Correlation between aggregated molecular cancer subtypes and selected clinical features
Uterine Corpus Endometrioid Carcinoma (Primary solid tumor)
04 October 2018  |  None
Maintainer Information
Maintained by Broad Institute GDAC (Broad Institute of MIT & Harvard)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 3 different clustering approaches and 17 clinical features across 100 patients, 3 significant findings detected with P value < 0.05 and Q value < 0.25.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 5 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on methylation data identified 4 subtypes that correlate to 'HISTOLOGICAL_TYPE'.

  • 7 subtypes identified in current cancer cohort by 'METHYLATION CHIERARCHICAL'. These subtypes correlate to 'HISTOLOGICAL_TYPE' and 'RADIATION_THERAPY'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 3 different clustering approaches and 17 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 3 significant findings detected.

Clinical
Features
Statistical
Tests
mRNA
cHierClus
subtypes
Methylation
CNMF
subtypes
METHYLATION
CHIERARCHICAL
DAYS TO DEATH OR LAST FUP logrank test 0.412
(0.83)
0.818
(0.909)
0.585
(0.847)
HISTOLOGICAL TYPE Fisher's exact test 0.713
(0.909)
0.0012
(0.0306)
0.00011
(0.00561)
FIGO GRADE Fisher's exact test 0.315
(0.81)
0.027
(0.344)
0.472
(0.83)
KARNOFSKY PERFORMANCE SCORE Kruskal-Wallis (anova) 0.526
(0.838)
0.0369
(0.377)
0.133
(0.519)
MSI Fisher's exact test 0.574
(0.847)
1
(1.00)
0.479
(0.83)
PATHOLOGY T STAGE Fisher's exact test 0.108
(0.459)
0.148
(0.519)
0.584
(0.847)
PATHOLOGY N STAGE Fisher's exact test 0.386
(0.83)
0.818
(0.909)
0.45
(0.83)
PATHOLOGIC STAGE Fisher's exact test 0.36
(0.83)
0.488
(0.83)
0.484
(0.83)
YEARS TO BIRTH Kruskal-Wallis (anova) 0.517
(0.838)
0.82
(0.909)
0.47
(0.83)
ETHNICITY Fisher's exact test 0.28
(0.792)
0.0768
(0.426)
0.844
(0.909)
RACE Fisher's exact test 0.849
(0.909)
0.364
(0.83)
0.266
(0.792)
RADIATION THERAPY Fisher's exact test 0.919
(0.956)
0.105
(0.459)
0.0145
(0.246)
DIABETES Fisher's exact test 0.83
(0.909)
0.0655
(0.422)
0.67
(0.909)
BMI Fisher's exact test 0.0661
(0.422)
0.0515
(0.422)
0.598
(0.847)
NUMBER PACK YEARS SMOKED Kruskal-Wallis (anova) 0.318
(0.81)
0.153
(0.519)
0.0835
(0.426)
SMOKER Fisher's exact test 0.855
(0.909)
0.26
(0.792)
0.734
(0.909)
COUNTRY OF ORIGIN Fisher's exact test 0.728
(0.909)
0.679
(0.909)
0.947
(0.966)
Clustering Approach #1: 'mRNA cHierClus subtypes'

Table S1.  Description of clustering approach #1: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 28 20 11 20 21
'mRNA cHierClus subtypes' versus 'DAYS_TO_DEATH_OR_LAST_FUP'

P value = 0.412 (logrank test), Q value = 0.83

Table S2.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

nPatients nDeath Duration Range (Median), Month
ALL 99 3 0.0 - 130.4 (11.6)
subtype1 28 2 5.4 - 24.3 (11.2)
subtype2 19 1 0.0 - 23.3 (10.8)
subtype3 11 0 1.9 - 23.5 (14.0)
subtype4 20 0 6.0 - 130.4 (12.6)
subtype5 20 0 6.6 - 24.8 (11.8)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

'mRNA cHierClus subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.713 (Fisher's exact test), Q value = 0.91

Table S3.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'HISTOLOGICAL_TYPE'

nPatients CLEAR CELL CARCINOMA ENDOMETRIOID CARCINOMA MIXED CELL ADENOCARCINOMA SEROUS CARCINOMA
ALL 1 77 1 21
subtype1 0 22 0 6
subtype2 0 15 1 4
subtype3 0 10 0 1
subtype4 1 13 0 6
subtype5 0 17 0 4

