Correlation between aggregated molecular cancer subtypes and selected clinical features
Sarcoma (Primary solid tumor)
02 April 2015  |  analyses__2015_04_02
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2015): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1K936M4
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 5 clinical features across 250 patients, 19 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH' and 'GENDER'.

  • 7 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death',  'YEARS_TO_BIRTH', and 'GENDER'.

  • CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'Time to Death' and 'YEARS_TO_BIRTH'.

  • Consensus hierarchical clustering analysis on RPPA data identified 6 subtypes that correlate to 'Time to Death' and 'YEARS_TO_BIRTH'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'YEARS_TO_BIRTH' and 'GENDER'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that correlate to 'Time to Death',  'YEARS_TO_BIRTH', and 'GENDER'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH',  'GENDER', and 'ETHNICITY'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 8 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH' and 'GENDER'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 5 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 19 significant findings detected.

Clinical
Features
Time
to
Death
YEARS
TO
BIRTH
GENDER RACE ETHNICITY
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.362
(0.441)
0.000782
(0.00652)
0.0301
(0.0836)
0.653
(0.726)
0.924
(0.943)
METHLYATION CNMF 0.0221
(0.0691)
0.000268
(0.00334)
0.00021
(0.00334)
0.193
(0.33)
0.313
(0.4)
RPPA CNMF subtypes 0.00192
(0.012)
0.00799
(0.0333)
0.0533
(0.124)
0.991
(0.991)
0.234
(0.334)
RPPA cHierClus subtypes 0.00742
(0.0333)
0.00038
(0.0038)
0.0502
(0.124)
0.726
(0.772)
0.199
(0.33)
RNAseq CNMF subtypes 0.0559
(0.124)
0.000968
(0.00691)
0.00258
(0.0129)
0.824
(0.858)
0.248
(0.34)
RNAseq cHierClus subtypes 0.0443
(0.117)
8.76e-05
(0.00334)
0.0183
(0.0609)
0.163
(0.318)
0.391
(0.466)
MIRSEQ CNMF 0.233
(0.334)
0.178
(0.318)
0.0572
(0.124)
0.724
(0.772)
0.135
(0.282)
MIRSEQ CHIERARCHICAL 0.32
(0.4)
0.00018
(0.00334)
0.0284
(0.0836)
0.645
(0.726)
0.0136
(0.0486)
MIRseq Mature CNMF subtypes 0.217
(0.334)
0.178
(0.318)
0.205
(0.33)
0.499
(0.58)
0.31
(0.4)
MIRseq Mature cHierClus subtypes 0.173
(0.318)
0.00943
(0.0363)
0.00254
(0.0129)
0.229
(0.334)
0.251
(0.34)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 66 83 72 25
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.362 (logrank test), Q value = 0.44

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 244 82 0.1 - 188.2 (23.3)
subtype1 66 23 0.7 - 124.4 (20.6)
subtype2 82 24 0.1 - 143.4 (30.2)
subtype3 72 28 0.1 - 188.2 (25.7)
subtype4 24 7 0.5 - 108.1 (18.2)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000782 (Kruskal-Wallis (anova)), Q value = 0.0065

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 245 61.3 (14.5)
subtype1 65 61.8 (14.3)
subtype2 83 56.8 (15.8)
subtype3 72 66.2 (11.7)
subtype4 25 61.0 (13.5)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.0301 (Fisher's exact test), Q value = 0.084

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 132 114
subtype1 43 23
subtype2 41 42
subtype3 40 32
subtype4 8 17

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.653 (Fisher's exact test), Q value = 0.73

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 18 194
subtype1 2 8 51
subtype2 2 6 65
subtype3 2 4 58
subtype4 0 0 20

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.924 (Fisher's exact test), Q value = 0.94

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 191
subtype1 1 58
subtype2 2 58
subtype3 2 55
subtype4 0 20

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S7.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 48 46 60 32 44 15 5
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.0221 (logrank test), Q value = 0.069

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 248 83 0.1 - 188.2 (23.3)
subtype1 48 16 4.3 - 124.4 (32.4)
subtype2 45 10 0.7 - 102.0 (17.9)
subtype3 60 19 0.1 - 120.2 (27.3)
subtype4 32 16 0.1 - 135.5 (17.3)
subtype5 44 19 0.6 - 143.4 (18.4)
subtype6 14 2 0.1 - 123.8 (29.4)
subtype7 5 1 0.5 - 188.2 (15.9)

