This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 12 different clustering approaches and 7 clinical features across 545 patients, 39 significant findings detected with P value < 0.05 and Q value < 0.25.
-
CNMF clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'YEARS_TO_BIRTH' and 'HISTOLOGICAL_TYPE'.
-
Consensus hierarchical clustering analysis on array-based mRNA expression data identified 5 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', and 'HISTOLOGICAL_TYPE'.
-
5 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', and 'RACE'.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'RADIATION_THERAPY', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', and 'HISTOLOGICAL_TYPE'.
-
Consensus hierarchical clustering analysis on RPPA data identified 4 subtypes that correlate to 'HISTOLOGICAL_TYPE'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', and 'RESIDUAL_TUMOR'.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'RADIATION_THERAPY', and 'HISTOLOGICAL_TYPE'.
-
4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', and 'HISTOLOGICAL_TYPE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'Time to Death', 'YEARS_TO_BIRTH', 'HISTOLOGICAL_TYPE', and 'RACE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH' and 'HISTOLOGICAL_TYPE'.
Table 1. Get Full Table Overview of the association between subtypes identified by 12 different clustering approaches and 7 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 39 significant findings detected.
|
Clinical Features |
Time to Death |
YEARS TO BIRTH |
RADIATION THERAPY |
HISTOLOGICAL TYPE |
RESIDUAL TUMOR |
RACE | ETHNICITY |
| Statistical Tests | logrank test | Kruskal-Wallis (anova) | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test |
| mRNA CNMF subtypes |
0.777 (0.826) |
0.00418 (0.0121) |
0.211 (0.301) |
0.00023 (0.000805) |
0.681 (0.752) |
0.15 (0.243) |
0.612 (0.686) |
| mRNA cHierClus subtypes |
0.0472 (0.102) |
0.0314 (0.0713) |
0.487 (0.577) |
1e-05 (4.67e-05) |
0.179 (0.274) |
0.572 (0.658) |
1 (1.00) |
| Copy Number Ratio CNMF subtypes |
5.53e-08 (1.16e-06) |
1.08e-12 (9.1e-11) |
0.161 (0.25) |
1e-05 (4.67e-05) |
0.238 (0.322) |
0.00522 (0.0146) |
0.693 (0.756) |
| METHLYATION CNMF |
0.0135 (0.0365) |
0.0014 (0.00436) |
0.0289 (0.0673) |
1e-05 (4.67e-05) |
0.0149 (0.0392) |
0.0819 (0.156) |
0.481 (0.577) |
| RPPA CNMF subtypes |
0.000737 (0.00248) |
0.0037 (0.0111) |
0.227 (0.318) |
1e-05 (4.67e-05) |
0.422 (0.521) |
0.21 (0.301) |
0.061 (0.125) |
| RPPA cHierClus subtypes |
0.136 (0.243) |
0.872 (0.915) |
0.149 (0.243) |
1e-05 (4.67e-05) |
0.897 (0.93) |
0.353 (0.45) |
0.105 (0.195) |
| RNAseq CNMF subtypes |
1.58e-05 (6.99e-05) |
4.01e-07 (6.74e-06) |
0.0627 (0.125) |
1e-05 (4.67e-05) |
0.0439 (0.097) |
0.16 (0.25) |
1 (1.00) |
| RNAseq cHierClus subtypes |
3.12e-05 (0.000131) |
1.3e-08 (3.64e-07) |
0.441 (0.537) |
1e-05 (4.67e-05) |
0.0182 (0.0465) |
0.0553 (0.116) |
0.234 (0.322) |
| MIRSEQ CNMF |
8.94e-05 (0.000357) |
9.68e-07 (1.36e-05) |
0.0225 (0.054) |
1e-05 (4.67e-05) |
0.145 (0.243) |
0.321 (0.426) |
0.0666 (0.13) |
| MIRSEQ CHIERARCHICAL |
3.62e-06 (4.35e-05) |
2.71e-10 (1.14e-08) |
0.133 (0.243) |
1e-05 (4.67e-05) |
0.599 (0.68) |
0.203 (0.299) |
0.923 (0.945) |
| MIRseq Mature CNMF subtypes |
0.0217 (0.0536) |
0.000881 (0.00285) |
0.324 (0.426) |
1e-05 (4.67e-05) |
0.744 (0.801) |
0.00015 (0.000548) |
0.197 (0.296) |
| MIRseq Mature cHierClus subtypes |
0.145 (0.243) |
0.000102 (0.000388) |
0.349 (0.45) |
1e-05 (4.67e-05) |
0.146 (0.243) |
0.402 (0.504) |
0.55 (0.642) |
Table S1. Description of clustering approach #1: 'mRNA CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Number of samples | 14 | 18 | 12 | 10 |
P value = 0.777 (logrank test), Q value = 0.83
Table S2. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 54 | 10 | 10.2 - 149.6 (46.6) |
| subtype1 | 14 | 2 | 13.6 - 149.6 (47.8) |
| subtype2 | 18 | 5 | 10.2 - 125.4 (55.8) |
| subtype3 | 12 | 1 | 20.9 - 105.4 (36.4) |
| subtype4 | 10 | 2 | 18.6 - 82.5 (37.1) |
