Correlation between aggregated molecular cancer subtypes and selected clinical features
Pheochromocytoma and Paraganglioma (Primary solid tumor)
02 April 2015  |  analyses__2015_04_02
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2015): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1KW5F4C
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 5 clinical features across 179 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on RPPA data identified 6 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'YEARS_TO_BIRTH'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 5 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
YEARS
TO
BIRTH
GENDER RACE ETHNICITY
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.551
(1.00)
0.813
(1.00)
0.939
(1.00)
0.418
(0.926)
0.678
(1.00)
METHLYATION CNMF 0.298
(0.926)
0.107
(0.873)
0.206
(0.873)
0.21
(0.873)
0.719
(1.00)
RPPA CNMF subtypes 100
(1.00)
0.591
(1.00)
0.887
(1.00)
0.257
(0.918)
0.357
(0.926)
RPPA cHierClus subtypes 100
(1.00)
0.188
(0.873)
0.134
(0.873)
0.835
(1.00)
1
(1.00)
RNAseq CNMF subtypes 0.826
(1.00)
0.459
(0.926)
0.42
(0.926)
0.238
(0.914)
0.0568
(0.71)
RNAseq cHierClus subtypes 0.814
(1.00)
0.00266
(0.133)
0.496
(0.954)
0.773
(1.00)
0.193
(0.873)
MIRSEQ CNMF 0.17
(0.873)
0.44
(0.926)
1
(1.00)
0.888
(1.00)
0.358
(0.926)
MIRSEQ CHIERARCHICAL 0.65
(1.00)
0.918
(1.00)
0.858
(1.00)
0.667
(1.00)
0.329
(0.926)
MIRseq Mature CNMF subtypes 0.443
(0.926)
0.0109
(0.273)
0.61
(1.00)
0.577
(1.00)
0.437
(0.926)
MIRseq Mature cHierClus subtypes 0.687
(1.00)
0.0453
(0.71)
0.463
(0.926)
0.857
(1.00)
0.114
(0.873)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 60 63 39
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.551 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 162 6 0.1 - 316.7 (21.4)
subtype1 60 3 0.7 - 316.7 (22.4)
subtype2 63 1 0.8 - 127.6 (25.3)
subtype3 39 2 0.1 - 137.6 (14.2)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.813 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 162 47.5 (15.2)
subtype1 60 48.4 (15.3)
subtype2 63 46.5 (15.6)
subtype3 39 47.7 (15.0)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.939 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 88 74
subtype1 33 27
subtype2 33 30
subtype3 22 17

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.418 (Fisher's exact test), Q value = 0.93

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 19 134
subtype1 1 3 4 51
subtype2 0 2 10 50
subtype3 0 0 5 33

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.678 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 2 128
subtype1 0 51
subtype2 2 51
subtype3 0 26

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S7.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 45 85 49
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.298 (logrank test), Q value = 0.93

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 179 6 0.1 - 316.7 (20.6)
subtype1 45 3 0.2 - 316.7 (24.8)
subtype2 85 3 0.1 - 127.6 (18.3)
subtype3 49 0 0.7 - 121.0 (25.3)

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.107 (Kruskal-Wallis (anova)), Q value = 0.87

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 179 47.3 (15.1)
subtype1 45 45.0 (15.0)
subtype2 85 50.0 (14.7)
subtype3 49 44.9 (15.5)

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.206 (Fisher's exact test), Q value = 0.87

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 78
subtype1 21 24
subtype2 48 37
subtype3 32 17

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'RACE'

P value = 0.21 (Fisher's exact test), Q value = 0.87

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 148
subtype1 0 1 7 36
subtype2 1 2 5 74
subtype3 0 3 8 38

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.719 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 138
subtype1 2 34
subtype2 2 63
subtype3 1 41

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S13.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 14 9 20 6 17 13
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S14.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 79 2 0.7 - 137.6 (23.8)
subtype1 14 0 0.8 - 78.2 (23.4)
subtype2 9 1 0.9 - 137.6 (25.3)
subtype3 20 0 0.7 - 81.7 (21.6)
subtype4 6 0 2.9 - 72.4 (15.4)
subtype5 17 1 2.9 - 108.3 (28.1)
subtype6 13 0 1.8 - 127.6 (20.1)

Figure S11.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.591 (Kruskal-Wallis (anova)), Q value = 1

Table S15.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 79 47.8 (14.7)
subtype1 14 51.9 (16.2)
subtype2 9 50.2 (8.2)
subtype3 20 50.5 (14.5)
subtype4 6 43.0 (16.7)
subtype5 17 44.5 (11.8)
subtype6 13 43.8 (18.9)

Figure S12.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.887 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 40 39
subtype1 8 6
subtype2 4 5
subtype3 11 9
subtype4 4 2
subtype5 7 10
subtype6 6 7

Figure S13.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA CNMF subtypes' versus 'RACE'

