 5 illustrates this duality.
The term reactive was vaguely defined in 1989 by Gérard

Berry.1 The definition given here is broad enough to cover
existing notions of reactive systems such as spreadsheets,
the actor model, Reactive Extensions (Rx), event streams,
and others.

6 of 15

cart invoice

Cart.onProductAdded { product ->
 this.updateInvoicing(product)
}

package my.project

import my.project.Cart

public object Invoice {
 fun updateInvoicing(product: Product) {
 // ...
 }

 fun setup() {
 Cart.onProductAdded { product ->
 this.updateInvoicing(product)
 }
 }
}

FIGURE 4: Reactive programming with code in head

FIGURE 5: Public vs. private

Programming “Product added” event in the Cart Update invoicing data method in the Invoice

Passive private or public public

Reactive public private or public

4

5

acmqueue | may-june 2016 74

development

PASSIVE VERSUS REACTIVE FOR MANAGING
ESSENTIAL COMPLEXITY
In the network of modules and arrows for communication
of change, where should the arrows be defined? When
should reactive programming be used and when is the
passive pattern more suitable?

There are usually two questions to ask when trying to
understand a complex network of modules:

3 Which modules does module X change?
3 Which modules can change module X?
The answers depend on which approach is used:

reactive or passive, or both. Let’s assume, for simplicity,
that whichever approach is chosen, it is applied uniformly
across the architecture.

For example, consider the network of e-commerce
modules shown in figure 6, where the passive pattern is
used everywhere.

To answer the first question for the Invoice module
(Which modules does the invoice change?), you need only
to look at the code in the Invoice module, because it owns
the arrows and defines how other modules are remotely
changed from within the Invoice as a proactive component.

7 of 15

cart invoice

coupon payment

sale

FIGURE 6: Frequent Passive pattern

6

acmqueue | may-june 2016 75

development

To discover which modules can change the state of the
Invoice, however, you need to look for all the usages of
public methods of the Invoice throughout the code base.

In practice, this becomes hard to maintain when multiple
other modules may change the Invoice, which is the case
in essentially complex software. It may lead to situations
where the programmer has to build a mental model of how
multiple modules concurrently modify a piece of state in
the module in question. The opposite alternative is to apply
the reactive pattern everywhere, illustrated in figure 7.

To discover which modules can change the state of
the Invoice, you can just look at the code in the Invoice
module, because it contains all “arrows” that define
dependencies and dynamics of change. Building the mental
model of concurrent changes is easier when all relevant
entities are co-located.

On the other hand, the dual concern of discovering
which other modules the Invoice affects can be answered
only by searching for all usages of the Invoice module’s
public broadcast events.

8 of 15

cart invoice

coupon payment

sale

FIGURE 7: Frequent Reactive pattern

7

acmqueue | may-june 2016 76

development

When arranged in a table, as in figure 8, these described
properties for passive and reactive are dual to each other.

The pattern you choose depends on which of these
two questions is more commonly on a programmer’s mind
when dealing with a specific code base. Then you can pick
the pattern whose answer to the most common question
is “look inside,” because you want to be able to find the
answer quickly. A centralized answer is better than a
distributed one.

While both questions are important in an average
code base, a more common need may be knowing how a
particular module works. This is why reactivity matters:
you usually need to know how a module works before
looking at what the module affects.

Because a passive-only approach generates
irresponsible modules (they delegate their state
management to other modules), a reactive-only approach
is a more sensible default choice. That said, the passive
pattern is suitable for data structures and for creating a
hierarchy of ownership. Any common data structure (such
as a hash map) in object-oriented programming is a passive
module, because it exposes methods that allow changing
its internal state. Because it delegates the responsibility
of answering the question “When does it change?” to
whichever module contains the data-structure object, it

9 of 15

Passive Reactive

How does it work? Find usages Look inside

What does it affect? Look inside Find usages

FIGURE 8: Dual properties8

acmqueue | may-june 2016 77

development

creates a hierarchy: the containing module as the parent
and the data structure as the child.

MANAGING DEPENDENCIES AND OWNERSHIP
With the reactive-only approach, every module must
statically define its dependencies to other modules. In
the Cart and Invoice example, Invoice would need to
statically import Cart. Because this applies everywhere,
all modules would have to be singletons. In fact, Kotlin’s
object keyword is used (in Scala as well) to create
singletons.

