Correlation between aggregated molecular cancer subtypes and selected clinical features
Uveal Melanoma (Primary solid tumor)
02 April 2015  |  analyses__2015_04_02
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2015): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1R78DC7
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 6 clinical features across 80 patients, 13 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'Time to Death',  'YEARS_TO_BIRTH', and 'PATHOLOGY_M_STAGE'.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death' and 'PATHOLOGY_M_STAGE'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death' and 'NEOPLASM_DISEASESTAGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'Time to Death'.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'Time to Death'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'Time to Death' and 'PATHOLOGY_M_STAGE'.

  • 6 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 6 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 13 significant findings detected.

Clinical
Features
Time
to
Death
YEARS
TO
BIRTH
NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
M
STAGE
GENDER
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.00361
(0.0289)
0.0498
(0.182)
0.0738
(0.212)
0.465
(0.519)
0.0481
(0.182)
0.919
(0.919)
METHLYATION CNMF 0.00244
(0.0234)
0.166
(0.275)
0.165
(0.275)
0.269
(0.339)
0.108
(0.235)
0.505
(0.551)
RNAseq CNMF subtypes 2.62e-05
(0.00063)
0.198
(0.275)
0.105
(0.235)
0.132
(0.244)
0.0366
(0.176)
0.702
(0.733)
RNAseq cHierClus subtypes 1.08e-05
(0.000516)
0.0852
(0.224)
0.0405
(0.177)
0.114
(0.235)
0.0651
(0.208)
0.878
(0.896)
MIRSEQ CNMF 0.0285
(0.152)
0.559
(0.596)
0.0887
(0.224)
0.207
(0.275)
0.179
(0.275)
0.188
(0.275)
MIRSEQ CHIERARCHICAL 8.12e-05
(0.0013)
0.125
(0.24)
0.19
(0.275)
0.0954
(0.229)
0.118
(0.235)
0.2
(0.275)
MIRseq Mature CNMF subtypes 0.00917
(0.0629)
0.053
(0.182)
0.137
(0.244)
0.318
(0.391)
0.0232
(0.139)
0.075
(0.212)
MIRseq Mature cHierClus subtypes 0.000112
(0.00134)
0.42
(0.48)
0.207
(0.275)
0.395
(0.462)
0.235
(0.305)
0.381
(0.457)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 22 36 22
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.00361 (logrank test), Q value = 0.029

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 13 0.1 - 74.5 (19.1)
subtype1 22 5 0.1 - 31.4 (15.3)
subtype2 36 1 0.1 - 74.5 (22.4)
subtype3 22 7 0.3 - 52.6 (14.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0498 (Kruskal-Wallis (anova)), Q value = 0.18

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 80 61.6 (13.9)
subtype1 22 65.0 (12.5)
subtype2 36 57.1 (14.3)
subtype3 22 65.7 (13.1)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.0738 (Fisher's exact test), Q value = 0.21

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
subtype1 1 8 5 3 1 3
subtype2 9 14 9 4 0 0
subtype3 2 5 11 3 0 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.465 (Fisher's exact test), Q value = 0.52

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 14 32 34
subtype1 2 8 12
subtype2 9 15 12
subtype3 3 9 10

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.0481 (Fisher's exact test), Q value = 0.18

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 51 4
subtype1 13 3
subtype2 25 0
subtype3 13 1

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.919 (Fisher's exact test), Q value = 0.92

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 35 45
subtype1 10 12
subtype2 15 21
subtype3 10 12

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'GENDER'

Clustering Approach #2: 'METHLYATION CNMF'

Table S8.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 33 18 29
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.00244 (logrank test), Q value = 0.023

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 13 0.1 - 74.5 (19.1)
subtype1 33 10 0.1 - 42.1 (13.6)
subtype2 18 2 0.2 - 74.5 (19.6)
subtype3 29 1 0.1 - 70.7 (22.8)

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.166 (Kruskal-Wallis (anova)), Q value = 0.27

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 80 61.6 (13.9)
subtype1 33 65.2 (13.2)
subtype2 18 61.9 (11.9)
subtype3 29 57.4 (15.2)

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.165 (Fisher's exact test), Q value = 0.27

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
subtype1 2 11 11 3 1 4
subtype2 2 5 7 4 0 0
subtype3 8 11 7 3 0 0

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.269 (Fisher's exact test), Q value = 0.34

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 14 32 34
subtype1 3 12 18
subtype2 3 8 7
subtype3 8 12 9

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.108 (Fisher's exact test), Q value = 0.23

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 51 4
subtype1 20 4
subtype2 13 0
subtype3 18 0

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.505 (Fisher's exact test), Q value = 0.55

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 35 45
subtype1 14 19
subtype2 10 8
subtype3 11 18

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'GENDER'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S15.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 30 15 35
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 2.62e-05 (logrank test), Q value = 0.00063

