Correlation between aggregated molecular cancer subtypes and selected clinical features
Liver Hepatocellular Carcinoma (Primary solid tumor)
23 September 2013  |  analyses__2013_09_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1GT5KHB
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 8 clinical features across 119 patients, 4 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'GENDER'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'GENDER'.

  • 5 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'AGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'AGE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 4 significant findings detected.

Clinical
Features
Time
to
Death
AGE NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
N
STAGE
PATHOLOGY
M
STAGE
GENDER COMPLETENESS
OF
RESECTION
Statistical Tests logrank test ANOVA Chi-square test Chi-square test Fisher's exact test Chi-square test Fisher's exact test Chi-square test
Copy Number Ratio CNMF subtypes 0.0959
(1.00)
0.0236
(1.00)
0.525
(1.00)
0.323
(1.00)
0.488
(1.00)
0.466
(1.00)
0.128
(1.00)
0.339
(1.00)
METHLYATION CNMF 0.387
(1.00)
0.14
(1.00)
0.49
(1.00)
0.738
(1.00)
0.62
(1.00)
0.218
(1.00)
0.111
(1.00)
0.812
(1.00)
RNAseq CNMF subtypes 0.455
(1.00)
0.115
(1.00)
0.361
(1.00)
0.0943
(1.00)
0.771
(1.00)
0.388
(1.00)
4.57e-07
(2.92e-05)
0.345
(1.00)
RNAseq cHierClus subtypes 0.535
(1.00)
0.0083
(0.498)
0.324
(1.00)
0.0565
(1.00)
1
(1.00)
0.511
(1.00)
3.17e-05
(0.002)
0.731
(1.00)
MIRSEQ CNMF 0.0907
(1.00)
0.021
(1.00)
0.224
(1.00)
0.71
(1.00)
0.628
(1.00)
0.13
(1.00)
0.168
(1.00)
0.666
(1.00)
MIRSEQ CHIERARCHICAL 0.0492
(1.00)
0.00404
(0.247)
0.954
(1.00)
0.992
(1.00)
0.704
(1.00)
0.396
(1.00)
0.305
(1.00)
0.396
(1.00)
MIRseq Mature CNMF subtypes 0.427
(1.00)
0.0429
(1.00)
0.0994
(1.00)
0.474
(1.00)
0.163
(1.00)
0.544
(1.00)
0.137
(1.00)
0.517
(1.00)
MIRseq Mature cHierClus subtypes 0.131
(1.00)
0.000702
(0.0435)
0.825
(1.00)
0.943
(1.00)
0.694
(1.00)
0.295
(1.00)
0.393
(1.00)
0.0511
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 37 34 46
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.0959 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 114 53 0.0 - 113.0 (15.7)
subtype1 35 17 0.1 - 113.0 (14.4)
subtype2 34 12 0.1 - 107.1 (19.9)
subtype3 45 24 0.0 - 102.7 (15.1)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.0236 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 115 61.8 (13.7)
subtype1 36 65.6 (12.8)
subtype2 34 56.9 (13.1)
subtype3 45 62.5 (14.0)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.525 (Chi-square test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 45 25 2 25 3 4 1 1 1
subtype1 16 8 0 10 0 0 1 1 0
subtype2 16 7 0 6 1 2 0 0 0
subtype3 13 10 2 9 2 2 0 0 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.323 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 48 28 34 6
subtype1 17 8 12 0
subtype2 17 7 7 2
subtype3 14 13 15 4

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.488 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 74 3
subtype1 20 1
subtype2 26 0
subtype3 28 2

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.466 (Chi-square test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 90 2 25
subtype1 25 1 11
subtype2 29 0 5
subtype3 36 1 9

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.128 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 44 73
subtype1 9 28
subtype2 14 20
subtype3 21 25

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.339 (Chi-square test), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 93 10 1 8
subtype1 28 3 1 1
subtype2 30 1 0 2
subtype3 35 6 0 5

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #2: 'METHLYATION CNMF'

Table S10.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 26 34 50
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.387 (logrank test), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 106 49 0.0 - 113.0 (14.9)
subtype1 26 11 0.1 - 107.1 (26.6)
subtype2 33 15 0.1 - 113.0 (12.9)
subtype3 47 23 0.0 - 102.7 (14.9)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.14 (ANOVA), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 108 61.6 (14.0)
subtype1 26 59.3 (14.1)
subtype2 34 59.1 (15.7)
subtype3 48 64.5 (12.3)