In the reactive example in figure 9, there are two
concerns regarding dependencies:

10 of 15

package my.project

import my.project.Cart // This is a singleton

public object Invoice { // This is a singleton too
 fun updateInvoicing(product: Product) {
 // ...
 }

 fun setup() {
 Cart.onProductAdded { product ->
 this.updateInvoicing(product)
 }
 }
}

FIGURE 9: Reactive-only approach9

acmqueue | may-june 2016 78

development

3 What the dependency is: defined by the import
statement.

3 How to depend: defined by the event listener.
The problem with singletons as dependencies relates

only to the what concern in the reactive pattern. You would
still like to keep the reactive style of how dependencies
are put together, because it appropriately answers the
question, “How does the module work?”

While reactive, the module being changed is statically
aware of its dependencies through imports; while passive,
the module being changed is unaware of its dependencies.

So far, this article has analyzed the passive-only
and reactive-only approaches, but in between lies the
opportunity for mixing both paradigms: keeping only
the how benefit from reactive, while using passive
programming to implement the what concern.

The Invoice module can be made passive with
regard to its dependencies: it exposes a public method
to allow another module to set or inject a dependency.
Simultaneously, Invoice can be made reactive with regard
to how it works. This is shown in the example code in figure
10, which yields a hybrid passively reactive solution:
3 How does it work? Look inside (reactive).
3 What does it depend on? Injected via a public method

(passive).
This would help make modules more reusable, because

they are not singletons anymore. Let’s look at another
example where a typical passive setting is converted to a
passively reactive one.

11 of 15

acmqueue | may-june 2016 79

development

EXAMPLE: ANALYTICS EVENTS
It is common to write the code for a UI program in passive-
only style, where each different screen or page of the
program uses the public methods of an Analytics module
to send events to an Analytics back end. The example
code in figure 11 illustrates this.

The problem with building a passive-only solution for
analytics events is that every single page needs to have
code related to analytics. Also, to understand the behavior
of analytics, you must study it scattered throughout the
code. It’s desirable to separate the analytics aspect from
the core features and business logic concerning a page

12 of 15

FIGURE 10: a hybrid Passively Reactive solution

package my.project

public object Invoice {
 fun updateInvoicing(product: Product) {
 // ...
 }

 private var cart: Cart? = null

 public fun setCart(cart: Cart) {
 this.cart = cart
 cart.onProductAdded { product ->
 this.updateInvoicing(product)
 }
 }
}

10

acmqueue | may-june 2016 80

development

such as the LoginPage. Aspect-oriented programming2
is one attempt at solving this, but it is also possible to
separate aspects through reactive programming with
events.

In order to make the code base reactive only, the
Analytics module would need to statically depend on
all the pages in the program. Instead, you can use the
passively reactive solution to make the Analytics module
receive its dependencies through a public injection method.
This way, a parent module that controls routing of pages

13 of 15

FIGURE 11: Passive-only approach

// In the LoginPage module
package my.project

import my.project.Analytics

val loginButton = //...
loginButton.addClickListener { clickEvent ->
 Analytics.sendEvent('User clicked the login button')
}

analytics

ProfilePageLoginPage FrontPage

11

acmqueue | may-june 2016 81

development

can also bootstrap the analytics with information on those
pages. See the example in figure 12.

MIND THE ARROWS
Introducing reactive patterns in an architecture can
help better define which module owns a relationship of
change between two modules. Software architectures

14 of 15

analytics

ProfilePage

parent

LoginPage FrontPage

// In the Analytics module
package my.project

public object Analytics {
 public fun inject(loginPage: Page) {
 loginPage.loginButton.addClickListener { clickEvent ->
 this.sendEvent('User clicked the login button')
 }
 }

 private fun sendEvent(eventMessage: String) {
 // ...
 }
}

FIGURE 12: Public injection method12

acmqueue | may-june 2016 82

development

for essential complex requirements are often about
structuring the code in modules, but do not forget that
the arrows between modules also live in modules. Some
degree of reactivity matters because it creates separation
of concerns. A particular module should be responsible for
its own state. This is easily achievable in an event-driven
architecture, where modules do not invasively change each
other. Tame the dynamics of change by centralizing each
concern in its own module.

References
1. Berry, G. 1989. Real time programming: special purpose

or general purpose languages. [Research Report]
RR-1065. INRIA (French Institute for Research in
Computer Science and Automation); https://hal.inria.fr/
inria-00075494/document.

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. M., Irwin, J. 1997. Aspect-oriented
programming. Proceedings of the 11th European
Conference on Object-Oriented Programming: 220–242.