P value = 0.257 (Fisher's exact test), Q value = 0.92

Table S17.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 9 65
subtype1 2 0 11
subtype2 0 0 9
subtype3 0 4 16
subtype4 1 1 4
subtype5 1 3 13
subtype6 0 1 12

Figure S14.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RACE'

'RPPA CNMF subtypes' versus 'ETHNICITY'

P value = 0.357 (Fisher's exact test), Q value = 0.93

Table S18.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 1 58
subtype1 1 9
subtype2 0 7
subtype3 0 16
subtype4 0 4
subtype5 0 11
subtype6 0 11

Figure S15.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S19.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 33 18 28
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S20.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 79 2 0.7 - 137.6 (23.8)
subtype1 33 2 0.9 - 137.6 (28.1)
subtype2 18 0 0.8 - 81.7 (20.0)
subtype3 28 0 0.7 - 72.8 (17.7)

Figure S16.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.188 (Kruskal-Wallis (anova)), Q value = 0.87

Table S21.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 79 47.8 (14.7)
subtype1 33 50.9 (13.6)
subtype2 18 48.2 (12.9)
subtype3 28 43.8 (16.4)

Figure S17.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.134 (Fisher's exact test), Q value = 0.87

Table S22.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 40 39
subtype1 20 13
subtype2 10 8
subtype3 10 18

Figure S18.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA cHierClus subtypes' versus 'RACE'

P value = 0.835 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 9 65
subtype1 1 4 28
subtype2 1 1 16
subtype3 2 4 21

Figure S19.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'RPPA cHierClus subtypes' versus 'ETHNICITY'

P value = 1 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 1 58
subtype1 1 24
subtype2 0 15
subtype3 0 19

Figure S20.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S25.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 39 69 50 21
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.826 (logrank test), Q value = 1

Table S26.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 179 6 0.1 - 316.7 (20.6)
subtype1 39 2 0.1 - 316.7 (17.9)
subtype2 69 2 0.1 - 114.8 (20.1)
subtype3 50 2 0.8 - 137.6 (21.0)
subtype4 21 0 0.8 - 111.2 (27.9)

Figure S21.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.459 (Kruskal-Wallis (anova)), Q value = 0.93

Table S27.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 179 47.3 (15.1)
subtype1 39 45.1 (15.2)
subtype2 69 49.4 (14.9)
subtype3 50 45.7 (15.4)
subtype4 21 48.5 (15.1)

Figure S22.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.42 (Fisher's exact test), Q value = 0.93

Table S28.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 78
subtype1 25 14
subtype2 35 34
subtype3 27 23
subtype4 14 7

Figure S23.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.238 (Fisher's exact test), Q value = 0.91

Table S29.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 148
subtype1 0 1 7 28
subtype2 1 2 3 62
subtype3 0 2 6 42
subtype4 0 1 4 16

Figure S24.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.0568 (Fisher's exact test), Q value = 0.71

Table S30.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 138
subtype1 2 26
subtype2 1 56
subtype3 0 40
subtype4 2 16

Figure S25.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S31.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 39 71 48 21
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.814 (logrank test), Q value = 1

Table S32.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 179 6 0.1 - 316.7 (20.6)
subtype1 39 2 0.8 - 127.6 (26.8)
subtype2 71 2 0.1 - 114.8 (18.3)
subtype3 48 2 0.2 - 316.7 (18.4)
subtype4 21 0 0.8 - 111.2 (27.9)

Figure S26.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.00266 (Kruskal-Wallis (anova)), Q value = 0.13

Table S33.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 179 47.3 (15.1)
subtype1 39 51.9 (12.6)
subtype2 71 49.3 (14.8)
subtype3 48 40.8 (15.6)
subtype4 21 47.1 (15.3)

Figure S27.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.496 (Fisher's exact test), Q value = 0.95

Table S34.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 78
subtype1 23 16
subtype2 41 30
subtype3 23 25
subtype4 14 7

Figure S28.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.773 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 148
subtype1 0 2 4 33
subtype2 1 2 5 60
subtype3 0 1 8 38
subtype4 0 1 3 17

Figure S29.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.193 (Fisher's exact test), Q value = 0.87

Table S36.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 138
subtype1 1 29
subtype2 2 55
subtype3 0 38
subtype4 2 16

Figure S30.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S37.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 75 65 39
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.17 (logrank test), Q value = 0.87

Table S38.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 179 6 0.1 - 316.7 (20.6)
subtype1 75 5 0.2 - 316.7 (24.2)
subtype2 65 0 0.1 - 114.8 (19.9)
subtype3 39 1 0.7 - 137.6 (23.1)

Figure S31.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'YEARS_TO_BIRTH'

P value = 0.44 (Kruskal-Wallis (anova)), Q value = 0.93

Table S39.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 179 47.3 (15.1)
subtype1 75 45.5 (16.0)
subtype2 65 48.2 (14.7)
subtype3 39 49.4 (14.1)

Figure S32.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CNMF' versus 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 78
subtype1 42 33
subtype2 37 28
subtype3 22 17