Figure S1. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.00418 (Kruskal-Wallis (anova)), Q value = 0.012
Table S3. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 54 | 62.9 (11.8) |
| subtype1 | 14 | 65.6 (11.7) |
| subtype2 | 18 | 68.2 (9.3) |
| subtype3 | 12 | 58.7 (11.9) |
| subtype4 | 10 | 54.9 (11.5) |
Figure S2. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.211 (Fisher's exact test), Q value = 0.3
Table S4. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 37 | 17 |
| subtype1 | 7 | 7 |
| subtype2 | 12 | 6 |
| subtype3 | 9 | 3 |
| subtype4 | 9 | 1 |
Figure S3. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 0.00023 (Fisher's exact test), Q value = 8e-04
Table S5. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 41 | 1 | 12 |
| subtype1 | 12 | 0 | 2 |
| subtype2 | 8 | 0 | 10 |
| subtype3 | 11 | 1 | 0 |
| subtype4 | 10 | 0 | 0 |
Figure S4. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.681 (Fisher's exact test), Q value = 0.75
Table S6. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 42 | 3 | 2 | 1 |
| subtype1 | 8 | 2 | 1 | 0 |
| subtype2 | 14 | 1 | 1 | 1 |
| subtype3 | 11 | 0 | 0 | 0 |
| subtype4 | 9 | 0 | 0 | 0 |
Figure S5. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.15 (Fisher's exact test), Q value = 0.24
Table S7. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|---|
| ALL | 2 | 4 | 6 | 40 |
| subtype1 | 1 | 1 | 1 | 10 |
| subtype2 | 0 | 0 | 4 | 13 |
| subtype3 | 1 | 3 | 0 | 8 |
| subtype4 | 0 | 0 | 1 | 9 |
Figure S6. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.612 (Fisher's exact test), Q value = 0.69
Table S8. Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 2 | 24 |
| subtype1 | 1 | 6 |
| subtype2 | 1 | 6 |
| subtype3 | 0 | 9 |
| subtype4 | 0 | 3 |
Figure S7. Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S9. Description of clustering approach #2: 'mRNA cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| Number of samples | 14 | 10 | 7 | 7 | 16 |
P value = 0.0472 (logrank test), Q value = 0.1
Table S10. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 54 | 10 | 10.2 - 149.6 (46.6) |
| subtype1 | 14 | 1 | 10.2 - 149.6 (59.1) |
| subtype2 | 10 | 4 | 22.0 - 125.4 (47.9) |
| subtype3 | 7 | 3 | 13.6 - 80.5 (36.4) |
| subtype4 | 7 | 0 | 32.8 - 129.8 (56.9) |
| subtype5 | 16 | 2 | 18.6 - 105.4 (34.6) |
Figure S8. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.0314 (Kruskal-Wallis (anova)), Q value = 0.071
Table S11. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 54 | 62.9 (11.8) |
| subtype1 | 14 | 62.4 (8.6) |
| subtype2 | 10 | 70.7 (9.3) |
| subtype3 | 7 | 63.4 (15.2) |
| subtype4 | 7 | 66.3 (7.1) |
| subtype5 | 16 | 56.9 (13.6) |
Figure S9. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.487 (Fisher's exact test), Q value = 0.58
Table S12. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 37 | 17 |
| subtype1 | 9 | 5 |
| subtype2 | 7 | 3 |
| subtype3 | 5 | 2 |
| subtype4 | 3 | 4 |
| subtype5 | 13 | 3 |
Figure S10. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S13. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 41 | 1 | 12 |
| subtype1 | 11 | 0 | 3 |
| subtype2 | 1 | 0 | 9 |
| subtype3 | 6 | 1 | 0 |
| subtype4 | 7 | 0 | 0 |
| subtype5 | 16 | 0 | 0 |
Figure S11. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.179 (Fisher's exact test), Q value = 0.27
Table S14. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 42 | 3 | 2 | 1 |
| subtype1 | 11 | 1 | 0 | 1 |
| subtype2 | 9 | 0 | 1 | 0 |
| subtype3 | 4 | 1 | 1 | 0 |
| subtype4 | 4 | 1 | 0 | 0 |
| subtype5 | 14 | 0 | 0 | 0 |
Figure S12. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.572 (Fisher's exact test), Q value = 0.66
Table S15. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | WHITE |
|---|---|---|---|---|
| ALL | 2 | 4 | 6 | 40 |
| subtype1 | 0 | 2 | 2 | 9 |
| subtype2 | 0 | 0 | 3 | 7 |
| subtype3 | 0 | 1 | 0 | 5 |
| subtype4 | 1 | 0 | 0 | 6 |
| subtype5 | 1 | 1 | 1 | 13 |
Figure S13. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RACE'
P value = 1 (Fisher's exact test), Q value = 1
Table S16. Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 2 | 24 |