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'HISTOLOGICAL_TYPE'

'mRNA cHierClus subtypes' versus 'FIGO_GRADE'

P value = 0.315 (Fisher's exact test), Q value = 0.81

Table S4.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'FIGO_GRADE'

nPatients FIGO GRADE 1 FIGO GRADE 2 FIGO GRADE 3
ALL 32 34 7
subtype1 8 11 2
subtype2 5 8 2
subtype3 8 1 0
subtype4 4 7 1
subtype5 7 7 2

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'FIGO_GRADE'

'mRNA cHierClus subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.526 (Kruskal-Wallis (anova)), Q value = 0.84

Table S5.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 58 91.9 (8.5)
subtype1 16 94.4 (5.1)
subtype2 13 92.3 (9.3)
subtype3 7 90.0 (14.1)
subtype4 13 91.5 (8.0)
subtype5 9 88.9 (7.8)

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

'mRNA cHierClus subtypes' versus 'MSI'

P value = 0.574 (Fisher's exact test), Q value = 0.85

Table S6.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'MSI'

nPatients MSI-H MSI-L MSS
ALL 4 5 23
subtype1 1 2 9
subtype2 2 1 2
subtype3 1 0 4
subtype4 0 0 3
subtype5 0 2 5

Figure S5.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'MSI'

'mRNA cHierClus subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.108 (Kruskal-Wallis (anova)), Q value = 0.46

Table S7.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_T_STAGE'

T1 T2 T3
ALL 78 11 10
subtype1 23 1 4
subtype2 15 4 1
subtype3 9 1 0
subtype4 16 0 4
subtype5 15 5 1

Figure S6.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY_T_STAGE'

'mRNA cHierClus subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.386 (Kruskal-Wallis (anova)), Q value = 0.83

Table S8.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY_N_STAGE'

N0 N1 N2
ALL 46 6 3
subtype1 13 1 0
subtype2 12 1 0
subtype3 6 0 0
subtype4 9 2 1
subtype5 6 2 2

Figure S7.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY_N_STAGE'

'mRNA cHierClus subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.36 (Fisher's exact test), Q value = 0.83

Table S9.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE III STAGE IV STAGE IVB
ALL 72 1 1 8 15 2 1
subtype1 21 0 0 1 5 1 0
subtype2 15 0 0 3 2 0 0
subtype3 9 0 0 1 0 0 1
subtype4 14 1 1 0 3 1 0
subtype5 13 0 0 3 5 0 0

Figure S8.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGIC_STAGE'

'mRNA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.517 (Kruskal-Wallis (anova)), Q value = 0.84

Table S10.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #9: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 100 63.6 (10.1)
subtype1 28 64.6 (12.0)
subtype2 20 65.0 (9.6)
subtype3 11 58.7 (10.2)
subtype4 20 64.3 (10.7)
subtype5 21 62.6 (6.2)

Figure S9.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #9: 'YEARS_TO_BIRTH'

'mRNA cHierClus subtypes' versus 'ETHNICITY'

P value = 0.28 (Fisher's exact test), Q value = 0.79

Table S11.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #10: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 41
subtype1 1 14
subtype2 1 7
subtype3 0 4
subtype4 2 5
subtype5 0 11

Figure S10.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #10: 'ETHNICITY'

'mRNA cHierClus subtypes' versus 'RACE'

P value = 0.849 (Fisher's exact test), Q value = 0.91

Table S12.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #11: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 58
subtype1 0 1 19
subtype2 0 1 11
subtype3 0 0 7
subtype4 0 0 11
subtype5 1 1 10

Figure S11.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #11: 'RACE'

'mRNA cHierClus subtypes' versus 'RADIATION_THERAPY'

P value = 0.919 (Fisher's exact test), Q value = 0.96

Table S13.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #12: 'RADIATION_THERAPY'

nPatients NO YES
ALL 43 54
subtype1 11 17
subtype2 9 9
subtype3 5 6
subtype4 8 12
subtype5 10 10

