Correlation between aggregated molecular cancer subtypes and selected clinical features
Ovarian Serous Cystadenocarcinoma (Primary solid tumor)
28 January 2016  |  analyses__2016_01_28
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2016): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C15B01XK
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 14 different clustering approaches and 7 clinical features across 589 patients, 16 significant findings detected with P value < 0.05 and Q value < 0.25.

  • CNMF clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death' and 'YEARS_TO_BIRTH'.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that correlate to 'YEARS_TO_BIRTH'.

  • CNMF clustering analysis on array-based miR expression data identified 3 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on array-based miR expression data identified 10 subtypes that correlate to 'YEARS_TO_BIRTH'.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'YEARS_TO_BIRTH'.

  • 4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'YEARS_TO_BIRTH' and 'RADIATION_THERAPY'.

  • CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on RPPA data identified 4 subtypes that correlate to 'Time to Death' and 'YEARS_TO_BIRTH'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'YEARS_TO_BIRTH' and 'ETHNICITY'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'YEARS_TO_BIRTH'.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'Time to Death'.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'YEARS_TO_BIRTH'.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 14 different clustering approaches and 7 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 16 significant findings detected.

Clinical
Features
Time
to
Death
YEARS
TO
BIRTH
TUMOR
TISSUE
SITE
RADIATION
THERAPY
KARNOFSKY
PERFORMANCE
SCORE
RESIDUAL
TUMOR
ETHNICITY
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test
mRNA CNMF subtypes 0.0362
(0.232)
0.0104
(0.127)
0.388
(0.835)
1
(1.00)
0.385
(0.835)
0.258
(0.703)
0.315
(0.779)
mRNA cHierClus subtypes 0.147
(0.539)
0.0233
(0.19)
0.242
(0.698)
1
(1.00)
0.407
(0.84)
0.154
(0.539)
0.0635
(0.328)
miR CNMF subtypes 0.00157
(0.0257)
0.965
(1.00)
0.12
(0.539)
0.855
(1.00)
0.735
(1.00)
0.322
(0.779)
0.456
(0.844)
miR cHierClus subtypes 0.188
(0.613)
0.000445
(0.0109)
0.804
(1.00)
0.249
(0.698)
0.903
(1.00)
0.266
(0.705)
0.437
(0.84)
Copy Number Ratio CNMF subtypes 0.69
(1.00)
1.16e-09
(5.71e-08)
0.392
(0.835)
0.135
(0.539)
0.334
(0.78)
0.485
(0.849)
0.774
(1.00)
METHLYATION CNMF 0.139
(0.539)
4.84e-12
(4.75e-10)
0.411
(0.84)
0.012
(0.13)
0.246
(0.698)
0.852
(1.00)
0.654
(1.00)
RPPA CNMF subtypes 0.0268
(0.202)
0.453
(0.844)
1
(1.00)
0.532
(0.869)
0.481
(0.849)
0.314
(0.779)
0.723
(1.00)
RPPA cHierClus subtypes 0.00323
(0.0452)
0.0379
(0.232)
0.0526
(0.303)
0.904
(1.00)
0.938
(1.00)
0.518
(0.86)
0.117
(0.539)
RNAseq CNMF subtypes 0.791
(1.00)
0.000846
(0.0166)
0.784
(1.00)
0.199
(0.625)
0.427
(0.84)
0.51
(0.86)
0.0183
(0.163)
RNAseq cHierClus subtypes 0.124
(0.539)
0.0145
(0.142)
0.59
(0.932)
0.467
(0.847)
0.204
(0.625)
0.589
(0.932)
0.326
(0.779)
MIRSEQ CNMF 0.0353
(0.232)
0.911
(1.00)
0.0579
(0.315)
1
(1.00)
0.98
(1.00)
0.631
(0.982)
MIRSEQ CHIERARCHICAL 0.15
(0.539)
0.000116
(0.00379)
0.869
(1.00)
0.514
(0.86)
0.677
(1.00)
0.773
(1.00)
MIRseq Mature CNMF subtypes 0.183
(0.613)
0.374
(0.835)
1
(1.00)
MIRseq Mature cHierClus subtypes 0.136
(0.539)
0.434
(0.84)
1
(1.00)
Clustering Approach #1: 'mRNA CNMF subtypes'