| subtype1 | 1 | 9 |
| subtype2 | 0 | 2 |
| subtype3 | 1 | 5 |
| subtype4 | 0 | 2 |
| subtype5 | 0 | 6 |
Figure S14. Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S17. Description of clustering approach #3: 'Copy Number Ratio CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| Number of samples | 168 | 303 | 19 | 9 | 37 |
P value = 5.53e-08 (logrank test), Q value = 1.2e-06
Table S18. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 534 | 81 | 0.0 - 225.5 (27.4) |
| subtype1 | 167 | 46 | 0.1 - 125.4 (23.9) |
| subtype2 | 302 | 24 | 0.0 - 225.5 (29.2) |
| subtype3 | 19 | 3 | 0.1 - 149.6 (52.0) |
| subtype4 | 9 | 0 | 8.6 - 60.5 (21.2) |
| subtype5 | 37 | 8 | 0.1 - 77.2 (25.5) |
Figure S15. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 1.08e-12 (Kruskal-Wallis (anova)), Q value = 9.1e-11
Table S19. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 534 | 64.0 (11.2) |
| subtype1 | 167 | 69.2 (8.4) |
| subtype2 | 302 | 61.4 (11.1) |
| subtype3 | 19 | 61.9 (13.8) |
| subtype4 | 9 | 68.1 (12.9) |
| subtype5 | 37 | 61.6 (12.8) |
Figure S16. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.161 (Fisher's exact test), Q value = 0.25
Table S20. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 284 | 218 |
| subtype1 | 80 | 69 |
| subtype2 | 165 | 126 |
| subtype3 | 15 | 3 |
| subtype4 | 4 | 5 |
| subtype5 | 20 | 15 |
Figure S17. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S21. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 401 | 22 | 113 |
| subtype1 | 50 | 12 | 106 |
| subtype2 | 290 | 8 | 5 |
| subtype3 | 17 | 0 | 2 |
| subtype4 | 8 | 1 | 0 |
| subtype5 | 36 | 1 | 0 |
Figure S18. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.238 (Fisher's exact test), Q value = 0.32
Table S22. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 370 | 22 | 17 | 37 |
| subtype1 | 105 | 9 | 10 | 16 |
| subtype2 | 216 | 13 | 5 | 19 |
| subtype3 | 12 | 0 | 1 | 1 |
| subtype4 | 9 | 0 | 0 | 0 |
| subtype5 | 28 | 0 | 1 | 1 |
Figure S19. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.00522 (Fisher's exact test), Q value = 0.015
Table S23. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 4 | 20 | 106 | 9 | 368 |
| subtype1 | 1 | 2 | 51 | 3 | 97 |
| subtype2 | 3 | 15 | 47 | 5 | 219 |
| subtype3 | 0 | 3 | 1 | 0 | 15 |
| subtype4 | 0 | 0 | 1 | 0 | 8 |
| subtype5 | 0 | 0 | 6 | 1 | 29 |
Figure S20. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.693 (Fisher's exact test), Q value = 0.76
Table S24. Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 372 |
| subtype1 | 7 | 114 |
| subtype2 | 8 | 204 |
| subtype3 | 0 | 15 |
| subtype4 | 0 | 9 |
| subtype5 | 0 | 30 |
Figure S21. Get High-res Image Clustering Approach #3: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S25. Description of clustering approach #4: 'METHLYATION CNMF'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 164 | 91 | 173 |
P value = 0.0135 (logrank test), Q value = 0.037
Table S26. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 426 | 65 | 0.0 - 225.5 (23.3) |
| subtype1 | 162 | 34 | 0.1 - 225.5 (22.0) |
| subtype2 | 91 | 11 | 0.3 - 136.6 (26.7) |
| subtype3 | 173 | 20 | 0.0 - 185.8 (22.8) |
Figure S22. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
P value = 0.0014 (Kruskal-Wallis (anova)), Q value = 0.0044
Table S27. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 426 | 64.2 (11.2) |
| subtype1 | 162 | 66.3 (10.1) |
| subtype2 | 91 | 63.2 (12.4) |
| subtype3 | 173 | 62.7 (11.4) |
Figure S23. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.0289 (Fisher's exact test), Q value = 0.067
Table S28. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 217 | 177 |
| subtype1 | 66 | 76 |
| subtype2 | 54 | 32 |
| subtype3 | 97 | 69 |
Figure S24. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S29. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 309 | 21 | 98 |
| subtype1 | 66 | 16 | 82 |
| subtype2 | 73 | 2 | 16 |
| subtype3 | 170 | 3 | 0 |
Figure S25. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.0149 (Fisher's exact test), Q value = 0.039