Figure S33.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.888 (Fisher's exact test), Q value = 1

Table S41.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 148
subtype1 1 3 9 61
subtype2 0 2 5 55
subtype3 0 1 6 32

Figure S34.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.358 (Fisher's exact test), Q value = 0.93

Table S42.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 138
subtype1 1 60
subtype2 2 50
subtype3 2 28

Figure S35.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S43.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 77 59 18 25
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.65 (logrank test), Q value = 1

Table S44.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 179 6 0.1 - 316.7 (20.6)
subtype1 77 4 0.2 - 316.7 (19.6)
subtype2 59 2 0.1 - 114.8 (24.4)
subtype3 18 0 0.7 - 86.9 (27.5)
subtype4 25 0 0.8 - 111.2 (19.9)

Figure S36.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'YEARS_TO_BIRTH'

P value = 0.918 (Kruskal-Wallis (anova)), Q value = 1

Table S45.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 179 47.3 (15.1)
subtype1 77 46.4 (15.7)
subtype2 59 48.6 (15.3)
subtype3 18 47.2 (13.0)
subtype4 25 47.5 (14.9)

Figure S37.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.858 (Fisher's exact test), Q value = 1

Table S46.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 78
subtype1 42 35
subtype2 35 24
subtype3 9 9
subtype4 15 10

Figure S38.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.667 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 148
subtype1 0 3 10 63
subtype2 1 2 4 49
subtype3 0 0 1 17
subtype4 0 1 5 19

Figure S39.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.329 (Fisher's exact test), Q value = 0.93

Table S48.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 138
subtype1 1 61
subtype2 2 45
subtype3 0 12
subtype4 2 20

Figure S40.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S49.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 36 64 12 42 24
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.443 (logrank test), Q value = 0.93

Table S50.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 178 6 0.1 - 316.7 (20.4)
subtype1 36 0 0.7 - 127.6 (25.5)
subtype2 64 2 0.1 - 114.8 (19.8)
subtype3 12 1 1.2 - 116.2 (10.5)
subtype4 42 2 0.2 - 121.0 (22.5)
subtype5 24 1 0.9 - 316.7 (26.5)

Figure S41.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0109 (Kruskal-Wallis (anova)), Q value = 0.27

Table S51.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 178 47.2 (15.1)
subtype1 36 51.1 (13.3)
subtype2 64 48.9 (14.6)
subtype3 12 53.8 (13.0)
subtype4 42 42.1 (16.2)
subtype5 24 42.8 (15.3)

Figure S42.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.61 (Fisher's exact test), Q value = 1

Table S52.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 77
subtype1 24 12
subtype2 35 29
subtype3 7 5
subtype4 24 18
subtype5 11 13

Figure S43.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.577 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 147
subtype1 0 0 5 31
subtype2 0 3 5 54
subtype3 1 0 1 9
subtype4 0 2 6 33
subtype5 0 1 3 20

Figure S44.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.437 (Fisher's exact test), Q value = 0.93

Table S54.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 137
subtype1 1 25
subtype2 2 52
subtype3 0 8
subtype4 0 33
subtype5 2 19

Figure S45.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S55.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 80 61 18 19
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.687 (logrank test), Q value = 1

Table S56.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 178 6 0.1 - 316.7 (20.4)
subtype1 80 3 0.1 - 114.8 (19.7)
subtype2 61 3 0.2 - 316.7 (25.3)
subtype3 18 0 0.7 - 86.9 (27.5)
subtype4 19 0 0.8 - 111.2 (20.6)

Figure S46.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'YEARS_TO_BIRTH'

P value = 0.0453 (Kruskal-Wallis (anova)), Q value = 0.71

Table S57.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

nPatients Mean (Std.Dev)
ALL 178 47.2 (15.1)
subtype1 80 50.3 (14.6)
subtype2 61 43.0 (15.5)
subtype3 18 47.2 (13.0)
subtype4 19 48.2 (15.7)

Figure S47.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'YEARS_TO_BIRTH'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.463 (Fisher's exact test), Q value = 0.93

Table S58.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 101 77
subtype1 48 32
subtype2 31 30
subtype3 9 9
subtype4 13 6

Figure S48.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.857 (Fisher's exact test), Q value = 1

Table S59.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 6 20 147
subtype1 1 3 7 66
subtype2 0 2 9 49
subtype3 0 0 1 17
subtype4 0 1 3 15

Figure S49.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.114 (Fisher's exact test), Q value = 0.87

Table S60.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 5 137
subtype1 3 62
subtype2 0 49
subtype3 0 12
subtype4 2 14

Figure S50.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/GDAC_mergedClustering/PCPG-TP/15107813/PCPG-TP.mergedcluster.txt

  • Clinical data file = /xchip/cga/gdac-prod/tcga-gdac/jobResults/Append_Data/PCPG-TP/15087180/PCPG-TP.merged_data.txt

  • Number of patients = 179

  • Number of clustering approaches = 10

  • Number of selected clinical features = 5

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)