Figure S12.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #12: 'RADIATION_THERAPY'

'mRNA cHierClus subtypes' versus 'DIABETES'

P value = 0.83 (Fisher's exact test), Q value = 0.91

Table S14.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #13: 'DIABETES'

nPatients NO YES
ALL 70 28
subtype1 22 6
subtype2 12 7
subtype3 8 3
subtype4 14 6
subtype5 14 6

Figure S13.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #13: 'DIABETES'

'mRNA cHierClus subtypes' versus 'BMI'

P value = 0.0661 (Fisher's exact test), Q value = 0.42

Table S15.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #14: 'BMI'

nPatients NORMAL OBESE OVERWEIGHT SEVERELY OBESE UNDERWEIGHT
ALL 8 47 21 21 3
subtype1 5 11 7 3 2
subtype2 1 12 1 6 0
subtype3 0 5 2 3 1
subtype4 0 8 9 3 0
subtype5 2 11 2 6 0

Figure S14.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #14: 'BMI'

'mRNA cHierClus subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.318 (Kruskal-Wallis (anova)), Q value = 0.81

Table S16.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #15: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 18 14.5 (11.9)
subtype1 5 21.6 (18.7)
subtype2 4 13.3 (8.6)
subtype3 3 4.5 (4.4)
subtype4 4 12.6 (7.5)
subtype5 2 17.8 (2.5)

Figure S15.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #15: 'NUMBER_PACK_YEARS_SMOKED'

'mRNA cHierClus subtypes' versus 'SMOKER'

P value = 0.855 (Fisher's exact test), Q value = 0.91

Table S17.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #16: 'SMOKER'

nPatients NON-SMOKER SMOKER
ALL 73 22
subtype1 21 6
subtype2 12 4
subtype3 7 4
subtype4 16 4
subtype5 17 4

Figure S16.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #16: 'SMOKER'

'mRNA cHierClus subtypes' versus 'COUNTRY_OF_ORIGIN'

P value = 0.728 (Fisher's exact test), Q value = 0.91

Table S18.  Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #17: 'COUNTRY_OF_ORIGIN'

nPatients MEXICO POLAND UKRAINE UNITED STATES
ALL 2 5 32 36
subtype1 0 0 8 12
subtype2 1 1 6 4
subtype3 0 1 3 4
subtype4 1 2 7 6
subtype5 0 1 8 10

Figure S17.  Get High-res Image Clustering Approach #1: 'mRNA cHierClus subtypes' versus Clinical Feature #17: 'COUNTRY_OF_ORIGIN'

Clustering Approach #2: 'Methylation CNMF subtypes'

Table S19.  Description of clustering approach #2: 'Methylation CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 35 33 16 12
'Methylation CNMF subtypes' versus 'DAYS_TO_DEATH_OR_LAST_FUP'

P value = 0.818 (logrank test), Q value = 0.91

Table S20.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

nPatients nDeath Duration Range (Median), Month
ALL 95 3 1.9 - 130.4 (11.6)
subtype1 34 1 6.1 - 130.4 (11.6)
subtype2 32 1 2.3 - 24.3 (10.9)
subtype3 16 1 1.9 - 24.8 (11.4)
subtype4 12 0 9.6 - 22.9 (14.5)

Figure S18.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

'Methylation CNMF subtypes' versus 'HISTOLOGICAL_TYPE'

P value = 0.0012 (Fisher's exact test), Q value = 0.031

Table S21.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #2: 'HISTOLOGICAL_TYPE'

nPatients CLEAR CELL CARCINOMA ENDOMETRIOID CARCINOMA MIXED CELL ADENOCARCINOMA SEROUS CARCINOMA
ALL 1 77 1 17
subtype1 0 33 0 2
subtype2 1 24 1 7
subtype3 0 8 0 8
subtype4 0 12 0 0

Figure S19.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #2: 'HISTOLOGICAL_TYPE'

'Methylation CNMF subtypes' versus 'FIGO_GRADE'

P value = 0.027 (Fisher's exact test), Q value = 0.34

Table S22.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #3: 'FIGO_GRADE'

nPatients FIGO GRADE 1 FIGO GRADE 2 FIGO GRADE 3
ALL 32 34 7
subtype1 15 14 3
subtype2 10 12 0
subtype3 0 4 3
subtype4 7 4 1