Table S30. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 283 | 19 | 13 | 36 |
| subtype1 | 104 | 10 | 8 | 12 |
| subtype2 | 56 | 3 | 4 | 14 |
| subtype3 | 123 | 6 | 1 | 10 |
Figure S26. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.0819 (Fisher's exact test), Q value = 0.16
Table S31. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 2 | 8 | 98 | 7 | 287 |
| subtype1 | 1 | 2 | 43 | 3 | 102 |
| subtype2 | 0 | 2 | 22 | 4 | 57 |
| subtype3 | 1 | 4 | 33 | 0 | 128 |
Figure S27. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'RACE'
P value = 0.481 (Fisher's exact test), Q value = 0.58
Table S32. Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 11 | 309 |
| subtype1 | 6 | 116 |
| subtype2 | 1 | 66 |
| subtype3 | 4 | 127 |
Figure S28. Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #7: 'ETHNICITY'
Table S33. Description of clustering approach #5: 'RPPA CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 129 | 150 | 158 |
P value = 0.000737 (logrank test), Q value = 0.0025
Table S34. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 435 | 69 | 0.0 - 185.8 (27.2) |
| subtype1 | 129 | 16 | 0.2 - 185.8 (28.8) |
| subtype2 | 150 | 16 | 0.4 - 149.6 (31.9) |
| subtype3 | 156 | 37 | 0.0 - 129.8 (22.4) |
Figure S29. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.0037 (Kruskal-Wallis (anova)), Q value = 0.011
Table S35. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 436 | 63.9 (11.2) |
| subtype1 | 129 | 64.7 (11.4) |
| subtype2 | 150 | 61.7 (10.6) |
| subtype3 | 157 | 65.2 (11.4) |
Figure S30. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.227 (Fisher's exact test), Q value = 0.32
Table S36. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 224 | 188 |
| subtype1 | 71 | 53 |
| subtype2 | 71 | 75 |
| subtype3 | 82 | 60 |
Figure S31. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S37. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 326 | 17 | 94 |
| subtype1 | 113 | 4 | 12 |
| subtype2 | 123 | 7 | 20 |
| subtype3 | 90 | 6 | 62 |
Figure S32. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.422 (Fisher's exact test), Q value = 0.52
Table S38. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 301 | 14 | 11 | 34 |
| subtype1 | 91 | 7 | 2 | 9 |
| subtype2 | 100 | 5 | 3 | 10 |
| subtype3 | 110 | 2 | 6 | 15 |
Figure S33. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.21 (Fisher's exact test), Q value = 0.3
Table S39. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 3 | 14 | 87 | 5 | 301 |
| subtype1 | 1 | 5 | 21 | 1 | 99 |
| subtype2 | 1 | 7 | 26 | 3 | 102 |
| subtype3 | 1 | 2 | 40 | 1 | 100 |
Figure S34. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.061 (Fisher's exact test), Q value = 0.12
Table S40. Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 295 |
| subtype1 | 2 | 102 |
| subtype2 | 9 | 89 |
| subtype3 | 4 | 104 |
Figure S35. Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S41. Description of clustering approach #6: 'RPPA cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Number of samples | 110 | 183 | 93 | 51 |
P value = 0.136 (logrank test), Q value = 0.24
Table S42. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 435 | 69 | 0.0 - 185.8 (27.2) |
| subtype1 | 110 | 10 | 0.2 - 185.8 (30.1) |
| subtype2 | 181 | 36 | 0.0 - 149.6 (26.1) |
| subtype3 | 93 | 16 | 0.1 - 118.0 (24.7) |
| subtype4 | 51 | 7 | 0.7 - 89.3 (28.7) |
Figure S36. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.872 (Kruskal-Wallis (anova)), Q value = 0.92
Table S43. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 436 | 63.9 (11.2) |
| subtype1 | 110 | 63.3 (11.2) |
| subtype2 | 182 | 64.2 (11.2) |
| subtype3 | 93 | 63.5 (11.6) |
| subtype4 | 51 | 64.5 (10.9) |
Figure S37. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.149 (Fisher's exact test), Q value = 0.24
Table S44. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 224 | 188 |
| subtype1 | 68 | 42 |
| subtype2 | 91 | 74 |
| subtype3 | 43 | 45 |
| subtype4 | 22 | 27 |
Figure S38. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S45. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 326 | 17 | 94 |