Andre Medeiros is a web and mobile developer at Futurice.
He is known for his involvement with reactive programming
for user interfaces, particularly with the ReactiveX libraries.
Medeiros has built JavaScript libraries and tools such as
Cycle.js and RxMarbles. He has an M.Sc. in theoretical
computer science.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

15 of 15

CONTENTS2

https://hal.inria.fr/inria-00075494/document
https://hal.inria.fr/inria-00075494/document

acmqueue | may-june 2016 83

component technologies

T
his article shows how cluster-level logging
infrastructure can be implemented using open
source tools and deployed using the very same
abstractions that are used to compose and
manage the software systems being logged.

Collecting and analyzing log information is an essential
aspect of running production systems to ensure their
reliability and to provide important auditing information.
Many tools have been developed to help with the
aggregation and collection of logs for specific software
components (e.g., an Apache web server) running on
specific servers (e.g., Fluentd4 and Logstash.9) They are
accompanied by tools such as Elasticsearch3 for ingesting
log information into persistent storage and tools such as
Kibana7 for querying log information.

Collecting the logs of components realized using
containers such as those from Docker2 and orchestrated
by systems such as Kubernetes,8 however, is more
challenging because there is no longer a specific program
and a specific sever. This is because a component consists
of many anonymous instances (replicas) that are scaled
up and down in number depending on the system load.

Logging
Challenges

of Container
Based Cloud

Deployments

SATNAM SINGH

1 of 24 TEXT
ONLY

Cluster-Level
 Logging

of Containers
with Containers

acmqueue | may-june 2016 84

component technologies

Furthermore, there is no specific server because each
replica is run on a server chosen by the orchestrator.

This article looks at how to overcome these challenges
by describing how cluster-level log aggregation and
inspection can be implemented on the Kubernetes
orchestration framework. A key aspect of the approach
described here is its exploitation of the same abstractions
that are used to compose and manage the system to be
logged to also build the logging infrastructure itself. This
approach makes use of using existing open source tools
such as Fluentd, Elasticsearch, and Kibana, which are
deployed inside containers and orchestrated to collect the
logs of the other containers running in a cluster.

A BRIEF INTRODUCTION TO KUBERNETES
This article describes just enough of the Kubernetes
system to help motivate a log collection and aggregation
scenario for a simple application. A comprehensive
description of the Kubernetes container orchestrator can
be found on its website,8 and an overview article on Borg,
Omega and Kubernetes is available on acmqueue.1

The Kubernetes system can orchestrate components of
applications on a variety of public clouds as well as private
clusters. In this article an application is deployed on a
Kubernetes cluster created on a collection of VMs (virtual
machines) running on the public cloud Google Compute
Engine.5 A cluster could have been created using Google
Container Engine (GKE),6 which automates many aspects
of cluster creation and management. To emphasize the
provider-agnostic nature of the approach, we illustrate
the explicit creation of a Kubernetes cluster that performs

2 of 24

http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/

acmqueue | may-june 2016 85

component technologies

log collection and aggregation with open-source tools.
Either explicit cluster creation or creation using a cluster
management system like GKE allows us to perform log
collection and aggregation with open-source tools,
although GKE allows for tighter integration with Google’s
proprietary cloud logging system.

Figure 1 shows the deployment of a four-node
Kubernetes cluster that is used for the example application
described in this article. This cluster has four worker VMs
called kubernetes-minion-08on, kubernetes-minion-
7i2t, kubernetes-minion-9l7k, and kubernetes-
minion-ei9f. A fifth Kubernetes master VM orchestrates
work onto the other VMs. For work scheduled on this
cluster by Kubernetes, however, you should remain
oblivious to the name or IP address of the particular node
that is used to run the applications since this is one of
the details that is abstracted by Kubernetes. You don’t
know the name of the machine running our program.
Furthermore, the components of the application will scale
up and down in size as the system evolves and deals with
failure, so one logical component may execute across
many different machines. The name of the machine(s)
running your program may change.

3 of 24

FIGURE 1: Kubernetes cluster running on Google Compute Platform1

acmqueue | may-june 2016 86

component technologies

Consequently, in the Kubernetes model it does not
make sense to think of a specific program P running on
a specific machine M. It is far more idiomatic to identify
parts of the system by making queries over labels that are
attached to anonymous entities created by the Kubernetes
orchestrator, which will return the currently running
entities that match the query. This allows us to talk about
a dynamically evolving infrastructure without mentioning
the names of specific resources.

A Music Store Application
A Kubernetes deployment of a hypothetical music
store application is used to help describe how cluster-
level container logs can be collected. The application
has several front-end microservices that accept HTTP
requests to a web interface for browsing and buying
music. These front-end services work by communicating
with a back-end MySQL instance and a Redis cluster that
provide the persistent storage needed by the application.
A persistent disk hosted on Google Compute Engine also
provides the storage needed by the MySQL database.