Table S1.  Description of clustering approach #1: 'mRNA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 181 113 120 149
'mRNA CNMF subtypes' versus 'Time to Death'

P value = 0.0362 (logrank test), Q value = 0.23

Table S2.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 559 334 0.3 - 180.2 (33.1)
subtype1 180 108 0.3 - 152.0 (33.1)
subtype2 113 77 0.3 - 153.4 (31.0)
subtype3 120 83 1.2 - 123.2 (37.8)
subtype4 146 66 0.4 - 180.2 (32.2)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0104 (Kruskal-Wallis (anova)), Q value = 0.13

Table S3.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 552 59.7 (11.6)
subtype1 175 61.9 (11.7)
subtype2 112 60.3 (11.9)
subtype3 119 58.3 (11.1)
subtype4 146 57.9 (11.4)

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'mRNA CNMF subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.388 (Fisher's exact test), Q value = 0.84

Table S4.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 559 2
subtype1 0 181 0
subtype2 1 111 1
subtype3 0 120 0
subtype4 1 147 1

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'mRNA CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 1 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 541 5
subtype1 173 2
subtype2 108 1
subtype3 118 1
subtype4 142 1

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'mRNA CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.385 (Kruskal-Wallis (anova)), Q value = 0.84

Table S6.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 78 75.6 (12.8)
subtype1 21 75.2 (14.0)
subtype2 16 71.2 (12.6)
subtype3 24 76.7 (12.7)
subtype4 17 78.8 (11.1)

Figure S5.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'mRNA CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.258 (Fisher's exact test), Q value = 0.7

Table S7.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2
ALL 14 27 1
subtype1 7 7 0
subtype2 1 8 1
subtype3 1 3 0
subtype4 5 9 0

Figure S6.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'mRNA CNMF subtypes' versus 'ETHNICITY'

P value = 0.315 (Fisher's exact test), Q value = 0.78

Table S8.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 11 330
subtype1 5 109
subtype2 0 69
subtype3 2 73
subtype4 4 79

Figure S7.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #2: 'mRNA cHierClus subtypes'

Table S9.  Description of clustering approach #2: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 313 161 89
'mRNA cHierClus subtypes' versus 'Time to Death'

P value = 0.147 (logrank test), Q value = 0.54

Table S10.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 559 334 0.3 - 180.2 (33.1)
subtype1 309 174 0.3 - 153.4 (33.9)
subtype2 161 101 0.3 - 180.2 (30.1)
subtype3 89 59 0.8 - 152.0 (38.4)

Figure S8.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0233 (Kruskal-Wallis (anova)), Q value = 0.19

Table S11.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 552 59.7 (11.6)
subtype1 307 59.5 (11.4)
subtype2 158 58.4 (12.0)
subtype3 87 62.9 (11.3)

Figure S9.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'mRNA cHierClus subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.242 (Fisher's exact test), Q value = 0.7

Table S12.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 559 2
subtype1 1 312 0
subtype2 1 158 2
subtype3 0 89 0

Figure S10.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'mRNA cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 1 (Fisher's exact test), Q value = 1

Table S13.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 541 5
subtype1 301 3
subtype2 154 1
subtype3 86 1

Figure S11.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'mRNA cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.407 (Kruskal-Wallis (anova)), Q value = 0.84

Table S14.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 78 75.6 (12.8)
subtype1 43 76.7 (11.5)
subtype2 21 72.4 (13.4)
subtype3 14 77.1 (15.4)

Figure S12.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'mRNA cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.154 (Fisher's exact test), Q value = 0.54

Table S15.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2
ALL 14 27 1
subtype1 8 11 0
subtype2 2 12 1
subtype3 4 4 0

Figure S13.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'mRNA cHierClus subtypes' versus 'ETHNICITY'

P value = 0.0635 (Fisher's exact test), Q value = 0.33

Table S16.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 11 330
subtype1 8 179
subtype2 0 94
subtype3 3 57