Table S16.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 13 0.1 - 74.5 (19.1)
subtype1 30 11 0.1 - 37.8 (13.4)
subtype2 15 1 0.2 - 52.6 (21.0)
subtype3 35 1 0.1 - 74.5 (22.0)

Figure S13.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.198 (Kruskal-Wallis (anova)), Q value = 0.28

Table S17.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 80 61.6 (13.9)
subtype1 30 65.5 (13.2)
subtype2 15 61.0 (13.1)
subtype3 35 58.6 (14.5)

Figure S14.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.105 (Fisher's exact test), Q value = 0.23

Table S18.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
subtype1 3 8 11 3 1 4
subtype2 0 6 5 3 0 0
subtype3 9 13 9 4 0 0

Figure S15.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.132 (Fisher's exact test), Q value = 0.24

Table S19.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 14 32 34
subtype1 3 9 18
subtype2 2 8 5
subtype3 9 15 11

Figure S16.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.0366 (Fisher's exact test), Q value = 0.18

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 51 4
subtype1 18 4
subtype2 10 0
subtype3 23 0

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.702 (Fisher's exact test), Q value = 0.73

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 35 45
subtype1 13 17
subtype2 8 7
subtype3 14 21

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'GENDER'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S22.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 29 33 18
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 1.08e-05 (logrank test), Q value = 0.00052

Table S23.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 13 0.1 - 74.5 (19.1)
subtype1 29 11 0.1 - 37.8 (13.2)
subtype2 33 1 0.1 - 74.5 (22.8)
subtype3 18 1 0.2 - 52.6 (20.3)

Figure S19.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0852 (Kruskal-Wallis (anova)), Q value = 0.22

Table S24.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 80 61.6 (13.9)
subtype1 29 66.4 (12.5)
subtype2 33 57.8 (14.5)
subtype3 18 60.9 (13.4)

Figure S20.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.0405 (Fisher's exact test), Q value = 0.18

Table S25.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
subtype1 3 9 9 3 1 4
subtype2 9 13 8 3 0 0
subtype3 0 5 8 4 0 0

Figure S21.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.114 (Fisher's exact test), Q value = 0.24

Table S26.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 14 32 34
subtype1 4 9 16
subtype2 9 15 9
subtype3 1 8 9

Figure S22.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.0651 (Fisher's exact test), Q value = 0.21

Table S27.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 51 4
subtype1 18 4
subtype2 22 0
subtype3 11 0

Figure S23.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.878 (Fisher's exact test), Q value = 0.9

Table S28.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 35 45
subtype1 12 17
subtype2 14 19
subtype3 9 9

Figure S24.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S29.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 34 17 29
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0285 (logrank test), Q value = 0.15

Table S30.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 13 0.1 - 74.5 (19.1)
subtype1 34 7 0.1 - 52.6 (16.4)
subtype2 17 5 0.1 - 70.7 (14.9)
subtype3 29 1 0.2 - 74.5 (20.2)

Figure S25.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.559 (Kruskal-Wallis (anova)), Q value = 0.6

Table S31.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 80 61.6 (13.9)
subtype1 34 63.2 (12.4)
subtype2 17 63.6 (14.2)
subtype3 29 58.7 (15.5)

Figure S26.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.0887 (Fisher's exact test), Q value = 0.22

Table S32.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
subtype1 1 14 10 5 1 2
subtype2 2 5 7 1 0 2
subtype3 9 8 8 4 0 0

Figure S27.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_T_STAGE'

P value = 0.207 (Fisher's exact test), Q value = 0.28

Table S33.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 14 32 34
subtype1 3 16 15
subtype2 2 6 9
subtype3 9 10 10

Figure S28.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY_M_STAGE'

P value = 0.179 (Fisher's exact test), Q value = 0.28

Table S34.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 51 4
subtype1 22 2
subtype2 9 2
subtype3 20 0

Figure S29.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.188 (Fisher's exact test), Q value = 0.28

Table S35.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 35 45
subtype1 11 23
subtype2 10 7
subtype3 14 15

Figure S30.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'GENDER'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S36.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 17 13 28 22
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 8.12e-05 (logrank test), Q value = 0.0013

Table S37.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 80 13 0.1 - 74.5 (19.1)
subtype1 17 2 1.4 - 52.6 (21.7)
subtype2 13 0 0.1 - 70.7 (22.0)
subtype3 28 2 0.2 - 74.5 (20.0)
subtype4 22 9 0.1 - 37.8 (13.2)

Figure S31.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.125 (Kruskal-Wallis (anova)), Q value = 0.24

Table S38.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 80 61.6 (13.9)
subtype1 17 60.9 (14.9)
subtype2 13 59.2 (12.2)
subtype3 28 58.4 (15.7)
subtype4 22 67.8 (10.2)

Figure S32.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.19 (Fisher's exact test), Q value = 0.28