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.49 (Chi-square test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 40 23 2 24 3 5 1 1 1
subtype1 8 4 0 6 2 3 0 0 0
subtype2 11 7 1 8 1 1 1 0 1
subtype3 21 12 1 10 0 1 0 1 0

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.738 (Chi-square test), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 43 26 33 7
subtype1 9 6 8 2
subtype2 11 7 13 3
subtype3 23 13 12 2

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.62 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 70 3
subtype1 19 1
subtype2 24 0
subtype3 27 2

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.218 (Chi-square test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 84 2 24
subtype1 19 0 7
subtype2 27 2 5
subtype3 38 0 12

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.111 (Fisher's exact test), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 44 66
subtype1 14 12
subtype2 15 19
subtype3 15 35

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.812 (Chi-square test), Q value = 1

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 86 9 1 9
subtype1 18 3 0 2
subtype2 28 2 1 3
subtype3 40 4 0 4

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S19.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 30 15 21 22 27
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.455 (logrank test), Q value = 1

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 112 51 0.0 - 113.0 (14.9)
subtype1 30 14 0.1 - 113.0 (17.3)
subtype2 13 6 0.1 - 60.4 (7.7)
subtype3 20 8 0.0 - 69.6 (21.8)
subtype4 22 10 0.4 - 93.7 (16.3)
subtype5 27 13 0.1 - 102.7 (19.1)

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.115 (ANOVA), Q value = 1

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 113 61.5 (13.7)
subtype1 30 56.9 (15.9)
subtype2 14 60.9 (9.6)
subtype3 21 63.4 (12.5)
subtype4 22 60.4 (15.6)
subtype5 26 66.5 (10.7)

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.361 (Chi-square test), Q value = 1

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 43 25 2 25 2 5 1 1 1
subtype1 8 9 1 4 1 2 0 0 1
subtype2 2 3 0 7 1 1 0 0 0
subtype3 10 3 0 2 0 1 1 1 0
subtype4 9 6 0 6 0 0 0 0 0
subtype5 14 4 1 6 0 1 0 0 0

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0943 (Chi-square test), Q value = 1

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 46 28 33 7
subtype1 8 11 8 2
subtype2 2 3 8 2
subtype3 12 3 4 2
subtype4 9 7 6 0
subtype5 15 4 7 1

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.771 (Chi-square test), Q value = 1

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 73 3
subtype1 22 1
subtype2 10 0
subtype3 10 1
subtype4 13 0
subtype5 18 1

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.388 (Chi-square test), Q value = 1

Table S25.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 88 2 25
subtype1 25 1 4
subtype2 11 0 4
subtype3 12 1 8
subtype4 17 0 5
subtype5 23 0 4

Figure S22.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 4.57e-07 (Chi-square test), Q value = 2.9e-05

Table S26.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 44 71
subtype1 20 10
subtype2 3 12
subtype3 3 18
subtype4 1 21
subtype5 17 10

Figure S23.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.345 (Chi-square test), Q value = 1

Table S27.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 91 10 1 8
subtype1 24 2 0 4
subtype2 10 3 0 1
subtype3 16 2 1 0
subtype4 19 1 0 0
subtype5 22 2 0 3

Figure S24.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S28.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 43 51 21
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.535 (logrank test), Q value = 1

Table S29.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 112 51 0.0 - 113.0 (14.9)
subtype1 41 17 0.0 - 102.7 (21.5)
subtype2 50 26 0.1 - 113.0 (14.0)
subtype3 21 8 0.4 - 93.7 (14.1)

Figure S25.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0083 (ANOVA), Q value = 0.5

Table S30.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 113 61.5 (13.7)
subtype1 41 66.1 (11.1)
subtype2 51 57.4 (14.3)
subtype3 21 62.6 (14.4)

Figure S26.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.324 (Chi-square test), Q value = 1

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 43 25 2 25 2 5 1 1 1
subtype1 22 7 1 7 0 1 0 1 0
subtype2 11 13 1 13 2 4 1 0 1
subtype3 10 5 0 5 0 0 0 0 0

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0565 (Chi-square test), Q value = 1

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 46 28 33 7
subtype1 24 7 9 3
subtype2 12 15 19 4
subtype3 10 6 5 0