Figure S14.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #3: 'miR CNMF subtypes'

Table S17.  Description of clustering approach #3: 'miR CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 181 133 247
'miR CNMF subtypes' versus 'Time to Death'

P value = 0.00157 (logrank test), Q value = 0.026

Table S18.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 557 334 0.3 - 180.2 (33.1)
subtype1 181 111 0.3 - 153.4 (32.1)
subtype2 129 85 0.3 - 145.4 (29.1)
subtype3 247 138 0.3 - 180.2 (36.3)

Figure S15.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'miR CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.965 (Kruskal-Wallis (anova)), Q value = 1

Table S19.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 550 59.7 (11.6)
subtype1 177 59.6 (12.3)
subtype2 131 59.4 (11.6)
subtype3 242 60.0 (11.1)

Figure S16.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'miR CNMF subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.12 (Fisher's exact test), Q value = 0.54

Table S20.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 557 2
subtype1 1 178 2
subtype2 1 132 0
subtype3 0 247 0

Figure S17.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'miR CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.855 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 539 5
subtype1 173 1
subtype2 127 1
subtype3 239 3

Figure S18.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'miR CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.735 (Kruskal-Wallis (anova)), Q value = 1

Table S22.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 78 75.6 (12.8)
subtype1 25 76.8 (12.5)
subtype2 17 74.1 (15.4)
subtype3 36 75.6 (11.8)

Figure S19.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'miR CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.322 (Fisher's exact test), Q value = 0.78

Table S23.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2
ALL 14 27 1
subtype1 5 12 0
subtype2 2 7 1
subtype3 7 8 0

Figure S20.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'miR CNMF subtypes' versus 'ETHNICITY'

P value = 0.456 (Fisher's exact test), Q value = 0.84

Table S24.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 11 329
subtype1 5 101
subtype2 1 79
subtype3 5 149

Figure S21.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #4: 'miR cHierClus subtypes'

Table S25.  Description of clustering approach #4: 'miR cHierClus subtypes'

Cluster Labels 1 10 2 3 4 5 6 7 8 9
Number of samples 83 57 58 86 35 75 36 36 51 44
'miR cHierClus subtypes' versus 'Time to Death'

P value = 0.188 (logrank test), Q value = 0.61

Table S26.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 557 334 0.3 - 180.2 (33.1)
subtype1 83 52 0.3 - 153.4 (31.2)
subtype10 56 30 2.0 - 115.9 (28.2)
subtype2 58 37 0.3 - 106.0 (28.3)
subtype3 86 48 0.3 - 127.3 (36.8)
subtype4 34 26 1.2 - 134.0 (33.6)
subtype5 74 43 1.7 - 180.2 (38.6)
subtype6 36 25 1.0 - 125.6 (35.8)
subtype7 36 16 6.1 - 124.4 (31.7)
subtype8 50 28 0.5 - 152.0 (26.7)
subtype9 44 29 1.0 - 127.8 (32.2)

Figure S22.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'miR cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000445 (Kruskal-Wallis (anova)), Q value = 0.011

Table S27.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 550 59.7 (11.6)
subtype1 80 58.7 (12.2)
subtype10 56 55.6 (11.2)
subtype2 58 61.7 (12.3)
subtype3 85 59.3 (11.2)
subtype4 35 60.3 (11.7)
subtype5 74 60.0 (10.0)
subtype6 35 63.3 (10.9)
subtype7 35 62.9 (12.0)
subtype8 49 63.6 (11.4)
subtype9 43 54.3 (11.3)

Figure S23.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'miR cHierClus subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.804 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 557 2
subtype1 0 82 1
subtype10 0 57 0
subtype2 0 58 0
subtype3 1 85 0
subtype4 0 34 1
subtype5 1 74 0
subtype6 0 36 0
subtype7 0 36 0
subtype8 0 51 0
subtype9 0 44 0

Figure S24.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'miR cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.249 (Fisher's exact test), Q value = 0.7