Table S39.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 12 27 25 10 1 4
subtype1 1 7 5 1 1 1
subtype2 0 6 5 2 0 0
subtype3 9 8 7 4 0 0
subtype4 2 6 8 3 0 3

Figure S33.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_T_STAGE'

P value = 0.0954 (Fisher's exact test), Q value = 0.23

Table S40.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 14 32 34
subtype1 3 9 5
subtype2 0 6 7
subtype3 9 10 9
subtype4 2 7 13

Figure S34.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY_M_STAGE'

P value = 0.118 (Fisher's exact test), Q value = 0.24

Table S41.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 51 4
subtype1 10 1
subtype2 9 0
subtype3 19 0
subtype4 13 3

Figure S35.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.2 (Fisher's exact test), Q value = 0.28

Table S42.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 35 45
subtype1 10 7
subtype2 3 10
subtype3 14 14
subtype4 8 14

Figure S36.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'GENDER'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S43.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 32 28 14
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.00917 (logrank test), Q value = 0.063

Table S44.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 74 13 0.1 - 74.5 (19.1)
subtype1 32 8 0.1 - 52.6 (13.4)
subtype2 28 1 0.1 - 74.5 (22.4)
subtype3 14 4 0.5 - 37.8 (13.2)

Figure S37.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.053 (Kruskal-Wallis (anova)), Q value = 0.18

Table S45.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 74 61.9 (14.1)
subtype1 32 63.2 (13.6)
subtype2 28 57.0 (15.4)
subtype3 14 68.9 (9.2)

Figure S38.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.137 (Fisher's exact test), Q value = 0.24

Table S46.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 10 25 24 9 1 4
subtype1 1 12 11 4 1 2
subtype2 4 10 10 4 0 0
subtype3 5 3 3 1 0 2

Figure S39.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.318 (Fisher's exact test), Q value = 0.39

Table S47.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 12 30 32
subtype1 3 14 15
subtype2 4 11 13
subtype3 5 5 4

Figure S40.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.0232 (Fisher's exact test), Q value = 0.14

Table S48.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 48 4
subtype1 20 2
subtype2 23 0
subtype3 5 2

Figure S41.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.075 (Fisher's exact test), Q value = 0.21

Table S49.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 32 42
subtype1 12 20
subtype2 10 18
subtype3 10 4

Figure S42.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'GENDER'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S50.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 5 12 16 16 15 10
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.000112 (logrank test), Q value = 0.0013

Table S51.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 74 13 0.1 - 74.5 (19.1)
subtype1 5 2 1.4 - 23.3 (7.9)
subtype2 12 0 0.3 - 52.6 (20.3)
subtype3 16 0 0.1 - 70.7 (23.2)
subtype4 16 1 0.2 - 74.5 (21.5)
subtype5 15 6 0.1 - 37.8 (13.1)
subtype6 10 4 1.2 - 28.4 (18.3)

Figure S43.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.42 (Kruskal-Wallis (anova)), Q value = 0.48

Table S52.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 74 61.9 (14.1)
subtype1 5 68.2 (18.8)
subtype2 12 60.3 (13.3)
subtype3 16 58.2 (13.7)
subtype4 16 60.3 (17.4)
subtype5 15 67.9 (11.3)
subtype6 10 60.3 (10.6)

Figure S44.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM_DISEASESTAGE'

P value = 0.207 (Fisher's exact test), Q value = 0.28

Table S53.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

nPatients STAGE IIA STAGE IIB STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 10 25 24 9 1 4
subtype1 0 1 2 0 1 1
subtype2 0 5 3 3 0 0
subtype3 3 5 7 1 0 0
subtype4 5 6 3 2 0 0
subtype5 1 7 4 1 0 2
subtype6 1 1 5 2 0 1

Figure S45.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM_DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.395 (Fisher's exact test), Q value = 0.46

Table S54.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

nPatients T2 T3 T4
ALL 12 30 32
subtype1 0 2 3
subtype2 2 5 5
subtype3 3 5 8
subtype4 5 8 3
subtype5 1 8 6
subtype6 1 2 7

Figure S46.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY_T_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY_M_STAGE'

P value = 0.235 (Fisher's exact test), Q value = 0.3

Table S55.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

nPatients 0 1
ALL 48 4
subtype1 4 1
subtype2 5 0
subtype3 13 0
subtype4 11 0
subtype5 9 2
subtype6 6 1

Figure S47.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY_M_STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.381 (Fisher's exact test), Q value = 0.46

Table S56.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 32 42
subtype1 4 1
subtype2 5 7
subtype3 6 10
subtype4 8 8
subtype5 7 8
subtype6 2 8

Figure S48.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/UVM-TP/15952300/UVM-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/UVM-TP/15096076/UVM-TP.merged_data.txt

  • Number of patients = 80

  • Number of clustering approaches = 8

  • Number of selected clinical features = 6

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)