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.000268 (Kruskal-Wallis (anova)), Q value = 0.0033

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 249 61.4 (14.4)
subtype1 48 64.1 (13.0)
subtype2 46 63.7 (14.5)
subtype3 59 59.9 (11.9)
subtype4 32 52.2 (19.4)
subtype5 44 67.0 (12.9)
subtype6 15 52.9 (8.6)
subtype7 5 63.6 (6.7)

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.00021 (Fisher's exact test), Q value = 0.0033

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 135 115
subtype1 18 30
subtype2 19 27
subtype3 38 22
subtype4 25 7
subtype5 19 25
subtype6 11 4
subtype7 5 0

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'RACE'

P value = 0.193 (Fisher's exact test), Q value = 0.33

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 18 198
subtype1 0 2 39
subtype2 2 2 35
subtype3 0 7 51
subtype4 1 1 26
subtype5 1 4 34
subtype6 2 2 9
subtype7 0 0 4

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.313 (Fisher's exact test), Q value = 0.4

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 194
subtype1 1 38
subtype2 1 36
subtype3 0 54
subtype4 2 19
subtype5 1 35
subtype6 0 9
subtype7 0 3

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S13.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 57 100 59
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.00192 (logrank test), Q value = 0.012

Table S14.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 216 72 0.1 - 188.2 (21.8)
subtype1 57 16 4.3 - 108.1 (27.8)
subtype2 100 41 0.1 - 143.4 (17.7)
subtype3 59 15 0.1 - 188.2 (26.6)

Figure S11.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.00799 (Kruskal-Wallis (anova)), Q value = 0.033

Table S15.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 215 62.2 (14.2)
subtype1 57 59.9 (14.7)
subtype2 100 65.0 (14.8)
subtype3 58 59.7 (11.6)

Figure S12.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.0533 (Fisher's exact test), Q value = 0.12

Table S16.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 114 102
subtype1 26 31
subtype2 49 51
subtype3 39 20

Figure S13.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA CNMF subtypes' versus 'RACE'

P value = 0.991 (Fisher's exact test), Q value = 0.99

Table S17.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 13 169
subtype1 1 3 40
subtype2 3 7 77
subtype3 2 3 52

Figure S14.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RACE'

'RPPA CNMF subtypes' versus 'ETHNICITY'

P value = 0.234 (Fisher's exact test), Q value = 0.33

Table S18.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 165
subtype1 2 39
subtype2 1 77
subtype3 0 49

Figure S15.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S19.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 23 28 38 66 39 22
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.00742 (logrank test), Q value = 0.033

Table S20.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 216 72 0.1 - 188.2 (21.8)
subtype1 23 6 4.3 - 108.1 (23.5)
subtype2 28 7 5.3 - 124.4 (31.8)
subtype3 38 17 0.6 - 188.2 (17.4)
subtype4 66 18 0.1 - 123.8 (26.5)
subtype5 39 14 0.7 - 74.7 (19.7)
subtype6 22 10 0.1 - 71.3 (13.3)

Figure S16.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.00038 (Kruskal-Wallis (anova)), Q value = 0.0038

Table S21.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 215 62.2 (14.2)
subtype1 23 63.2 (14.5)
subtype2 28 62.5 (12.9)
subtype3 38 69.5 (13.3)
subtype4 65 58.6 (11.3)
subtype5 39 64.8 (13.9)
subtype6 22 54.7 (18.8)

Figure S17.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.0502 (Fisher's exact test), Q value = 0.12

Table S22.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 114 102
subtype1 10 13
subtype2 11 17
subtype3 16 22
subtype4 44 22
subtype5 19 20
subtype6 14 8

Figure S18.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA cHierClus subtypes' versus 'RACE'

P value = 0.726 (Fisher's exact test), Q value = 0.77

Table S23.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 13 169
subtype1 0 1 20
subtype2 1 0 18
subtype3 0 4 31
subtype4 3 5 54
subtype5 2 1 27
subtype6 0 2 19

Figure S19.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'RPPA cHierClus subtypes' versus 'ETHNICITY'

P value = 0.199 (Fisher's exact test), Q value = 0.33

Table S24.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 165
subtype1 1 19
subtype2 0 18
subtype3 2 30
subtype4 0 56
subtype5 0 26
subtype6 0 16

Figure S20.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S25.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 113 74 61
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.0559 (logrank test), Q value = 0.12