Table S29.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 539 5
subtype1 77 1
subtype10 55 0
subtype2 56 1
subtype3 85 0
subtype4 34 0
subtype5 74 0
subtype6 35 0
subtype7 33 1
subtype8 48 2
subtype9 42 0

Figure S25.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'miR cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.903 (Kruskal-Wallis (anova)), Q value = 1

Table S30.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 78 75.6 (12.8)
subtype1 13 73.8 (15.0)
subtype10 6 73.3 (16.3)
subtype2 4 75.0 (10.0)
subtype3 13 80.0 (11.5)
subtype4 3 73.3 (11.5)
subtype5 12 76.7 (16.7)
subtype6 7 77.1 (13.8)
subtype7 6 76.7 (8.2)
subtype8 5 68.0 (11.0)
subtype9 9 75.6 (8.8)

Figure S26.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'miR cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.266 (Fisher's exact test), Q value = 0.7

Table S31.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2
ALL 14 27 1
subtype1 2 7 0
subtype10 2 1 0
subtype2 1 2 0
subtype3 2 4 0
subtype4 0 5 0
subtype5 1 6 0
subtype6 1 1 0
subtype7 2 1 0
subtype8 2 0 0
subtype9 1 0 1

Figure S27.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'miR cHierClus subtypes' versus 'ETHNICITY'

P value = 0.437 (Fisher's exact test), Q value = 0.84

Table S32.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 11 329
subtype1 3 46
subtype10 0 36
subtype2 0 25
subtype3 3 56
subtype4 1 18
subtype5 1 44
subtype6 2 23
subtype7 1 19
subtype8 0 34
subtype9 0 28

Figure S28.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #5: 'Copy Number Ratio CNMF subtypes'

Table S33.  Description of clustering approach #5: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 241 129 203
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.69 (logrank test), Q value = 1

Table S34.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 559 331 0.3 - 180.2 (32.9)
subtype1 235 138 0.3 - 180.2 (29.1)
subtype2 126 80 0.8 - 153.4 (33.6)
subtype3 198 113 0.3 - 134.0 (34.9)

Figure S29.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 1.16e-09 (Kruskal-Wallis (anova)), Q value = 5.7e-08

Table S35.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 552 59.8 (11.6)
subtype1 231 63.4 (10.7)
subtype2 123 58.6 (12.5)
subtype3 198 56.5 (10.8)

Figure S30.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.392 (Fisher's exact test), Q value = 0.84

Table S36.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 3 558 2
subtype1 2 233 2
subtype2 1 126 0
subtype3 0 199 0

Figure S31.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'Copy Number Ratio CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.135 (Fisher's exact test), Q value = 0.54

Table S37.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 541 5
subtype1 229 1
subtype2 118 3
subtype3 194 1

Figure S32.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.334 (Kruskal-Wallis (anova)), Q value = 0.78

Table S38.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 82 75.7 (13.9)
subtype1 38 76.1 (15.7)
subtype2 14 80.0 (11.1)
subtype3 30 73.3 (12.4)

Figure S33.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'Copy Number Ratio CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.485 (Fisher's exact test), Q value = 0.85

Table S39.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 15 26 5 3
subtype1 10 12 3 2
subtype2 2 9 0 0
subtype3 3 5 2 1

Figure S34.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.774 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 10 327
subtype1 5 139
subtype2 1 74
subtype3 4 114

Figure S35.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #6: 'METHLYATION CNMF'

Table S41.  Description of clustering approach #6: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4
Number of samples 118 100 188 169
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.139 (logrank test), Q value = 0.54

Table S42.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 560 336 0.3 - 180.2 (33.2)
subtype1 116 71 0.3 - 153.4 (31.0)
subtype2 95 61 0.8 - 116.7 (29.1)
subtype3 184 107 0.3 - 180.2 (34.3)
subtype4 165 97 0.8 - 152.0 (35.0)

Figure S36.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 4.84e-12 (Kruskal-Wallis (anova)), Q value = 4.7e-10

Table S43.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 554 59.8 (11.6)
subtype1 116 62.9 (12.2)
subtype2 95 62.0 (12.2)
subtype3 182 54.4 (10.2)
subtype4 161 62.3 (10.2)