| subtype1 | 107 | 1 | 2 |
| subtype2 | 109 | 7 | 67 |
| subtype3 | 73 | 5 | 15 |
| subtype4 | 37 | 4 | 10 |
Figure S39. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.897 (Fisher's exact test), Q value = 0.93
Table S46. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 301 | 14 | 11 | 34 |
| subtype1 | 83 | 3 | 2 | 7 |
| subtype2 | 125 | 6 | 4 | 13 |
| subtype3 | 58 | 4 | 4 | 9 |
| subtype4 | 35 | 1 | 1 | 5 |
Figure S40. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.353 (Fisher's exact test), Q value = 0.45
Table S47. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 3 | 14 | 87 | 5 | 301 |
| subtype1 | 2 | 3 | 20 | 1 | 81 |
| subtype2 | 1 | 5 | 45 | 1 | 119 |
| subtype3 | 0 | 4 | 16 | 3 | 61 |
| subtype4 | 0 | 2 | 6 | 0 | 40 |
Figure S41. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.105 (Fisher's exact test), Q value = 0.2
Table S48. Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 295 |
| subtype1 | 2 | 90 |
| subtype2 | 10 | 107 |
| subtype3 | 3 | 62 |
| subtype4 | 0 | 36 |
Figure S42. Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S49. Description of clustering approach #7: 'RNAseq CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 233 | 154 | 155 |
P value = 1.58e-05 (logrank test), Q value = 7e-05
Table S50. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 540 | 82 | 0.0 - 225.5 (27.5) |
| subtype1 | 231 | 53 | 0.0 - 225.5 (22.8) |
| subtype2 | 154 | 13 | 0.1 - 185.8 (31.5) |
| subtype3 | 155 | 16 | 0.4 - 136.6 (30.1) |
Figure S43. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 4.01e-07 (Kruskal-Wallis (anova)), Q value = 6.7e-06
Table S51. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 540 | 63.9 (11.2) |
| subtype1 | 231 | 66.6 (10.5) |
| subtype2 | 154 | 60.9 (11.5) |
| subtype3 | 155 | 63.1 (10.9) |
Figure S44. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.0627 (Fisher's exact test), Q value = 0.13
Table S52. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 288 | 220 |
| subtype1 | 110 | 97 |
| subtype2 | 81 | 70 |
| subtype3 | 97 | 53 |
Figure S45. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S53. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 406 | 22 | 114 |
| subtype1 | 103 | 17 | 113 |
| subtype2 | 153 | 1 | 0 |
| subtype3 | 150 | 4 | 1 |
Figure S46. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.0439 (Fisher's exact test), Q value = 0.097
Table S54. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 373 | 22 | 17 | 37 |
| subtype1 | 152 | 14 | 11 | 17 |
| subtype2 | 112 | 6 | 4 | 6 |
| subtype3 | 109 | 2 | 2 | 14 |
Figure S47. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.16 (Fisher's exact test), Q value = 0.25
Table S55. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 4 | 20 | 107 | 9 | 373 |
| subtype1 | 1 | 5 | 55 | 6 | 148 |
| subtype2 | 2 | 7 | 23 | 2 | 114 |
| subtype3 | 1 | 8 | 29 | 1 | 111 |
Figure S48. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RACE'
P value = 1 (Fisher's exact test), Q value = 1
Table S56. Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 375 |
| subtype1 | 7 | 165 |
| subtype2 | 4 | 102 |
| subtype3 | 4 | 108 |
Figure S49. Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S57. Description of clustering approach #8: 'RNAseq cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| Number of samples | 124 | 53 | 46 | 64 | 108 | 69 | 78 |
P value = 3.12e-05 (logrank test), Q value = 0.00013
Table S58. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 540 | 82 | 0.0 - 225.5 (27.5) |
| subtype1 | 124 | 31 | 0.1 - 125.4 (22.3) |
| subtype2 | 53 | 4 | 0.4 - 185.8 (31.8) |
| subtype3 | 45 | 11 | 0.2 - 225.5 (32.0) |
| subtype4 | 64 | 2 | 0.1 - 129.8 (31.0) |
| subtype5 | 107 | 19 | 0.0 - 92.9 (23.2) |
| subtype6 | 69 | 11 | 0.4 - 136.6 (30.1) |
| subtype7 | 78 | 4 | 0.6 - 123.7 (30.1) |
Figure S50. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 1.3e-08 (Kruskal-Wallis (anova)), Q value = 3.6e-07
Table S59. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 540 | 63.9 (11.2) |
| subtype1 | 123 | 69.3 (8.4) |