Figure S20.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #3: 'FIGO_GRADE'

'Methylation CNMF subtypes' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.0369 (Kruskal-Wallis (anova)), Q value = 0.38

Table S23.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 55 92.7 (7.6)
subtype1 17 92.4 (7.5)
subtype2 25 94.4 (8.7)
subtype3 9 88.9 (3.3)
subtype4 4 92.5 (5.0)

Figure S21.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

'Methylation CNMF subtypes' versus 'MSI'

P value = 1 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #5: 'MSI'

nPatients MSI-H MSI-L MSS
ALL 4 5 23
subtype1 1 2 8
subtype2 1 1 7
subtype3 1 1 5
subtype4 1 1 3

Figure S22.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #5: 'MSI'

'Methylation CNMF subtypes' versus 'PATHOLOGY_T_STAGE'

P value = 0.148 (Kruskal-Wallis (anova)), Q value = 0.52

Table S25.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_T_STAGE'

T1 T2 T3
ALL 75 11 9
subtype1 27 5 3
subtype2 28 3 1
subtype3 9 3 4
subtype4 11 0 1

Figure S23.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY_T_STAGE'

'Methylation CNMF subtypes' versus 'PATHOLOGY_N_STAGE'

P value = 0.818 (Kruskal-Wallis (anova)), Q value = 0.91

Table S26.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY_N_STAGE'

N0 N1 N2
ALL 44 5 2
subtype1 15 1 1
subtype2 16 3 0
subtype3 9 1 1
subtype4 4 0 0

Figure S24.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY_N_STAGE'

'Methylation CNMF subtypes' versus 'PATHOLOGIC_STAGE'

P value = 0.488 (Fisher's exact test), Q value = 0.83

Table S27.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE III STAGE IV STAGE IVB
ALL 70 1 1 8 14 1 1
subtype1 25 1 0 3 5 1 0
subtype2 26 0 0 2 4 0 1
subtype3 8 0 1 3 4 0 0
subtype4 11 0 0 0 1 0 0

Figure S25.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGIC_STAGE'

'Methylation CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.82 (Kruskal-Wallis (anova)), Q value = 0.91

Table S28.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #9: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 96 63.5 (10.2)
subtype1 35 62.6 (8.3)
subtype2 33 63.5 (10.6)
subtype3 16 67.1 (13.4)
subtype4 12 60.9 (8.6)

Figure S26.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #9: 'YEARS_TO_BIRTH'

'Methylation CNMF subtypes' versus 'ETHNICITY'

P value = 0.0768 (Fisher's exact test), Q value = 0.43

Table S29.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #10: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 40
subtype1 1 19
subtype2 0 8
subtype3 3 6
subtype4 0 7

Figure S27.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #10: 'ETHNICITY'

'Methylation CNMF subtypes' versus 'RACE'

P value = 0.364 (Fisher's exact test), Q value = 0.83

Table S30.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #11: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 57
subtype1 0 1 23
subtype2 0 1 19
subtype3 0 1 8
subtype4 1 0 7

Figure S28.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #11: 'RACE'

'Methylation CNMF subtypes' versus 'RADIATION_THERAPY'

P value = 0.105 (Fisher's exact test), Q value = 0.46

Table S31.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #12: 'RADIATION_THERAPY'

nPatients NO YES
ALL 43 52
subtype1 18 16
subtype2 13 20
subtype3 4 12
subtype4 8 4

Figure S29.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #12: 'RADIATION_THERAPY'

'Methylation CNMF subtypes' versus 'DIABETES'

P value = 0.0655 (Fisher's exact test), Q value = 0.42

Table S32.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #13: 'DIABETES'

nPatients NO YES
ALL 68 27
subtype1 23 11
subtype2 24 9
subtype3 15 1
subtype4 6 6

Figure S30.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #13: 'DIABETES'

'Methylation CNMF subtypes' versus 'BMI'

P value = 0.0515 (Fisher's exact test), Q value = 0.42

Table S33.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #14: 'BMI'

nPatients NORMAL OBESE OVERWEIGHT SEVERELY OBESE UNDERWEIGHT
ALL 7 45 20 21 3
subtype1 3 12 7 10 3
subtype2 1 21 4 7 0
subtype3 3 5 7 1 0
subtype4 0 7 2 3 0