Figure S37.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'TUMOR_TISSUE_SITE'

P value = 0.411 (Fisher's exact test), Q value = 0.84

Table S44.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 561 2
subtype1 1 117 0
subtype2 0 97 0
subtype3 1 184 0
subtype4 0 163 2

Figure S38.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'METHLYATION CNMF' versus 'RADIATION_THERAPY'

P value = 0.012 (Fisher's exact test), Q value = 0.13

Table S45.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 542 5
subtype1 111 3
subtype2 90 2
subtype3 180 0
subtype4 161 0

Figure S39.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #4: 'RADIATION_THERAPY'

'METHLYATION CNMF' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.246 (Kruskal-Wallis (anova)), Q value = 0.7

Table S46.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 78 75.6 (12.8)
subtype1 21 73.3 (13.2)
subtype2 15 73.3 (14.5)
subtype3 21 80.0 (8.9)
subtype4 21 75.2 (14.0)

Figure S40.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'METHLYATION CNMF' versus 'RESIDUAL_TUMOR'

P value = 0.852 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2
ALL 14 26 2
subtype1 3 5 0
subtype2 2 8 0
subtype3 5 6 1
subtype4 4 7 1

Figure S41.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.654 (Fisher's exact test), Q value = 1

Table S48.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 11 331
subtype1 2 80
subtype2 1 57
subtype3 3 104
subtype4 5 90

Figure S42.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #7: 'RPPA CNMF subtypes'

Table S49.  Description of clustering approach #7: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 150 192 78
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.0268 (logrank test), Q value = 0.2

Table S50.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 416 247 0.3 - 180.2 (33.6)
subtype1 147 94 0.4 - 153.4 (31.6)
subtype2 191 103 0.3 - 180.2 (35.8)
subtype3 78 50 1.1 - 91.7 (28.7)

Figure S43.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.453 (Kruskal-Wallis (anova)), Q value = 0.84

Table S51.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 413 59.7 (11.8)
subtype1 148 59.9 (12.0)
subtype2 189 59.1 (11.6)
subtype3 76 60.8 (11.9)

Figure S44.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA CNMF subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 1 (Fisher's exact test), Q value = 1

Table S52.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 3 415 2
subtype1 1 148 1
subtype2 2 189 1
subtype3 0 78 0

Figure S45.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'RPPA CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.532 (Fisher's exact test), Q value = 0.87

Table S53.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 401 4
subtype1 141 2
subtype2 186 1
subtype3 74 1

Figure S46.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'RPPA CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.481 (Kruskal-Wallis (anova)), Q value = 0.85

Table S54.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 57 75.3 (13.5)
subtype1 25 76.8 (12.8)
subtype2 27 73.0 (14.1)
subtype3 5 80.0 (14.1)

Figure S47.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'RPPA CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.314 (Fisher's exact test), Q value = 0.78

Table S55.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 14 29 5 3
subtype1 2 12 1 1
subtype2 9 8 3 1
subtype3 3 9 1 1

Figure S48.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'RPPA CNMF subtypes' versus 'ETHNICITY'

P value = 0.723 (Fisher's exact test), Q value = 1

Table S56.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 215
subtype1 2 79
subtype2 5 98
subtype3 1 38

Figure S49.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #8: 'RPPA cHierClus subtypes'

Table S57.  Description of clustering approach #8: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 146 57 61 156
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.00323 (logrank test), Q value = 0.045

Table S58.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 416 247 0.3 - 180.2 (33.6)
subtype1 145 89 0.4 - 180.2 (30.2)
subtype2 57 42 0.8 - 90.4 (34.8)
subtype3 61 31 0.8 - 127.8 (36.9)
subtype4 153 85 0.3 - 152.0 (35.0)

Figure S50.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0379 (Kruskal-Wallis (anova)), Q value = 0.23

Table S59.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 413 59.7 (11.8)
subtype1 144 59.9 (11.9)
subtype2 57 62.8 (10.7)
subtype3 61 57.0 (12.4)
subtype4 151 59.4 (11.6)