LOGGING PODS
The basic unit of deployment in Kubernetes is a pod. A pod
is the specification of resources that should always be
allocated together as an atomic unit onto the same node
along with other information that a cluster orchestrator
can use to manage the pod’s behavior. The music store
application uses one pod to describe the deployment of the
MySQL instance as shown in the YAML file (albums-db-pod.

4 of 24

acmqueue | may-june 2016 87

component technologies

yaml [https://github.com/satnam6502/logging-acm-queue/
blob/master/albums-db-pod.yaml]):

apiVersion: v1

kind: Pod

metadata:

 name: albums-db

 labels:

 app: music1983

 role: db

 tier: backend

spec:

 containers:

 - name: mysql

 image: mysql:5.6

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: REDACTED

 ports:

 - containerPort: 3306

 volumeMounts:

 - name: mysql-persistent-storage

 mountPath: /var/lib/mysql

 volumes:

 - name: mysql-persistent-storage

 gcePersistentDisk:

 pdName: albums-disk

 fsType: ext4

This specification can be used to create a deployment of
the music store database:

5 of 24

acmqueue | may-june 2016 88

component technologies

$ kubectl create –f albums-db-pod.yaml

Figure 2 illustrates a deployment of this pod, which has
the name albums-db and a pod IP address of 10.240.0.5.
It runs on the Google Compute Engine VM called
kubernetes-minion-917k, contains a Docker image of
a MySQL instance, and uses a persistent disk on Google
Compute Engine called albums-disk. Three labels identify
the application music1983, the role db, and the tier backend.
The pod exposes the port 3306 serviced by the MySQL
Docker instance for use by other components in the same
cluster through the address 10.240.0.5:3306.

Inside the Kubernetes cluster, you can connect to this
database, populate it, and make queries. For example:

6 of 24

FIGURE 2: A deployment of the MySQL albums database

2

acmqueue | may-june 2016 89

component technologies

The logs for a pod can be extracted using the Kubernetes
command-line tool:

This command fetches the logs for the currently running
MySQL Docker image. You can ask Kubernetes to report
the Docker container ID for the running MySQL instance:

Does this solve the problem of collecting logs from
an application deployed on a Kubernetes cluster? One
problem is that during the lifetime of a pod the underlying
Docker container (or containers) that is deployed may

7 of 24

$ mysql --host=10.240.0.5 --user=NAME --password=REDACTED albums
mysql> select * from pop where artist = ‘Pink Floyd’;
+------------+-----------------------+-----------+----------+
| artist | album | inventory | released |
+------------+-----------------------+-----------+----------+
| Pink Floyd | Dark Side of the Moon | 57 | 1973 |
| Pink Floyd | The Wall | 103 | 1983 |
+------------+-----------------------+-----------+----------+
2 rows in set (0.08 sec)

$ kubectl logs albums-db
…
2016-03-01 00:43:20 1 [Note] InnoDB: 5.6.29 started; log sequence
number 1710893
2016-03-01 00:43:20 1 [Note] Server hostname (bind-address): ‘*’;
port: 3306
2016-03-01 00:43:20 1 [Note] IPv6 is available.
…

$ kubectl describe pod albums-db | grep “Container ID”

 Container ID: docker://38ab5c9e9aa8004e9b61f19885…

acmqueue | may-june 2016 90

component technologies

terminate and new replacement containers created (e.g.,
to deal with a container that has failed in some way). The
following induces a failure by sabotaging the MySQL
container and seeing how Kubernetes responds. This is
done by SSH’ing to the Google Compute Engine VM that
is running the container in order to kill the MySQL Docker
container.

$ gcloud compute --project “kubernetes-6502”

ssh --zone “us-central1-b” “kubernetes-minion-

9l7k”

$ sudo –s

docker ps

CONTAINER ID IMAGE

38ab5c9e9aa8 mysql:5.6

docker kill 38ab5c9e9aa8

38ab5c9e9aa8

docker ps

CONTAINER ID

abdfca342daa mysql:5.6

Soon after, an agent running on the node that is part
of the Kubernetes system noticed the container was no
longer running. In order to drive the current state of the
system to the desired state, a new Docker instance of
MySQL is created with a container ID that starts with
abdfca342daa. Checking the logs of albums-db now
reveals:

8 of 24

acmqueue | may-june 2016 91

component technologies

The logs are now for the currently running container
(abdfca342daa), and the logs for the previous instance of
the MySQL container (38ab5c9e9aa8) have been lost. The
lifetime of these logs is determined from the lifetime of the
underlying Docker container rather than the lifetime of the
pod. What is really needed is a mechanism for collecting
and storing all the log information that was generated by
every container instance that runs as part of this pod’s
execution lifecycle.