Figure S31.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #14: 'BMI'

'Methylation CNMF subtypes' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.153 (Kruskal-Wallis (anova)), Q value = 0.52

Table S34.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #15: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 18 14.5 (11.9)
subtype1 7 18.8 (13.2)
subtype2 9 12.0 (11.0)
subtype4 2 10.5 (13.4)

Figure S32.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #15: 'NUMBER_PACK_YEARS_SMOKED'

'Methylation CNMF subtypes' versus 'SMOKER'

P value = 0.26 (Fisher's exact test), Q value = 0.79

Table S35.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #16: 'SMOKER'

nPatients NON-SMOKER SMOKER
ALL 70 21
subtype1 25 9
subtype2 20 9
subtype3 15 1
subtype4 10 2

Figure S33.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #16: 'SMOKER'

'Methylation CNMF subtypes' versus 'COUNTRY_OF_ORIGIN'

P value = 0.679 (Fisher's exact test), Q value = 0.91

Table S36.  Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #17: 'COUNTRY_OF_ORIGIN'

nPatients MEXICO POLAND UKRAINE UNITED STATES
ALL 2 3 31 35
subtype1 1 2 9 16
subtype2 0 1 11 6
subtype3 1 0 7 8
subtype4 0 0 4 5

Figure S34.  Get High-res Image Clustering Approach #2: 'Methylation CNMF subtypes' versus Clinical Feature #17: 'COUNTRY_OF_ORIGIN'

Clustering Approach #3: 'METHYLATION CHIERARCHICAL'

Table S37.  Description of clustering approach #3: 'METHYLATION CHIERARCHICAL'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 34 11 9 7 6 20 9
'METHYLATION CHIERARCHICAL' versus 'DAYS_TO_DEATH_OR_LAST_FUP'

P value = 0.585 (logrank test), Q value = 0.85

Table S38.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

nPatients nDeath Duration Range (Median), Month
ALL 95 3 1.9 - 130.4 (11.6)
subtype1 33 0 6.1 - 130.4 (11.1)
subtype2 11 1 5.4 - 24.3 (13.1)
subtype3 9 1 6.7 - 22.4 (17.5)
subtype4 7 0 1.9 - 24.8 (22.6)
subtype5 6 0 10.4 - 22.9 (17.1)
subtype6 19 1 2.3 - 23.5 (9.6)
subtype7 9 0 8.2 - 23.3 (14.0)

Figure S35.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #1: 'DAYS_TO_DEATH_OR_LAST_FUP'

'METHYLATION CHIERARCHICAL' versus 'HISTOLOGICAL_TYPE'

P value = 0.00011 (Fisher's exact test), Q value = 0.0056

Table S39.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #2: 'HISTOLOGICAL_TYPE'

nPatients CLEAR CELL CARCINOMA ENDOMETRIOID CARCINOMA MIXED CELL ADENOCARCINOMA SEROUS CARCINOMA
ALL 1 77 1 17
subtype1 0 32 0 2
subtype2 0 3 0 8
subtype3 0 9 0 0
subtype4 0 4 0 3
subtype5 0 6 0 0
subtype6 1 15 1 3
subtype7 0 8 0 1

Figure S36.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #2: 'HISTOLOGICAL_TYPE'

'METHYLATION CHIERARCHICAL' versus 'FIGO_GRADE'

P value = 0.472 (Fisher's exact test), Q value = 0.83

Table S40.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #3: 'FIGO_GRADE'

nPatients FIGO GRADE 1 FIGO GRADE 2 FIGO GRADE 3
ALL 32 34 7
subtype1 12 15 4
subtype2 0 2 0
subtype3 5 3 1
subtype4 0 2 1
subtype5 4 1 1
subtype6 7 7 0
subtype7 4 4 0

Figure S37.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #3: 'FIGO_GRADE'

'METHYLATION CHIERARCHICAL' versus 'KARNOFSKY_PERFORMANCE_SCORE'