Figure S51.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA cHierClus subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.0526 (Fisher's exact test), Q value = 0.3

Table S60.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 3 415 2
subtype1 1 145 0
subtype2 2 54 1
subtype3 0 61 0
subtype4 0 155 1

Figure S52.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'RPPA cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.904 (Fisher's exact test), Q value = 1

Table S61.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 401 4
subtype1 140 1
subtype2 56 0
subtype3 59 1
subtype4 146 2

Figure S53.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'RPPA cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.938 (Kruskal-Wallis (anova)), Q value = 1

Table S62.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 57 75.3 (13.5)
subtype1 14 76.4 (16.5)
subtype2 9 73.3 (17.3)
subtype3 17 74.1 (11.8)
subtype4 17 76.5 (11.1)

Figure S54.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'RPPA cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.518 (Fisher's exact test), Q value = 0.86

Table S63.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 14 29 5 3
subtype1 4 13 3 0
subtype2 3 6 0 1
subtype3 2 5 0 0
subtype4 5 5 2 2

Figure S55.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'RPPA cHierClus subtypes' versus 'ETHNICITY'

P value = 0.117 (Fisher's exact test), Q value = 0.54

Table S64.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 215
subtype1 1 75
subtype2 2 25
subtype3 3 32
subtype4 2 83

Figure S56.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #9: 'RNAseq CNMF subtypes'

Table S65.  Description of clustering approach #9: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 79 110 114
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.791 (logrank test), Q value = 1

Table S66.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 302 183 0.3 - 180.2 (31.3)
subtype1 78 44 0.8 - 116.1 (34.6)
subtype2 110 69 0.3 - 152.0 (30.6)
subtype3 114 70 0.3 - 180.2 (30.1)

Figure S57.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.000846 (Kruskal-Wallis (anova)), Q value = 0.017

Table S67.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 295 59.1 (10.9)
subtype1 76 55.4 (10.8)
subtype2 107 61.3 (10.5)
subtype3 112 59.6 (10.8)

Figure S58.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.784 (Fisher's exact test), Q value = 1

Table S68.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY
ALL 3 300
subtype1 0 79
subtype2 1 109
subtype3 2 112

Figure S59.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'RNAseq CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.199 (Fisher's exact test), Q value = 0.62

Table S69.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 288 2
subtype1 75 0
subtype2 104 2
subtype3 109 0

Figure S60.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'RNAseq CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.427 (Kruskal-Wallis (anova)), Q value = 0.84

Table S70.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 20 78.0 (16.1)
subtype1 4 72.5 (22.2)
subtype2 6 85.0 (12.2)
subtype3 10 76.0 (15.8)

Figure S61.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'RNAseq CNMF subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.51 (Fisher's exact test), Q value = 0.86

Table S71.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 3 5 2 3
subtype1 1 0 1 1
subtype2 2 2 1 2
subtype3 0 3 0 0

Figure S62.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.0183 (Fisher's exact test), Q value = 0.16

Table S72.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 163
subtype1 3 41
subtype2 0 60
subtype3 0 62

Figure S63.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #10: 'RNAseq cHierClus subtypes'

Table S73.  Description of clustering approach #10: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 147 60 96
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.124 (logrank test), Q value = 0.54

Table S74.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 302 183 0.3 - 180.2 (31.3)
subtype1 146 83 0.3 - 180.2 (35.5)
subtype2 60 40 1.0 - 152.0 (26.4)
subtype3 96 60 0.3 - 145.4 (30.1)

Figure S64.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0145 (Kruskal-Wallis (anova)), Q value = 0.14

Table S75.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 295 59.1 (10.9)
subtype1 142 57.4 (10.6)
subtype2 59 62.4 (10.8)
subtype3 94 59.7 (11.0)

Figure S65.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 0.59 (Fisher's exact test), Q value = 0.93

Table S76.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY
ALL 3 300
subtype1 1 146
subtype2 0 60
subtype3 2 94

Figure S66.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'RNAseq cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.467 (Fisher's exact test), Q value = 0.85