Table S26.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 246 82 0.1 - 188.2 (23.3)
subtype1 112 36 0.6 - 143.4 (22.1)
subtype2 74 21 0.1 - 123.8 (27.8)
subtype3 60 25 0.1 - 188.2 (16.5)

Figure S21.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000968 (Kruskal-Wallis (anova)), Q value = 0.0069

Table S27.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 247 61.2 (14.4)
subtype1 113 65.0 (13.3)
subtype2 73 58.2 (11.5)
subtype3 61 57.7 (17.5)

Figure S22.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.00258 (Fisher's exact test), Q value = 0.013

Table S28.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 134 114
subtype1 49 64
subtype2 51 23
subtype3 34 27

Figure S23.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.824 (Fisher's exact test), Q value = 0.86

Table S29.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 18 196
subtype1 3 6 85
subtype2 2 8 61
subtype3 1 4 50

Figure S24.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.248 (Fisher's exact test), Q value = 0.34

Table S30.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 193
subtype1 3 86
subtype2 0 63
subtype3 2 44

Figure S25.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S31.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 45 22 50 46 27 26 32
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0443 (logrank test), Q value = 0.12

Table S32.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 246 82 0.1 - 188.2 (23.3)
subtype1 45 16 0.7 - 124.4 (33.5)
subtype2 21 2 4.3 - 102.0 (23.1)
subtype3 50 15 0.1 - 120.2 (30.5)
subtype4 45 18 0.1 - 188.2 (19.8)
subtype5 27 11 0.6 - 106.5 (16.9)
subtype6 26 6 0.1 - 123.8 (22.0)
subtype7 32 14 1.1 - 143.4 (16.9)

Figure S26.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 8.76e-05 (Kruskal-Wallis (anova)), Q value = 0.0033

Table S33.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 247 61.2 (14.4)
subtype1 45 66.8 (12.6)
subtype2 22 61.7 (11.3)
subtype3 50 60.0 (12.0)
subtype4 46 54.9 (18.3)
subtype5 27 69.0 (13.3)
subtype6 25 54.3 (9.6)
subtype7 32 62.7 (13.7)

Figure S27.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.0183 (Fisher's exact test), Q value = 0.061

Table S34.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 134 114
subtype1 21 24
subtype2 9 13
subtype3 30 20
subtype4 25 21
subtype5 12 15
subtype6 22 4
subtype7 15 17

Figure S28.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.163 (Fisher's exact test), Q value = 0.32

Table S35.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 18 196
subtype1 1 1 33
subtype2 1 2 15
subtype3 0 5 44
subtype4 1 2 39
subtype5 1 0 22
subtype6 2 3 19
subtype7 0 5 24

Figure S29.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.391 (Fisher's exact test), Q value = 0.47

Table S36.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 193
subtype1 1 32
subtype2 1 16
subtype3 0 46
subtype4 2 33
subtype5 1 22
subtype6 0 19
subtype7 0 25

Figure S30.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S37.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 104 49 95
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.233 (logrank test), Q value = 0.33

Table S38.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 246 83 0.1 - 188.2 (23.3)
subtype1 103 40 0.5 - 188.2 (20.1)
subtype2 48 13 0.7 - 124.4 (23.1)
subtype3 95 30 0.1 - 123.8 (25.2)

Figure S31.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.178 (Kruskal-Wallis (anova)), Q value = 0.32

Table S39.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 247 61.3 (14.5)
subtype1 104 61.4 (16.5)
subtype2 49 64.0 (13.3)
subtype3 94 59.8 (12.4)

Figure S32.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.0572 (Fisher's exact test), Q value = 0.12

Table S40.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 133 115
subtype1 49 55
subtype2 24 25
subtype3 60 35

Figure S33.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.724 (Fisher's exact test), Q value = 0.77

Table S41.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 18 197
subtype1 1 6 80
subtype2 1 4 39
subtype3 4 8 78

Figure S34.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.135 (Fisher's exact test), Q value = 0.28

Table S42.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 193
subtype1 3 73
subtype2 2 42
subtype3 0 78

Figure S35.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S43.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 76 51 98 23
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.32 (logrank test), Q value = 0.4

Table S44.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 246 83 0.1 - 188.2 (23.3)
subtype1 75 29 0.5 - 143.4 (20.3)
subtype2 50 14 0.1 - 124.4 (24.2)
subtype3 98 30 0.1 - 123.8 (25.1)
subtype4 23 10 1.1 - 188.2 (17.7)