P value = 0.133 (Kruskal-Wallis (anova)), Q value = 0.52

Table S41.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

nPatients Mean (Std.Dev)
ALL 55 92.7 (7.6)
subtype1 19 90.5 (7.1)
subtype2 6 93.3 (5.2)
subtype3 3 96.7 (5.8)
subtype4 4 90.0 (0.0)
subtype5 2 95.0 (7.1)
subtype6 16 94.4 (10.3)
subtype7 5 94.0 (5.5)

Figure S38.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY_PERFORMANCE_SCORE'

'METHYLATION CHIERARCHICAL' versus 'MSI'

P value = 0.479 (Fisher's exact test), Q value = 0.83

Table S42.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #5: 'MSI'

nPatients MSI-H MSI-L MSS
ALL 4 5 23
subtype1 2 3 6
subtype2 0 0 5
subtype3 0 0 5
subtype4 0 0 1
subtype5 1 1 0
subtype6 1 0 4
subtype7 0 1 2

Figure S39.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #5: 'MSI'

'METHYLATION CHIERARCHICAL' versus 'PATHOLOGY_T_STAGE'

P value = 0.584 (Kruskal-Wallis (anova)), Q value = 0.85

Table S43.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_T_STAGE'

T1 T2 T3
ALL 75 11 9
subtype1 25 6 3
subtype2 7 1 3
subtype3 8 0 1
subtype4 5 1 1
subtype5 6 0 0
subtype6 17 1 1
subtype7 7 2 0

Figure S40.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY_T_STAGE'

'METHYLATION CHIERARCHICAL' versus 'PATHOLOGY_N_STAGE'

P value = 0.45 (Kruskal-Wallis (anova)), Q value = 0.83

Table S44.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #7: 'PATHOLOGY_N_STAGE'

N0 N1 N2
ALL 44 5 2
subtype1 17 1 1
subtype2 4 1 1
subtype3 2 0 0
subtype4 5 0 0
subtype5 2 0 0
subtype6 9 3 0
subtype7 5 0 0

Figure S41.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #7: 'PATHOLOGY_N_STAGE'

'METHYLATION CHIERARCHICAL' versus 'PATHOLOGIC_STAGE'

P value = 0.484 (Fisher's exact test), Q value = 0.83

Table S45.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #8: 'PATHOLOGIC_STAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE III STAGE IV STAGE IVB
ALL 70 1 1 8 14 1 1
subtype1 24 1 0 4 5 0 0
subtype2 7 0 0 1 3 0 0
subtype3 7 0 0 0 1 1 0
subtype4 4 0 1 1 1 0 0
subtype5 6 0 0 0 0 0 0
subtype6 15 0 0 0 4 0 1
subtype7 7 0 0 2 0 0 0

Figure S42.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #8: 'PATHOLOGIC_STAGE'

'METHYLATION CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.47 (Kruskal-Wallis (anova)), Q value = 0.83

Table S46.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #9: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 96 63.5 (10.2)
subtype1 34 61.5 (8.2)
subtype2 11 69.7 (12.0)
subtype3 9 59.6 (13.4)
subtype4 7 68.6 (11.8)
subtype5 6 64.7 (2.3)
subtype6 20 62.8 (12.2)
subtype7 9 63.9 (4.5)

Figure S43.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #9: 'YEARS_TO_BIRTH'

'METHYLATION CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.844 (Fisher's exact test), Q value = 0.91

Table S47.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #10: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 40
subtype1 3 14
subtype2 1 4
subtype3 0 7
subtype4 0 3
subtype5 0 4
subtype6 0 4
subtype7 0 4

Figure S44.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #10: 'ETHNICITY'

'METHYLATION CHIERARCHICAL' versus 'RACE'

P value = 0.266 (Fisher's exact test), Q value = 0.79

Table S48.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #11: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 57
subtype1 0 1 20
subtype2 0 0 7
subtype3 0 0 7
subtype4 0 1 2
subtype5 1 0 4
subtype6 0 1 12
subtype7 0 0 5

Figure S45.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #11: 'RACE'

'METHYLATION CHIERARCHICAL' versus 'RADIATION_THERAPY'