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S33.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 73 3
subtype1 27 1
subtype2 33 2
subtype3 13 0

Figure S29.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.511 (Chi-square test), Q value = 1

Table S34.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 88 2 25
subtype1 32 0 11
subtype2 40 2 9
subtype3 16 0 5

Figure S30.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 3.17e-05 (Fisher's exact test), Q value = 0.002

Table S35.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 44 71
subtype1 18 25
subtype2 26 25
subtype3 0 21

Figure S31.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.731 (Chi-square test), Q value = 1

Table S36.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 91 10 1 8
subtype1 35 3 0 3
subtype2 39 5 1 5
subtype3 17 2 0 0

Figure S32.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S37.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4 5
Number of samples 12 10 28 25 39
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0907 (logrank test), Q value = 1

Table S38.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 110 50 0.0 - 113.0 (15.7)
subtype1 11 4 0.1 - 75.7 (29.2)
subtype2 10 7 0.0 - 83.6 (3.4)
subtype3 28 14 0.1 - 93.7 (18.3)
subtype4 23 11 0.1 - 102.7 (21.5)
subtype5 38 14 0.2 - 113.0 (15.7)

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.021 (ANOVA), Q value = 1

Table S39.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 112 61.4 (14.0)
subtype1 12 53.2 (17.0)
subtype2 10 55.4 (16.7)
subtype3 28 59.2 (12.7)
subtype4 23 66.7 (11.1)
subtype5 39 63.9 (13.3)

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.224 (Chi-square test), Q value = 1

Table S40.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 42 24 2 25 3 5 1 1 1
subtype1 2 2 1 4 0 2 0 0 0
subtype2 3 2 0 4 0 1 0 0 0
subtype3 11 6 0 3 1 2 1 0 1
subtype4 11 2 1 4 2 0 0 1 0
subtype5 15 12 0 10 0 0 0 0 0

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.71 (Chi-square test), Q value = 1

Table S41.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 45 27 34 7
subtype1 4 2 5 1
subtype2 3 2 4 1
subtype3 11 8 6 2
subtype4 12 2 9 2
subtype5 15 13 10 1

Figure S36.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.628 (Chi-square test), Q value = 1

Table S42.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 73 3
subtype1 9 1
subtype2 8 0
subtype3 19 1
subtype4 14 1
subtype5 23 0

Figure S37.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.13 (Chi-square test), Q value = 1

Table S43.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 89 2 23
subtype1 10 0 2
subtype2 7 0 3
subtype3 23 2 3
subtype4 16 0 9
subtype5 33 0 6

Figure S38.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.168 (Chi-square test), Q value = 1

Table S44.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 43 71
subtype1 7 5
subtype2 2 8
subtype3 14 14
subtype4 8 17
subtype5 12 27

Figure S39.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.666 (Chi-square test), Q value = 1

Table S45.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 89 10 1 9
subtype1 9 1 0 2
subtype2 4 2 0 1
subtype3 24 1 1 2
subtype4 21 2 0 1
subtype5 31 4 0 3

Figure S40.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S46.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 9 59 46
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.0492 (logrank test), Q value = 1

Table S47.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 110 50 0.0 - 113.0 (15.7)
subtype1 9 6 0.0 - 83.6 (3.3)
subtype2 56 21 0.1 - 113.0 (14.5)
subtype3 45 23 0.1 - 75.7 (21.7)

Figure S41.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.00404 (ANOVA), Q value = 0.25

Table S48.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 112 61.4 (14.0)
subtype1 9 57.7 (16.0)
subtype2 57 65.6 (11.3)
subtype3 46 56.9 (15.2)

Figure S42.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.954 (Chi-square test), Q value = 1

Table S49.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 42 24 2 25 3 5 1 1 1
subtype1 3 2 0 3 0 1 0 0 0
subtype2 24 13 1 13 2 1 0 1 0
subtype3 15 9 1 9 1 3 1 0 1

Figure S43.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.992 (Chi-square test), Q value = 1

Table S50.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 45 27 34 7
subtype1 3 2 3 1
subtype2 25 14 17 3
subtype3 17 11 14 3

Figure S44.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.704 (Fisher's exact test), Q value = 1

Table S51.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 73 3
subtype1 7 0
subtype2 35 1
subtype3 31 2

