Correlation between copy number variations of arm-level result and molecular subtypes
Pancreatic Adenocarcinoma (Primary solid tumor)
23 May 2013  |  analyses__2013_05_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between copy number variations of arm-level result and molecular subtypes. Broad Institute of MIT and Harvard. doi:10.7908/C1833Q3R
Overview
Introduction

This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and subtypes.

Summary

Testing the association between copy number variation 19 arm-level results and 8 molecular subtypes across 50 patients, 5 significant findings detected with Q value < 0.25.

  • 6q loss cnv correlated to 'METHLYATION_CNMF'.

  • 9p loss cnv correlated to 'CN_CNMF'.

  • 17p loss cnv correlated to 'CN_CNMF'.

  • 18q loss cnv correlated to 'CN_CNMF'.

  • 21q loss cnv correlated to 'CN_CNMF'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between significant copy number variation of 19 arm-level results and 8 molecular subtypes. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 5 significant findings detected.

Molecular
subtypes
CN
CNMF
METHLYATION
CNMF
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRSEQ
MATURE
CNMF
MIRSEQ
MATURE
CHIERARCHICAL
nCNV (%) nWild-Type Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Chi-square test Fisher's exact test Fisher's exact test Fisher's exact test
6q loss 0 (0%) 42 0.014
(1.00)
0.000163
(0.0228)
0.0212
(1.00)
0.0341
(1.00)
0.00374
(0.49)
0.00756
(0.944)
0.0211
(1.00)
0.00756
(0.944)
9p loss 0 (0%) 42 0.0014
(0.192)
0.00254
(0.343)
0.186
(1.00)
0.0341
(1.00)
0.0649
(1.00)
0.119
(1.00)
0.0211
(1.00)
0.119
(1.00)
17p loss 0 (0%) 40 1.83e-05
(0.00258)
0.00202
(0.275)
0.412
(1.00)
0.0101
(1.00)
0.184
(1.00)
0.0367
(1.00)
0.0212
(1.00)
0.0367
(1.00)
18q loss 0 (0%) 43 0.000968
(0.135)
0.00694
(0.882)
0.664
(1.00)
0.0341
(1.00)
0.0461
(1.00)
0.396
(1.00)
0.185
(1.00)
0.396
(1.00)
21q loss 0 (0%) 43 0.000968
(0.135)
0.00694
(0.882)
0.0212
(1.00)
0.0341
(1.00)
0.0625
(1.00)
0.119
(1.00)
0.0211
(1.00)
0.119
(1.00)
1q gain 0 (0%) 47 0.0449
(1.00)
0.0562
(1.00)
0.488
(1.00)
0.488
(1.00)
8q gain 0 (0%) 43 0.00605
(0.774)
0.0405
(1.00)
0.186
(1.00)
0.258
(1.00)
0.219
(1.00)
0.0305
(1.00)
0.0946
(1.00)
0.0305
(1.00)
18p gain 0 (0%) 45 0.0105
(1.00)
0.12
(1.00)
0.233
(1.00)
0.313
(1.00)
0.404
(1.00)
0.0637
(1.00)
0.108
(1.00)
0.0637
(1.00)
20q gain 0 (0%) 46 0.00306
(0.41)
0.538
(1.00)
1
(1.00)
1
(1.00)
0.353
(1.00)
0.515
(1.00)
0.607
(1.00)
0.515
(1.00)
6p loss 0 (0%) 45 0.0152
(1.00)
0.00491
(0.638)
0.0486
(1.00)
0.0605
(1.00)
0.0184
(1.00)
0.018
(1.00)
0.0485
(1.00)
0.018
(1.00)
9q loss 0 (0%) 47 0.237
(1.00)
0.0562
(1.00)
1
(1.00)
1
(1.00)
10p loss 0 (0%) 47 0.0173
(1.00)
0.0562
(1.00)
0.488
(1.00)
0.0309
(1.00)
0.217
(1.00)
0.233
(1.00)
0.217
(1.00)
10q loss 0 (0%) 47 0.0786
(1.00)
0.0562
(1.00)
0.488
(1.00)
0.198
(1.00)
0.217
(1.00)
0.233
(1.00)
0.217
(1.00)
12p loss 0 (0%) 47 0.0449
(1.00)
0.0562
(1.00)
0.233
(1.00)
0.313
(1.00)
0.198
(1.00)
0.217
(1.00)
0.233
(1.00)
0.217
(1.00)
12q loss 0 (0%) 45 0.0152
(1.00)
0.00491
(0.638)
0.607
(1.00)
0.184
(1.00)
0.422
(1.00)
0.515
(1.00)
0.108
(1.00)
0.515
(1.00)
13q loss 0 (0%) 47 0.0173
(1.00)
0.341
(1.00)
0.488
(1.00)
0.0309
(1.00)
0.217
(1.00)
0.233
(1.00)
0.217
(1.00)
17q loss 0 (0%) 46 0.00306
(0.41)
0.0168
(1.00)
1
(1.00)
0.313
(1.00)
0.114
(1.00)
0.515
(1.00)
0.108
(1.00)
0.515
(1.00)
18p loss 0 (0%) 46 0.0318
(1.00)
0.0168
(1.00)
1
(1.00)
0.313
(1.00)
0.568
(1.00)
0.79
(1.00)
1
(1.00)
0.79
(1.00)
22q loss 0 (0%) 46 0.00306
(0.41)
0.12
(1.00)
0.233
(1.00)
0.313
(1.00)
0.198
(1.00)
0.217
(1.00)
0.233
(1.00)
0.217
(1.00)
'6q loss' versus 'METHLYATION_CNMF'