Logging Pods Managed by Replication Controllers
Although a single pod in a Kubernetes cluster can be
specified and deployed, it is far more idiomatic to specify
a replication controller that creates many replicas of a
pod. Here is an example of a replication controller that

9 of 24

$ kubectl logs albums-db
2016-03-01 01:33:25 0 [Note] mysqld (mysqld 5.6.29) starting as
process 1 ...
…
2016-03-01 01:33:25 1 [Note] InnoDB: The log sequence numbers
1710893 and 1710893 in ibdata files do not match the log se-
quence number 1710903 in the ib_logfiles!
2016-03-01 01:33:25 1 [Note] InnoDB: Database was not shutdown
normally!
2016-03-01 01:33:25 1 [Note] InnoDB: Starting crash recovery.
…
2016-03-01 01:33:25 1 [Note] InnoDB: 5.6.29 started; log sequence
number 1710903
2016-03-01 01:33:25 1 [Note] Server hostname (bind-address): ‘*’;
port: 3306

acmqueue | may-june 2016 92

component technologies

specifies the deployment of two Redis slave pods (redis-
slave-controller.yaml [https://github.com/satnam6502/
logging-acm-queue/blob/master/redis-slave-controller.
yaml]):

apiVersion: v1

kind: ReplicationController

metadata:

 name: redis-slave

 labels:

 app: music1983

 role: slave

 tier: backend

spec:

 replicas: 2

 template:

 metadata:

 labels:

 app: music1983

 role: slave

 tier: backend

 spec:

 containers:

 - name: slave

 image: redis

 resources:

 requests:

 cpu: 300m

 memory: 250Mi

 ports:

 - containerPort: 6379

10 of 24

https://github.com/satnam6502/logging-acm-queue/blob/master/redis-slave-controller.yaml
https://github.com/satnam6502/logging-acm-queue/blob/master/redis-slave-controller.yaml
https://github.com/satnam6502/logging-acm-queue/blob/master/redis-slave-controller.yaml

acmqueue | may-june 2016 93

component technologies

This specification declares a replication controller
called redis-slave, which has three user-defined labels
of metadata that are attached to each pod it creates.
The labels identify the name of the overall application
music1983, the role of the Redis instance slave, and this
pod as being a member of the backend tier. The initial
number of replica pods is set to two, although this number
may be dialed up or down later. Each pod to be replicated
consists of a Redis Docker container, an exposed port
6379 over which the Redis protocol operates, and some
resource requests for CPU and memory utilization that
are communicated to the scheduler. This specification can
be given to the Kubernetes command-line tool to bring the
Redis slave pods to life:

$ kubectl create –f redis-slave-controller.yaml

Figure 3 shows a sample deployment of such a Redis
slave controller with two pods running on two different
Google Compute Engine VMs. The pods have automatically
generated names: redis-slave-tic4b and redis-slave-yazzp.
Do not get too attached to the name of any specific pod,
since pods may come and go as a result of failure or
changes in the cardinality of the replication controller.

Logging Pods Captured by a Service Specification
Each pod has its own IP address, and the IP address of the
host VM is also shown, although this address is never of
any interest to the Kubernetes application running on the
cluster. If you can’t utter the name of a specific pod, then
how can you interact with it? Label selectors can define an

11 of 24

acmqueue | may-june 2016 94

component technologies

entity called a service, which introduces a stable name for a
collection of resources. Requests sent to the stable name
provided by the service are automatically routed to a pod
that matches the net cast by the service label selectors.
Here is the definition of a service identifying pods that
provide the Redis slave functionality (redis-slave-service.
yaml [https://github.com/satnam6502/logging-acm-queue/
blob/master/redis-slave-service.yaml]):

apiVersion: v1

kind: Service

metadata:

FIGURE 3: Deployment of the Redis slave replicated pods

12 of 24

3

https://github.com/satnam6502/logging-acm-queue/blob/master/redis-slave-service.yaml
https://github.com/satnam6502/logging-acm-queue/blob/master/redis-slave-service.yaml

acmqueue | may-june 2016 95

component technologies

 name: redis-slave

 labels:

 app: music1983

 role: slave

 tier: backend

spec:

 ports:

 - port: 6379

 selector:

 app: music1983

 role: slave

 tier: backend

The deployment of this service is illustrated in figure
4. The service defines a DNS (Domain Name System)-
resolvable name within the cluster redis-slave, which
accepts requests on port 6379 and then forwards them to

FIGURE 4: Service mapping requests to Redis read slaves

13 of 24

4

acmqueue | may-june 2016 96

component technologies

any pod that matches its label selectors (i.e., any pod that
has the app label set to music1983, the role label set to
slave, and the tier label set to backend). Now consumers
of the redis-slave-read-replicated pods are insulated
from the names of the specific pods that are used to
service their requests as well as the names of the specific
nodes on which these pods are running.