Table S77.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 288 2
subtype1 138 1
subtype2 58 1
subtype3 92 0

Figure S67.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATION_THERAPY'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.204 (Kruskal-Wallis (anova)), Q value = 0.62

Table S78.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 20 78.0 (16.1)
subtype1 9 75.6 (14.2)
subtype2 3 93.3 (11.5)
subtype3 8 75.0 (17.7)

Figure S68.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'RNAseq cHierClus subtypes' versus 'RESIDUAL_TUMOR'

P value = 0.589 (Fisher's exact test), Q value = 0.93

Table S79.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

nPatients R0 R1 R2 RX
ALL 3 5 2 3
subtype1 1 3 1 2
subtype2 2 0 1 1
subtype3 0 2 0 0

Figure S69.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RESIDUAL_TUMOR'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.326 (Fisher's exact test), Q value = 0.78

Table S80.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 163
subtype1 3 73
subtype2 0 39
subtype3 0 51

Figure S70.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #11: 'MIRSEQ CNMF'

Table S81.  Description of clustering approach #11: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4
Number of samples 74 135 141 103
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0353 (logrank test), Q value = 0.23

Table S82.  Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 451 283 0.3 - 180.2 (35.0)
subtype1 74 51 0.3 - 152.0 (30.1)
subtype2 134 94 1.0 - 153.4 (43.7)
subtype3 140 82 0.3 - 130.0 (29.8)
subtype4 103 56 0.3 - 180.2 (37.0)

Figure S71.  Get High-res Image Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.911 (Kruskal-Wallis (anova)), Q value = 1

Table S83.  Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 445 59.8 (11.5)
subtype1 73 60.5 (12.2)
subtype2 134 59.8 (11.4)
subtype3 137 59.4 (12.0)
subtype4 101 59.8 (10.5)

Figure S72.  Get High-res Image Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'TUMOR_TISSUE_SITE'

P value = 0.0579 (Fisher's exact test), Q value = 0.32

Table S84.  Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 450 1
subtype1 1 72 1
subtype2 0 135 0
subtype3 0 141 0
subtype4 1 102 0

Figure S73.  Get High-res Image Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'MIRSEQ CNMF' versus 'RADIATION_THERAPY'

P value = 1 (Fisher's exact test), Q value = 1

Table S85.  Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 438 3
subtype1 72 0
subtype2 132 1
subtype3 135 1
subtype4 99 1

Figure S74.  Get High-res Image Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RADIATION_THERAPY'

'MIRSEQ CNMF' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.98 (Kruskal-Wallis (anova)), Q value = 1

Table S86.  Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 64 75.3 (13.2)
subtype1 6 76.7 (15.1)
subtype2 38 75.8 (13.3)
subtype3 8 72.5 (14.9)
subtype4 12 75.0 (12.4)

Figure S75.  Get High-res Image Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.631 (Fisher's exact test), Q value = 0.98

Table S87.  Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 263
subtype1 0 44
subtype2 4 89
subtype3 2 79
subtype4 2 51

Figure S76.  Get High-res Image Clustering Approach #11: 'MIRSEQ CNMF' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #12: 'MIRSEQ CHIERARCHICAL'

Table S88.  Description of clustering approach #12: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 105 73 169 106
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.15 (logrank test), Q value = 0.54

Table S89.  Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 451 283 0.3 - 180.2 (35.0)
subtype1 105 63 0.3 - 153.4 (43.9)
subtype2 73 48 0.8 - 119.0 (29.2)
subtype3 168 113 0.3 - 180.2 (34.8)
subtype4 105 59 0.3 - 130.0 (32.5)

Figure S77.  Get High-res Image Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.000116 (Kruskal-Wallis (anova)), Q value = 0.0038

Table S90.  Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 445 59.8 (11.5)
subtype1 104 56.9 (11.5)
subtype2 73 62.5 (11.8)
subtype3 166 61.8 (11.1)
subtype4 102 57.4 (10.9)

Figure S78.  Get High-res Image Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'TUMOR_TISSUE_SITE'