P value = 0.000163 (Fisher's exact test), Q value = 0.023

Table S1.  Gene #6: '6q loss' versus Molecular Subtype #2: 'METHLYATION_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 18 19 12
6Q LOSS CNV 8 0 0
6Q LOSS WILD-TYPE 10 19 12

Figure S1.  Get High-res Image Gene #6: '6q loss' versus Molecular Subtype #2: 'METHLYATION_CNMF'

'9p loss' versus 'CN_CNMF'

P value = 0.0014 (Fisher's exact test), Q value = 0.19

Table S2.  Gene #7: '9p loss' versus Molecular Subtype #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 12 28 10
9P LOSS CNV 6 1 1
9P LOSS WILD-TYPE 6 27 9

Figure S2.  Get High-res Image Gene #7: '9p loss' versus Molecular Subtype #1: 'CN_CNMF'

'17p loss' versus 'CN_CNMF'

P value = 1.83e-05 (Fisher's exact test), Q value = 0.0026

Table S3.  Gene #14: '17p loss' versus Molecular Subtype #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 12 28 10
17P LOSS CNV 7 0 3
17P LOSS WILD-TYPE 5 28 7

Figure S3.  Get High-res Image Gene #14: '17p loss' versus Molecular Subtype #1: 'CN_CNMF'

'18q loss' versus 'CN_CNMF'

P value = 0.000968 (Fisher's exact test), Q value = 0.13

Table S4.  Gene #17: '18q loss' versus Molecular Subtype #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 12 28 10
18Q LOSS CNV 5 0 2
18Q LOSS WILD-TYPE 7 28 8

Figure S4.  Get High-res Image Gene #17: '18q loss' versus Molecular Subtype #1: 'CN_CNMF'

'21q loss' versus 'CN_CNMF'

P value = 0.000968 (Fisher's exact test), Q value = 0.13

Table S5.  Gene #18: '21q loss' versus Molecular Subtype #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 12 28 10
21Q LOSS CNV 5 0 2
21Q LOSS WILD-TYPE 7 28 8

Figure S5.  Get High-res Image Gene #18: '21q loss' versus Molecular Subtype #1: 'CN_CNMF'

Methods & Data
Input
  • Mutation data file = broad_values_by_arm.mutsig.cluster.txt

  • Molecular subtypes file = PAAD-TP.transferedmergedcluster.txt

  • Number of patients = 50

  • Number of significantly arm-level cnvs = 19

  • Number of molecular subtypes = 8

  • Exclude genes that fewer than K tumors have mutations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[3] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)