Figure 5 shows the deployment of a music store website
made up of several front-end microservices that accept
external requests and render a web user interface.
These front-end services store information in a key/value
store implemented by several instances of the Redis key/

FIGURE 5: A Kubernetes deployment of a music store service

14 of 24

5

acmqueue | may-june 2016 97

component technologies

value store. The system is designed to make it easy to
independently scale up the capacity for (a) serving web
traffic; (b) reading from the key/value storage system;
(c) writing to the key/value storage system. As more
users connect to the music store website, the number of
front-end microservices can be dialed up. Typically, you
expect many more relatively cheap read operations than
expensive write operations to the key/value store. To
process read operations as quickly as possible, reads from
Redis slave instances (two in this case) are serviced and a
separate pool of Redis microservices deployed as masters
that perform write operations (initially just one in this
case).

Collecting the logs of the front-end service pods brings
up another life-cycle issue. It is not enough to just collect
the logs from each of the three currently running pods
(even when collecting the logs of multiple invocations of
the front-end Docker image), because pods themselves
may be terminated and then reborn (possibly on a different
host machine). In certain situations, there may briefly be
more than three front-end pods or perhaps fewer than
three. If this occurs, the Kubernetes orchestration system
will notice and create or kill pods to drive the system to
the declared state of having just three front-end pods. As
front-end pods come and go, you want to collect all of their
logs, so the log-collection activity has a lifetime that is
associated with the front-end replication controller rather
than the lifetime of a specific pod.

Using Fluentd to collect node-level logs
The open-source log aggregator Fluentd is used to collect

15 of 24

http://www.fluentd.org/

acmqueue | may-june 2016 98

component technologies

the logs of the Docker containers running on a given
node. Trying to run an instance of a Fluentd collector
process directly on each node (i.e., GCE VM) generates the
same deployment problems that pods were created to
solve (e.g., dealing with failure and performing updates).
Consequently, node-level log aggregation of Docker
containers is actually implemented from a Docker
container that runs as part of a pod specification. This
meta-approach allows the logging layer to benefit from
the same advantages afforded to the application layers by
the Kubernetes model for managing deployment and life
cycle events. For example, the rolling update mechanism
of Kubernetes can update the pods running on each node
so they use an updated version of the log-aggregation
software while the cluster is still running.

The Fluentd collectors do not store the logs
themselves. Instead they send their logs to an
Elasticsearch cluster that stores the log information
in a replicated set of nodes. Again, rather than running
this Elasticsearch cluster directly “on the metal,” you
can define pods that specify the behavior of a single
Elasticsearch replica, then define a replication controller
to specify a collection of Elasticsearch nodes that contain
the replicated log information and provide a query
interface, and finally define a service that provides a stable
name for balancing queries to the Elasticsearch cluster.

The complete specification of the Fluentd node-level
collector pods is shown here (fluentd-es.yaml [https://
github.com/kubernetes/kubernetes/blob/master/cluster/
saltbase/salt/fluentd-es/]):

16 of 24

https://github.com/kubernetes/kubernetes/blob/master/cluster/saltbase/salt/fluentd-es/fluentd-es.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/saltbase/salt/fluentd-es/
https://github.com/kubernetes/kubernetes/blob/master/cluster/saltbase/salt/fluentd-es/
https://github.com/kubernetes/kubernetes/blob/master/cluster/saltbase/salt/fluentd-es/

acmqueue | may-june 2016 99

component technologies

apiVersion: v1

kind: Pod

metadata:

 name: fluentd-elasticsearch

 namespace: kube-system

spec:

 containers:

 - name: fluentd-elasticsearch

 image: gcr.io/google_containers/fluentd-

elasticsearch:1.11

 resources:

 limits:

 cpu: 100m

 args:

 - -q

 volumeMounts:

 - name: varlog

 mountPath: /var/log

 - name: varlibdockercontainers

 mountPath: /var/lib/docker/containers

 readOnly: true

 terminationGracePeriodSeconds: 30

 volumes:

 - name: varlog

 hostPath:

 path: /var/log

 - name: varlibdockercontainers

 hostPath:

 path: /var/lib/docker/containers

This specifies a node-level collector that runs a

17 of 24

acmqueue | may-june 2016 100

component technologies

specially built Fluentd image configured to send logs to
an Elasticsearch cluster using the DNS name and port
elasticsearch-logging:9200 (which is itself implemented
as a Kubernetes service). The specification also describes
how the location of the Docker logs on the node-level file
system are mapped to the file system inside the Docker
container run by the pod. This allows the logs of all the
Docker containers on the node to be collected by this
Fluentd instance running inside this container.

When a Kubernetes cluster is configured to use
logging with Elasticsearch as the data store, the cluster
creation process instantiates a log-collector pod on each
node. These pods can be observed in the kube-system
namespace:

A special process on each node makes sure that one
of these log-collection pods is running on each node.
If a log-collector pod fails for any reason, a new one is
created in its place. These pods collect the logs of the
locally running Docker containers and ingest them into
an Elasticsearch Kubernetes service running in the kube-
system namespace.

18 of 24

$ kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS AGE
fluentd-elasticsearch-kubernetes-minion-08on 1/1 Running 0 16d
fluentd-elasticsearch-kubernetes-minion-7i2t 1/1 Running 0 16d
fluentd-elasticsearch-kubernetes-minion-9l7k 1/1 Running 0 16d
fluentd-elasticsearch-kubernetes-minion-ei9f 1/1 Running 0 16d
…

acmqueue | may-june 2016 101

component technologies

Using Elasticsearch to Store and Query Cluster Logs
A cluster created using Elasticsearch for the storage
of logs will by default instantiate two Elasticsearch
instances. The specification for these Elasticsearch logging
pods can be found at es-controller.yaml [https://github.
com/kubernetes/kubernetes/blob/master/cluster/addons/
fluentd-elasticsearch/es-controller.yaml], which describes
a replication controller for the Elasicsearch instances
as well as the actual configuration of the Elasticsearch
logging pods. These can be observed in the kube-system
namespace:

The node-level log-collection Fluentd pods do not speak
directly to these Elasticsearch pods. Instead, they connect
to the DNS name and elasticsearch-logging:9200, which is
implemented by an Elasticsearch Kubernetes service es-
service.yaml [https://github.com/kubernetes/kubernetes/
blob/master/cluster/addons/fluentd-elasticsearch/es-
service.yaml]:

apiVersion: v1

kind: Service

metadata:

 name: elasticsearch-logging

 namespace: kube-system

19 of 24

$ kubectl get pods --namespace=kube-system

NAME READY STATUS RESTARTS AGE

elasticsearch-logging-v1-7rmo3 1/1 Running 0 16d

elasticsearch-logging-v1-v7lmv 1/1 Running 0 16d

…

https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/es-controller.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/es-service.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/es-service.yaml

acmqueue | may-june 2016 102

component technologies

 labels:

 k8s-app: elasticsearch-logging

 kubernetes.io/cluster-service: “true”

 kubernetes.io/name: “Elasticsearch”

spec:

 ports:

 - port: 9200

 protocol: TCP

 targetPort: db

 selector:

 k8s-app: elasticsearch-logging

You can observe this service running in the kube-system
namespace:

Elasticsearch can be queried for the logs of all pods
that are captured by the label selectors for the front-
end service. A local proxy allows you to connect to the
cluster with administrator privileges, which are required to
retrieve the logs of running containers. You query for just
the logs of containers that are marked with a container_
name field of frontend-server.

20 of 24

$ kubectl get services --namespace=kube-system
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
elasticsearch-logging 10.0.8.117 <none> 9200/TCP
…

acmqueue | may-june 2016 103

component technologies 21 of 24

$ kubectl proxy
<elsewhere>
$ curl -XGET “http://localhost:8001/api/v1/proxy/namespaces/
kube-system/services/elasticsearch-logging/_search?q=container_
name:frontend-server&_source=false&fields=log&pretty=true”
…
 }, {
 “_index” : “logstash-2016.02.26”,
 “_type” : “fluentd”,
 “_id” : “AVMa-C0pcuStSsThK0M4”,
 “_score” : 2.8861463,
 “fields” : {
 “log” : [“Slow read for key k103: 192 ms”]
 }
…
 }, {
 “_index” : “logstash-2016.02.26”,
 “_type” : “fluentd”,
 “_id” : “AVMa-C0pcuStSsThK0NE”,
 “_score” : 2.8861463,
 “fields” : {
 “log” : [“[negroni] Started GET /lrange/k336”]
 }
…
 }, {
 “_index” : “logstash-2016.02.26”,
 “_type” : “fluentd”,
 “_id” : “AVMa-C_fcuStSsThK0Op”,
 “_score” : 2.8861463,
 “fields” : {
 “log” : [“Slow write for key k970: 187 ms”]
 }
 }, {
…