| subtype2 | 53 | 59.3 (10.3) |
| subtype3 | 45 | 63.9 (9.9) |
| subtype4 | 64 | 61.3 (12.9) |
| subtype5 | 108 | 62.9 (12.3) |
| subtype6 | 69 | 62.3 (11.7) |
| subtype7 | 78 | 63.8 (10.0) |
Figure S51. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.441 (Fisher's exact test), Q value = 0.54
Table S60. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 288 | 220 |
| subtype1 | 56 | 54 |
| subtype2 | 31 | 21 |
| subtype3 | 20 | 21 |
| subtype4 | 33 | 30 |
| subtype5 | 58 | 42 |
| subtype6 | 42 | 25 |
| subtype7 | 48 | 27 |
Figure S52. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S61. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 406 | 22 | 114 |
| subtype1 | 24 | 10 | 90 |
| subtype2 | 53 | 0 | 0 |
| subtype3 | 20 | 5 | 21 |
| subtype4 | 62 | 2 | 0 |
| subtype5 | 103 | 3 | 2 |
| subtype6 | 68 | 1 | 0 |
| subtype7 | 76 | 1 | 1 |
Figure S53. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.0182 (Fisher's exact test), Q value = 0.046
Table S62. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 373 | 22 | 17 | 37 |
| subtype1 | 81 | 7 | 3 | 10 |
| subtype2 | 42 | 1 | 0 | 3 |
| subtype3 | 32 | 1 | 7 | 3 |
| subtype4 | 44 | 5 | 1 | 1 |
| subtype5 | 72 | 7 | 4 | 6 |
| subtype6 | 44 | 1 | 1 | 6 |
| subtype7 | 58 | 0 | 1 | 8 |
Figure S54. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.0553 (Fisher's exact test), Q value = 0.12
Table S63. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 4 | 20 | 107 | 9 | 373 |
| subtype1 | 0 | 3 | 36 | 1 | 75 |
| subtype2 | 0 | 2 | 10 | 0 | 39 |
| subtype3 | 1 | 3 | 10 | 1 | 26 |
| subtype4 | 2 | 1 | 9 | 3 | 47 |
| subtype5 | 0 | 4 | 15 | 4 | 77 |
| subtype6 | 1 | 3 | 15 | 0 | 48 |
| subtype7 | 0 | 4 | 12 | 0 | 61 |
Figure S55. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.234 (Fisher's exact test), Q value = 0.32
Table S64. Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 375 |
| subtype1 | 4 | 82 |
| subtype2 | 1 | 38 |
| subtype3 | 4 | 33 |
| subtype4 | 2 | 41 |
| subtype5 | 3 | 76 |
| subtype6 | 1 | 45 |
| subtype7 | 0 | 60 |
Figure S56. Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S65. Description of clustering approach #9: 'MIRSEQ CNMF'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 221 | 151 | 163 |
P value = 8.94e-05 (logrank test), Q value = 0.00036
Table S66. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 533 | 79 | 0.0 - 225.5 (27.4) |
| subtype1 | 219 | 48 | 0.1 - 225.5 (23.7) |
| subtype2 | 151 | 18 | 0.0 - 185.8 (31.3) |
| subtype3 | 163 | 13 | 0.4 - 136.6 (28.8) |
Figure S57. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
P value = 9.68e-07 (Kruskal-Wallis (anova)), Q value = 1.4e-05
Table S67. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 533 | 63.9 (11.2) |
| subtype1 | 219 | 66.7 (10.0) |
| subtype2 | 151 | 60.9 (12.2) |
| subtype3 | 163 | 62.9 (10.9) |
Figure S58. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.0225 (Fisher's exact test), Q value = 0.054
Table S68. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 281 | 220 |
| subtype1 | 96 | 102 |
| subtype2 | 88 | 57 |
| subtype3 | 97 | 61 |
Figure S59. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S69. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 404 | 22 | 109 |
| subtype1 | 99 | 17 | 105 |
| subtype2 | 146 | 3 | 2 |
| subtype3 | 159 | 2 | 2 |
Figure S60. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.145 (Fisher's exact test), Q value = 0.24
Table S70. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 368 | 22 | 16 | 37 |
| subtype1 | 144 | 12 | 11 | 17 |
| subtype2 | 105 | 7 | 3 | 8 |
| subtype3 | 119 | 3 | 2 | 12 |
Figure S61. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.321 (Fisher's exact test), Q value = 0.43
Table S71. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 4 | 20 | 107 | 9 | 366 |
| subtype1 | 1 | 9 | 50 | 6 | 136 |
| subtype2 | 2 | 4 | 31 | 2 | 105 |
| subtype3 | 1 | 7 | 26 | 1 | 125 |
Figure S62. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #6: 'RACE'
P value = 0.0666 (Fisher's exact test), Q value = 0.13
Table S72. Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 374 |