Figure S45.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.396 (Chi-square test), Q value = 1

Table S52.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 89 2 23
subtype1 6 0 3
subtype2 47 0 12
subtype3 36 2 8

Figure S46.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.305 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 43 71
subtype1 2 7
subtype2 20 39
subtype3 21 25

Figure S47.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.396 (Chi-square test), Q value = 1

Table S54.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 89 10 1 9
subtype1 4 2 0 0
subtype2 47 5 0 5
subtype3 38 3 1 4

Figure S48.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S55.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 26 53 35
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.427 (logrank test), Q value = 1

Table S56.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 110 50 0.0 - 113.0 (15.7)
subtype1 25 10 0.0 - 102.7 (25.3)
subtype2 51 26 0.3 - 113.0 (14.9)
subtype3 34 14 0.1 - 93.7 (17.3)

Figure S49.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.0429 (ANOVA), Q value = 1

Table S57.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 112 61.4 (14.0)
subtype1 26 56.9 (15.5)
subtype2 51 64.8 (12.7)
subtype3 35 59.7 (13.7)

Figure S50.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0994 (Chi-square test), Q value = 1

Table S58.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 42 24 2 25 3 5 1 1 1
subtype1 8 3 2 6 1 3 1 0 0
subtype2 23 12 0 13 1 0 0 0 0
subtype3 11 9 0 6 1 2 0 1 1

Figure S51.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.474 (Chi-square test), Q value = 1

Table S59.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 45 27 34 7
subtype1 10 3 10 3
subtype2 23 13 15 2
subtype3 12 11 9 2

Figure S52.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.163 (Fisher's exact test), Q value = 1

Table S60.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 73 3
subtype1 18 1
subtype2 34 0
subtype3 21 2

Figure S53.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.544 (Chi-square test), Q value = 1

Table S61.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 89 2 23
subtype1 20 1 5
subtype2 40 0 13
subtype3 29 1 5

Figure S54.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.137 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 43 71
subtype1 11 15
subtype2 15 38
subtype3 17 18

Figure S55.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.517 (Chi-square test), Q value = 1

Table S63.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 89 10 1 9
subtype1 19 2 1 2
subtype2 39 6 0 5
subtype3 31 2 0 2

Figure S56.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S64.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 39 10 65
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.131 (logrank test), Q value = 1

Table S65.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 110 50 0.0 - 113.0 (15.7)
subtype1 38 16 0.1 - 75.7 (20.7)
subtype2 10 7 0.0 - 83.6 (3.4)
subtype3 62 27 0.2 - 113.0 (15.7)

Figure S57.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.000702 (ANOVA), Q value = 0.044

Table S66.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 112 61.4 (14.0)
subtype1 39 55.1 (15.0)
subtype2 10 59.3 (15.9)
subtype3 63 65.6 (11.5)

Figure S58.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.825 (Chi-square test), Q value = 1

Table S67.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV STAGE IVA STAGE IVB
ALL 42 24 2 25 3 5 1 1 1
subtype1 12 7 1 8 1 3 1 0 1
subtype2 3 2 0 4 0 1 0 0 0
subtype3 27 15 1 13 2 1 0 1 0

Figure S59.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.943 (Chi-square test), Q value = 1

Table S68.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 45 27 34 7
subtype1 14 9 12 3
subtype2 3 2 4 1
subtype3 28 16 18 3

Figure S60.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.694 (Fisher's exact test), Q value = 1

Table S69.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 73 3
subtype1 27 2
subtype2 8 0
subtype3 38 1

Figure S61.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.295 (Chi-square test), Q value = 1

Table S70.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 89 2 23
subtype1 31 2 6
subtype2 7 0 3
subtype3 51 0 14

Figure S62.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.393 (Fisher's exact test), Q value = 1

Table S71.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 43 71
subtype1 18 21
subtype2 3 7
subtype3 22 43

Figure S63.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.0511 (Chi-square test), Q value = 1

Table S72.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 89 10 1 9
subtype1 33 2 1 3
subtype2 4 3 0 0
subtype3 52 5 0 6

Figure S64.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Methods & Data
Input
  • Cluster data file = LIHC-TP.mergedcluster.txt

  • Clinical data file = LIHC-TP.clin.merged.picked.txt

  • Number of patients = 119

  • Number of clustering approaches = 8

  • Number of selected clinical features = 8

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)