P value = 0.869 (Fisher's exact test), Q value = 1

Table S91.  Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY PERITONEUM OVARY
ALL 2 450 1
subtype1 0 105 0
subtype2 0 73 0
subtype3 2 166 1
subtype4 0 106 0

Figure S79.  Get High-res Image Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

'MIRSEQ CHIERARCHICAL' versus 'RADIATION_THERAPY'

P value = 0.514 (Fisher's exact test), Q value = 0.86

Table S92.  Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RADIATION_THERAPY'

nPatients NO YES
ALL 438 3
subtype1 103 0
subtype2 70 1
subtype3 162 2
subtype4 103 0

Figure S80.  Get High-res Image Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RADIATION_THERAPY'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.677 (Kruskal-Wallis (anova)), Q value = 1

Table S93.  Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 64 75.3 (13.2)
subtype1 28 76.4 (11.0)
subtype2 6 70.0 (21.0)
subtype3 26 74.6 (14.5)
subtype4 4 80.0 (0.0)

Figure S81.  Get High-res Image Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'KARNOFSKY_PERFORMANCE_SCORE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.773 (Fisher's exact test), Q value = 1

Table S94.  Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 263
subtype1 3 70
subtype2 2 45
subtype3 2 91
subtype4 1 57

Figure S82.  Get High-res Image Clustering Approach #12: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #13: 'MIRseq Mature CNMF subtypes'

Table S95.  Description of clustering approach #13: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 6 6 5 5
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.183 (logrank test), Q value = 0.61

Table S96.  Clustering Approach #13: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 22 15 0.8 - 125.8 (30.4)
subtype1 6 5 15.8 - 55.9 (28.4)
subtype2 6 2 5.4 - 115.9 (64.8)
subtype3 5 5 11.1 - 67.4 (29.0)
subtype4 5 3 0.8 - 125.8 (4.8)

Figure S83.  Get High-res Image Clustering Approach #13: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.374 (Kruskal-Wallis (anova)), Q value = 0.84

Table S97.  Clustering Approach #13: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 21 60.5 (12.6)
subtype1 6 56.0 (12.9)
subtype2 5 56.0 (8.3)
subtype3 5 64.2 (17.0)
subtype4 5 66.6 (10.5)

Figure S84.  Get High-res Image Clustering Approach #13: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 1 (Fisher's exact test), Q value = 1

Table S98.  Clustering Approach #13: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY
ALL 1 21
subtype1 1 5
subtype2 0 6
subtype3 0 5
subtype4 0 5

Figure S85.  Get High-res Image Clustering Approach #13: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

Clustering Approach #14: 'MIRseq Mature cHierClus subtypes'

Table S99.  Description of clustering approach #14: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 5 2 2 4 5 4
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.136 (logrank test), Q value = 0.54

Table S100.  Clustering Approach #14: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 18 12 0.8 - 125.8 (30.4)
subtype1 5 4 15.8 - 55.9 (29.0)
subtype4 4 1 5.4 - 115.9 (64.8)
subtype5 5 4 0.8 - 125.8 (36.2)
subtype6 4 3 1.0 - 42.0 (12.7)

Figure S86.  Get High-res Image Clustering Approach #14: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.434 (Kruskal-Wallis (anova)), Q value = 0.84

Table S101.  Clustering Approach #14: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 17 59.4 (13.1)
subtype1 5 55.6 (14.9)
subtype4 3 52.3 (8.7)
subtype5 5 66.4 (8.1)
subtype6 4 60.5 (17.9)

Figure S87.  Get High-res Image Clustering Approach #14: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'TUMOR_TISSUE_SITE'

P value = 1 (Fisher's exact test), Q value = 1

Table S102.  Clustering Approach #14: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

nPatients OMENTUM OVARY
ALL 1 17
subtype1 0 5
subtype4 0 4
subtype5 1 4
subtype6 0 4

Figure S88.  Get High-res Image Clustering Approach #14: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'TUMOR_TISSUE_SITE'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/OV-TP/22555032/OV-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/OV-TP/22507289/OV-TP.merged_data.txt

  • Number of patients = 589

  • Number of clustering approaches = 14

  • Number of selected clinical features = 7

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)