| subtype1 | 11 | 153 |
| subtype2 | 2 | 101 |
| subtype3 | 2 | 120 |
Figure S63. Get High-res Image Clustering Approach #9: 'MIRSEQ CNMF' versus Clinical Feature #7: 'ETHNICITY'
Table S73. Description of clustering approach #10: 'MIRSEQ CHIERARCHICAL'
| Cluster Labels | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Number of samples | 217 | 58 | 143 | 117 |
P value = 3.62e-06 (logrank test), Q value = 4.3e-05
Table S74. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 533 | 79 | 0.0 - 225.5 (27.4) |
| subtype1 | 216 | 30 | 0.0 - 225.5 (24.9) |
| subtype2 | 58 | 3 | 0.4 - 185.8 (36.1) |
| subtype3 | 143 | 13 | 0.4 - 136.6 (29.3) |
| subtype4 | 116 | 33 | 0.3 - 149.6 (25.1) |
Figure S64. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
P value = 2.71e-10 (Kruskal-Wallis (anova)), Q value = 1.1e-08
Table S75. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 533 | 63.9 (11.2) |
| subtype1 | 216 | 63.7 (12.3) |
| subtype2 | 58 | 56.6 (10.0) |
| subtype3 | 143 | 63.7 (10.2) |
| subtype4 | 116 | 68.2 (8.7) |
Figure S65. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.133 (Fisher's exact test), Q value = 0.24
Table S76. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 281 | 220 |
| subtype1 | 103 | 99 |
| subtype2 | 38 | 20 |
| subtype3 | 84 | 54 |
| subtype4 | 56 | 47 |
Figure S66. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S77. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 404 | 22 | 109 |
| subtype1 | 188 | 10 | 19 |
| subtype2 | 58 | 0 | 0 |
| subtype3 | 140 | 1 | 2 |
| subtype4 | 18 | 11 | 88 |
Figure S67. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.599 (Fisher's exact test), Q value = 0.68
Table S78. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 368 | 22 | 16 | 37 |
| subtype1 | 149 | 10 | 6 | 13 |
| subtype2 | 39 | 3 | 1 | 4 |
| subtype3 | 102 | 3 | 2 | 11 |
| subtype4 | 78 | 6 | 7 | 9 |
Figure S68. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.203 (Fisher's exact test), Q value = 0.3
Table S79. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 4 | 20 | 107 | 9 | 366 |
| subtype1 | 2 | 8 | 39 | 4 | 146 |
| subtype2 | 1 | 3 | 10 | 2 | 40 |
| subtype3 | 0 | 6 | 23 | 2 | 110 |
| subtype4 | 1 | 3 | 35 | 1 | 70 |
Figure S69. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'RACE'
P value = 0.923 (Fisher's exact test), Q value = 0.95
Table S80. Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 15 | 374 |
| subtype1 | 7 | 149 |
| subtype2 | 1 | 38 |
| subtype3 | 3 | 103 |
| subtype4 | 4 | 84 |
Figure S70. Get High-res Image Clustering Approach #10: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'ETHNICITY'
Table S81. Description of clustering approach #11: 'MIRseq Mature CNMF subtypes'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 170 | 95 | 134 |
P value = 0.0217 (logrank test), Q value = 0.054
Table S82. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 397 | 61 | 0.0 - 225.5 (23.3) |
| subtype1 | 168 | 32 | 0.0 - 225.5 (22.1) |
| subtype2 | 95 | 18 | 0.3 - 123.7 (24.1) |
| subtype3 | 134 | 11 | 0.7 - 136.6 (24.7) |
Figure S71. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.000881 (Kruskal-Wallis (anova)), Q value = 0.0028
Table S83. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 397 | 64.3 (11.0) |
| subtype1 | 168 | 66.2 (10.7) |
| subtype2 | 95 | 64.5 (12.2) |
| subtype3 | 134 | 61.7 (10.1) |
Figure S72. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.324 (Fisher's exact test), Q value = 0.43
Table S84. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 196 | 170 |
| subtype1 | 75 | 72 |
| subtype2 | 44 | 44 |
| subtype3 | 77 | 54 |
Figure S73. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S85. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 284 | 20 | 95 |
| subtype1 | 93 | 9 | 68 |
| subtype2 | 65 | 8 | 22 |
| subtype3 | 126 | 3 | 5 |
Figure S74. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.744 (Fisher's exact test), Q value = 0.8
Table S86. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 267 | 17 | 13 | 31 |
| subtype1 | 106 | 7 | 8 | 12 |