acmqueue | may-june 2016 104

component technologies

Since the Elasticsearch cluster is a collection of
pods managed by a replication controller, it can deal
with an increased query load to the logging system by
simply increasing the number of replica nodes for the
Elasticsearch logging instances. Each pod contains a
replica of the ingested logs so if one pod dies for some
reason (e.g., the machine it is running on fails), then a new
pod will be created to replace it, and it will synchronize
with the running pods to replicate the ingested logs.

VIEWING LOGS WITH KIBANA
The aggregated logs in the Elasticsearch cluster can
be viewed using Kibana. This presents a web interface,
which provides a more convenient interactive method for
querying the ingested logs, as illustrated in figure 6.

The Kibana pods are also monitored by the Kubernetes

FIGURE 6: Querying ingested logs using Kibana

22 of 24

6

acmqueue | may-june 2016 105

component technologies

system to ensure they are running healthily and the
expected number of replicas are present. The life cycle
of these pods is controlled by a replication-controller
specification similar in nature to how the Elasticsearch
cluster was configured. The following output shows the
cluster configured to maintain two Elasticsearch instances
and one Kibana instance. If system load increases, a
simple command can be issued to dial up the number of
Elasticsearch and Kibana replicas. Furthermore, the number
of Elasticsearch replicas can be scaled up independently of
the number of Kibana instances, allowing you to respond to
increases in different kinds of loads by scaling up only the
subcomponents needed to meet that demand.

SUMMARY
Collecting the logs of containers running in an
orchestrated cluster presents some challenges that are
not faced by manually deployed software components.
In particular, we cannot explicitly identify by name a
particular container (or the name of the pod in which it
is contained), nor the node that container is running on,
because both of these may change during the lifetime
of the deployed application. As application components
(microservices) come and go, we need to gather and
aggregate all the logs of the containers that work as part
of the application during its life cycle. This challenge is
addressed by the use of label-selector queries to identify
which running activities belong to the application of
interest at any given moment. Then these queries can be
used (by way of a Kubernetes service) to query the logs of a
dynamically evolving application.

23 of 24

acmqueue | may-june 2016 106

component technologies

The basic infrastructure needed to implement log
aggregation and collection can itself be implemented using
the same abstractions used to compose and manage the
applications which need to be logged: pods, replication
controllers, and services. This allows for adapting the
capacity of the logging system and updating it while it is
running as well as robustly dealing with failure. This also
provides a model for developing other cloud computing
system infrastructure components in a modular, flexible,
reliable, and scalable manner.

References
1. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes,

J. 2016. Borg, Omega, and Kubernetes. Acmqueue 14(1);
http://queue.acm.org/detail.cfm?id=2898444.

2. Docker; www.docker.com.
3. Elasticsearch. Elastic; https://www.elastic.co/products/

elasticsearch.
4. Fluentd; http://www.fluentd.org/.
5. Google Compute Engine; https://cloud.google.com/

compute/.
6. Google Container Engine; https://cloud.google.com/

container-engine/.
7. Kibana. Elastic; https://www.elastic.co/products/kibana.
8. Kubernetes; http://kubernetes.io/.
9. Logstash. Elastic; https://www.elastic.co/products/logstash.

Satnam Singh (s.singh@acm.org) is a software engineer
at Facebook working on mobile performance. Previously he
worked at Google on the Kubernetes project.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

24 of 24

CONTENTS2

http://queue.acm.org/detail.cfm?id=2898444
http://www.docker.com
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://www.fluentd.org/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://www.elastic.co/products/kibana
http://kubernetes.io/
https://www.elastic.co/products/logstash
mailto:s.singh@acm.org

We’re more than computational theorists, database managers, UX mavens, coders
and developers. We’re on a mission to solve tomorrow. ACM gives us the resources,
the access and the tools to invent the future. Join ACM today and receive 25% off
your first year of membership.

Be creative. Stay connected. Keep inventing.

ACM.org/KeepInventing

Here’S to adi, ron and len.
for giving uS rSa puBlic-Key
cryptograpHy.

Cr
ed

it
: R

on
 R

iv
es

t