Figure S36.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.00018 (Kruskal-Wallis (anova)), Q value = 0.0033

Table S45.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 247 61.3 (14.5)
subtype1 76 65.2 (13.1)
subtype2 51 64.8 (13.1)
subtype3 97 59.7 (12.6)
subtype4 23 47.8 (20.0)

Figure S37.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.0284 (Fisher's exact test), Q value = 0.084

Table S46.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 133 115
subtype1 32 44
subtype2 25 26
subtype3 60 38
subtype4 16 7

Figure S38.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.645 (Fisher's exact test), Q value = 0.73

Table S47.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 6 18 197
subtype1 1 2 57
subtype2 1 5 40
subtype3 4 9 80
subtype4 0 2 20

Figure S39.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.0136 (Fisher's exact test), Q value = 0.049

Table S48.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 193
subtype1 1 56
subtype2 2 43
subtype3 0 81
subtype4 2 13

Figure S40.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S49.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 80 62 47
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.217 (logrank test), Q value = 0.33

Table S50.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 187 65 0.1 - 188.2 (21.4)
subtype1 79 32 0.1 - 188.2 (19.4)
subtype2 62 22 0.1 - 120.2 (23.5)
subtype3 46 11 0.7 - 124.4 (21.8)

Figure S41.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.178 (Kruskal-Wallis (anova)), Q value = 0.32

Table S51.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 188 61.9 (14.5)
subtype1 80 61.0 (16.6)
subtype2 61 60.2 (12.3)
subtype3 47 65.5 (12.9)

Figure S42.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.205 (Fisher's exact test), Q value = 0.33

Table S52.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 105 84
subtype1 40 40
subtype2 40 22
subtype3 25 22

Figure S43.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.499 (Fisher's exact test), Q value = 0.58

Table S53.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 13 152
subtype1 1 3 64
subtype2 1 6 51
subtype3 2 4 37

Figure S44.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.31 (Fisher's exact test), Q value = 0.4

Table S54.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 152
subtype1 2 57
subtype2 0 55
subtype3 2 40

Figure S45.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S55.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6 7 8
Number of samples 21 33 37 24 10 20 22 22
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.173 (logrank test), Q value = 0.32

Table S56.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 187 65 0.1 - 188.2 (21.4)
subtype1 21 4 0.1 - 124.4 (33.1)
subtype2 32 12 0.5 - 108.1 (32.4)
subtype3 37 14 0.1 - 120.2 (29.9)
subtype4 24 10 0.1 - 102.0 (20.0)
subtype5 10 1 9.0 - 36.4 (22.0)
subtype6 20 10 0.6 - 143.4 (19.1)
subtype7 21 4 0.7 - 106.5 (13.3)
subtype8 22 10 1.1 - 188.2 (16.3)

Figure S46.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.00943 (Kruskal-Wallis (anova)), Q value = 0.036

Table S57.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 188 61.9 (14.5)
subtype1 21 60.3 (11.1)
subtype2 33 63.3 (13.1)
subtype3 37 60.6 (11.3)
subtype4 24 66.5 (13.0)
subtype5 9 54.6 (11.5)
subtype6 20 69.0 (12.7)
subtype7 22 66.6 (14.1)
subtype8 22 50.4 (20.7)

Figure S47.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.00254 (Fisher's exact test), Q value = 0.013

Table S58.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 105 84
subtype1 10 11
subtype2 11 22
subtype3 27 10
subtype4 14 10
subtype5 6 4
subtype6 7 13
subtype7 12 10
subtype8 18 4

Figure S48.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.229 (Fisher's exact test), Q value = 0.33

Table S59.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 13 152
subtype1 0 2 18
subtype2 0 0 24
subtype3 0 4 31
subtype4 1 2 18
subtype5 1 2 7
subtype6 0 0 19
subtype7 1 1 17
subtype8 1 2 18

Figure S49.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.251 (Fisher's exact test), Q value = 0.34

Table S60.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 152
subtype1 0 19
subtype2 1 22
subtype3 0 33
subtype4 0 19
subtype5 0 10
subtype6 0 17
subtype7 2 18
subtype8 1 14

Figure S50.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/SARC-TP/15111074/SARC-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/SARC-TP/15087563/SARC-TP.merged_data.txt

  • Number of patients = 250

  • Number of clustering approaches = 10

  • Number of selected clinical features = 5

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)