| subtype2 | 72 | 4 | 1 | 7 |
| subtype3 | 89 | 6 | 4 | 12 |
Figure S75. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.00015 (Fisher's exact test), Q value = 0.00055
Table S87. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 2 | 7 | 93 | 5 | 266 |
| subtype1 | 1 | 1 | 48 | 0 | 102 |
| subtype2 | 1 | 4 | 25 | 4 | 55 |
| subtype3 | 0 | 2 | 20 | 1 | 109 |
Figure S76. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.197 (Fisher's exact test), Q value = 0.3
Table S88. Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 11 | 285 |
| subtype1 | 8 | 118 |
| subtype2 | 1 | 66 |
| subtype3 | 2 | 101 |
Figure S77. Get High-res Image Clustering Approach #11: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'
Table S89. Description of clustering approach #12: 'MIRseq Mature cHierClus subtypes'
| Cluster Labels | 1 | 2 | 3 |
|---|---|---|---|
| Number of samples | 143 | 117 | 139 |
P value = 0.145 (logrank test), Q value = 0.24
Table S90. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
| nPatients | nDeath | Duration Range (Median), Month | |
|---|---|---|---|
| ALL | 397 | 61 | 0.0 - 225.5 (23.3) |
| subtype1 | 141 | 25 | 0.1 - 225.5 (22.0) |
| subtype2 | 117 | 11 | 0.4 - 136.6 (24.4) |
| subtype3 | 139 | 25 | 0.0 - 110.1 (23.2) |
Figure S78. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
P value = 0.000102 (Kruskal-Wallis (anova)), Q value = 0.00039
Table S91. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 397 | 64.3 (11.0) |
| subtype1 | 141 | 67.5 (9.0) |
| subtype2 | 117 | 62.4 (10.6) |
| subtype3 | 139 | 62.7 (12.4) |
Figure S79. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'
P value = 0.349 (Fisher's exact test), Q value = 0.45
Table S92. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
| nPatients | NO | YES |
|---|---|---|
| ALL | 196 | 170 |
| subtype1 | 63 | 61 |
| subtype2 | 67 | 46 |
| subtype3 | 66 | 63 |
Figure S80. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'RADIATION_THERAPY'
P value = 1e-05 (Fisher's exact test), Q value = 4.7e-05
Table S93. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
| nPatients | ENDOMETRIOID ENDOMETRIAL ADENOCARCINOMA | MIXED SEROUS AND ENDOMETRIOID | SEROUS ENDOMETRIAL ADENOCARCINOMA |
|---|---|---|---|
| ALL | 284 | 20 | 95 |
| subtype1 | 72 | 12 | 59 |
| subtype2 | 113 | 2 | 2 |
| subtype3 | 99 | 6 | 34 |
Figure S81. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'HISTOLOGICAL_TYPE'
P value = 0.146 (Fisher's exact test), Q value = 0.24
Table S94. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
| nPatients | R0 | R1 | R2 | RX |
|---|---|---|---|---|
| ALL | 267 | 17 | 13 | 31 |
| subtype1 | 92 | 7 | 8 | 10 |
| subtype2 | 74 | 4 | 1 | 14 |
| subtype3 | 101 | 6 | 4 | 7 |
Figure S82. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'RESIDUAL_TUMOR'
P value = 0.402 (Fisher's exact test), Q value = 0.5
Table S95. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'RACE'
| nPatients | AMERICAN INDIAN OR ALASKA NATIVE | ASIAN | BLACK OR AFRICAN AMERICAN | NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER | WHITE |
|---|---|---|---|---|---|
| ALL | 2 | 7 | 93 | 5 | 266 |
| subtype1 | 1 | 1 | 35 | 0 | 96 |
| subtype2 | 1 | 3 | 25 | 1 | 83 |
| subtype3 | 0 | 3 | 33 | 4 | 87 |
Figure S83. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'RACE'
P value = 0.55 (Fisher's exact test), Q value = 0.64
Table S96. Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
| nPatients | HISPANIC OR LATINO | NOT HISPANIC OR LATINO |
|---|---|---|
| ALL | 11 | 285 |
| subtype1 | 6 | 108 |
| subtype2 | 2 | 85 |
| subtype3 | 3 | 92 |
Figure S84. Get High-res Image Clustering Approach #12: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'
-
Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/UCEC-TP/20144021/UCEC-TP.mergedcluster.txt
-
Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/UCEC-TP/19775642/UCEC-TP.merged_data.txt
-
Number of patients = 545
-
Number of clustering approaches = 12
-
Number of selected clinical features = 7
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.