P value = 0.0145 (Fisher's exact test), Q value = 0.25

Table S49.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #12: 'RADIATION_THERAPY'

nPatients NO YES
ALL 43 52
subtype1 12 21
subtype2 5 6
subtype3 9 0
subtype4 2 5
subtype5 4 2
subtype6 8 12
subtype7 3 6

Figure S46.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #12: 'RADIATION_THERAPY'

'METHYLATION CHIERARCHICAL' versus 'DIABETES'

P value = 0.67 (Fisher's exact test), Q value = 0.91

Table S50.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #13: 'DIABETES'

nPatients NO YES
ALL 68 27
subtype1 25 8
subtype2 9 2
subtype3 5 4
subtype4 6 1
subtype5 3 3
subtype6 14 6
subtype7 6 3

Figure S47.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #13: 'DIABETES'

'METHYLATION CHIERARCHICAL' versus 'BMI'

P value = 0.598 (Fisher's exact test), Q value = 0.85

Table S51.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #14: 'BMI'

nPatients NORMAL OBESE OVERWEIGHT SEVERELY OBESE UNDERWEIGHT
ALL 7 45 20 21 3
subtype1 3 12 8 8 3
subtype2 1 5 4 1 0
subtype3 0 4 1 4 0
subtype4 2 2 3 0 0
subtype5 0 4 1 1 0
subtype6 1 12 2 5 0
subtype7 0 6 1 2 0

Figure S48.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #14: 'BMI'

'METHYLATION CHIERARCHICAL' versus 'NUMBER_PACK_YEARS_SMOKED'

P value = 0.0835 (Kruskal-Wallis (anova)), Q value = 0.43

Table S52.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #15: 'NUMBER_PACK_YEARS_SMOKED'

nPatients Mean (Std.Dev)
ALL 18 14.5 (11.9)
subtype1 5 20.4 (14.9)
subtype2 2 4.7 (2.3)
subtype3 2 13.8 (8.8)
subtype5 1 1.0 (NA)
subtype6 5 9.0 (5.5)
subtype7 3 25.3 (11.4)

Figure S49.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #15: 'NUMBER_PACK_YEARS_SMOKED'

'METHYLATION CHIERARCHICAL' versus 'SMOKER'

P value = 0.734 (Fisher's exact test), Q value = 0.91

Table S53.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #16: 'SMOKER'

nPatients NON-SMOKER SMOKER
ALL 70 21
subtype1 26 7
subtype2 8 3
subtype3 7 2
subtype4 7 0
subtype5 5 1
subtype6 12 5
subtype7 5 3

Figure S50.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #16: 'SMOKER'

'METHYLATION CHIERARCHICAL' versus 'COUNTRY_OF_ORIGIN'

P value = 0.947 (Fisher's exact test), Q value = 0.97

Table S54.  Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #17: 'COUNTRY_OF_ORIGIN'

nPatients MEXICO POLAND UKRAINE UNITED STATES
ALL 2 3 31 35
subtype1 2 2 11 15
subtype2 0 0 4 5
subtype3 0 0 2 4
subtype4 0 0 4 3
subtype5 0 0 1 3
subtype6 0 1 6 2
subtype7 0 0 3 3

Figure S51.  Get High-res Image Clustering Approach #3: 'METHYLATION CHIERARCHICAL' versus Clinical Feature #17: 'COUNTRY_OF_ORIGIN'

Methods & Data
Input
  • Cluster data file = /cromwell_root/fc-8b2df640-93e1-40a2-b735-5b7a14ef6398/10d02b45-07ea-40cc-ac82-013e5f89ebb2/aggregate_clusters_workflow/b0f8dcb2-0993-4424-ad42-552c0bd1a2d5/call-aggregate_clusters/CPTAC3-UCEC-TP.mergedcluster.txt

  • Clinical data file = /cromwell_root/fc-8b2df640-93e1-40a2-b735-5b7a14ef6398/f48b4003-eaf7-47c4-8ca4-0ddbd4729902/normalize_clinical_cptac/0ea0fb0d-64a4-4204-8245-a79f52e6cd0a/call-normalize_clinical_cptac_task_1/CPTAC3-UCEC-TP.clin.merged.picked.txt

  • Number of patients = 100

  • Number of clustering approaches = 3

  • Number of selected clinical features = 17

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[2] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)